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Abstract: We consider non-intrusive load monitoring by a sophisticated adversary that knows
the load profiles of the appliances and wants to determine their start-finish times based on smart-
meter readings. We prove that the expected estimation error of non-intrusive load monitoring
algorithms is lower bounded by the trace of the inverse of the cross-correlation matrix between
the derivatives of the load profiles of the appliances. This is an interesting observation illustrating
that the derivatives of the load profiles are more important than the profiles themselves for non-
intrusive load monitoring (i.e., small rapidly-changing loads are easier to identify than large,
yet slowly-varying ones). This fundamental bound on the performance of non-intrusive load
monitoring adversaries is used to develop privacy-preserving policies. Particularly, we devise
a load-scheduling policy by maximizing the lower bound on the expected estimation error of
non-intrusive load monitoring algorithms.

Keywords: Non-intrusive load monitoring; Cross-correlation; Smart meter; Fisher information;
Privacy.

1. INTRODUCTION

Non-intrusive load monitoring research is dedicated to de-
velopment of algorithms for dis-aggregating overall energy
consumption of households measured by smart meters to
estimate timing of individual appliances, such as fridge or
air-conditioning units (Hosseini et al., 2017; Zoha et al.,
2012; Davies et al., 2019; Jin et al., 2011; Zhao et al., 2015;
Rashid et al., 2019). The research is often motivated by the
interest in providing consumers with energy-saving tips
to lower bills or counter climate change, performing fault
detection, and accommodating electricity grid transforma-
tions due to integration of renewable energy. Although an
important area of research, little is done in understanding
fundamental bounds on the achievable performance of non-
intrusive load monitoring algorithms.

In this paper, we consider a sophisticated adversary that
has access to the load profiles of the appliances within
a house, e.g., it knows the specific brand and the model
of appliances. The adversary is interested in estimating
the start-finish times of the appliances based on frequent
smart-meter readings, measuring total energy consump-
tion of the house. Our interest in this powerful adversary
originates from our desire to provide a lower bound on the
abilities of all non-intrusive load monitoring algorithms
with different levels of access to information (i.e., adver-
saries without exact knowledge of the load profiles can
only perform worse in comparison). We prove that the ex-
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pected estimation error of the start times of the appliances
by any non-intrusive load monitoring algorithm is lower
bounded by the trace of the inverse of the cross-correlation
matrix between the derivatives of the load profiles of the
appliances. This is an interesting observation showing the
importance of the magnitude of the derivatives of the
load profiles rather than the load profiles themselves for
non-intrusive load monitoring, i.e., small rapidly-changing
loads are easier to isolate than large, yet slowly-varying
ones.

Energy time series, collected by smart meters, is known
to leak private information of households, such as occu-
pancy and appliance usage (McDaniel and McLaughlin,
2009). This sensitive data can be accessed by third-party
data-analytic companies 1 through electricity retailers or
utility companies. For instance, in Australia, an electric-
ity retailer required its customers to consent to sharing
their data with third parties in the United States before
permitting them to use an online web portal (Chadwick
et al., 2012). Therefore, non-intrusive load monitoring can
be used for gaining further privacy-intrusive insights, e.g.,
entertainment or feeding habits. This is evident from the
patents on the technology expressing its use in targeted
advertising (Leeb and Kirtley Jr, 1996; Haghighat-kashani
et al., 2015). Also, non-intrusive load monitoring has been
proved to be commercially viable and attractive 1 . Similar
technologies are currently being used (albeit based on
smart meters for water) to track elderly behaviour and
help those in distress (Corner, 2018) with similar appli-

1 See http://bidgely.com and https://plotwatt.com/ as exam-
ples of commercially viable initiatives providing non-intrusive load
monitoring services.
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cations to monitoring patients (Chalmers et al., 2018).
This technology is clearly a double-edged sword that can
be used by both healthcare professionals and insurance
agencies.

The privacy and security concerns associated with smart
meter data has motivated the development of privacy-
preserving polices for smart meters based on additive
noise, renewable resources, rechargeable batteries, and air
conditioning units; see (Ács and Castelluccia, 2011; Yao
and Venkitasubramaniam, 2017; Cho et al., 2019; Liu
et al., 2017; Sankar et al., 2012; Eibl and Engel, 2014;
Farokhi and Sandberg, 2017; Giaconi et al., 2017; Liu and
Cheng, 2017; Farokhi and Sandberg, 2020) and references
there-in. In this paper, however, we take a different ap-
proach to smart meter privacy using load scheduling. Par-
ticularly, we use the aforementioned fundamental bound
on estimation error of non-intrusive load monitoring al-
gorithms to develop privacy-preserving policies. We devise
load-scheduling policies by maximizing the trace of the
inverse of the cross-correlation matrix between the deriva-
tives of the load profiles of the appliances. This enables
us to select a schedule for operating the appliances that
renders the problem of non-intrusive load monitoring diffi-
cult for even the most sophisticated adversaries. Previous
attempts at load scheduling for privacy, e.g., (Liu and
Cheng, 2017), have not considered the performance of
non-intrusive load monitoring adversaries. They further
tried to keep the smart meter readings constant by load
scheduling with the aid of batteries. However, in this
paper, we do not use batteries. We also use the previously-
discussed fundamental bound on the estimation error of
non-intrusive load monitoring algorithms as a measure of
privacy.

2. NON-INTRUSIVE LOAD MONITORING

Consider a house with n ∈ N appliances. Appliance i ∈
[n] := {1, . . . , n} has a load signature of fi : R→ R, i.e., its
unique energy consumption pattern. In this paper, these
functions are known by the non-intrusive load monitoring
algorithm. The load’s signature is such that fi(t) = 0
for all t < 0 (before starting to work) and t > T (after
finishing its work) for some large enough T . Appliance
i ∈ [n] is scheduled to start at τi ∈ R. Therefore, the
total consumption of the house at any given time t ∈ R is∑
i∈[n] fi(t− τi).

We assume that a non-intrusive load monitoring algorithm
can access noisy measurements of the total consumption
at discrete times (t`)`∈[k] ⊆ [0, T ]. The noise models mea-
surement noise, privacy-preserving additive noises (e.g.,
differential-privacy noise), and consumption of small loads
that the non-intrusive load monitoring algorithm is not
interested in identifying. The measurement y` at time t` is
then given by

y` =
∑
i∈[n]

fi(t` − τi) + w`, (1)

where w := (w`)`∈[k] is a sequence of i.i.d. 2 noises. The
non-intrusive load monitoring algorithm is interested in
estimating τ := (τi)i∈[n] ∈ Rn from the measurements

2 i.i.d. stands for independently and identically distributed.

y := (y`)`∈[k] ∈ Rk using a family of arbitrary estimators

denoted by τ̂i : Rk → R for all i ∈ [n]. We are interested
for finding a lower bound on

∑
i∈[n]

πiE{(τ̂i(y)− τi)2} = E{‖Π1/2(τ̂(y)− τ)‖22}, (2)

where τ̂ := (τ̂i)i∈[n] and Π := diag(π1, . . . , πn). We make
the following standing assumption.

Assumption 1. (Regularity). p(w) is continuously differ-
entiable; p(w) = 0,∀w ∈ ∂ supp(p).

The regularity condition in Assumption 1 is a basic as-
sumption that is common in signal processing results,
such as the Cramér-Rao bound (Shao, 2003, p. 169). This
assumption holds for Gaussian and Laplace distributions,
and many other density functions. In fact, any density
function with an unbounded support automatically satis-
fies this condition. We can prove the following fundamental
bound on the performance of unbiased non-intrusive load
monitoring algorithms.

Theorem 1. For any unbiased estimator τ̂ , i.e., E{τ̂} = τ ,
we get

E{‖Π1/2(τ̂(y)− τ)‖22} ≥
1

Iw
trace(ΠRd(τ)−1),

where Iw = Ew{(p′(w)/p(w))2} is the Fisher information
of the additive noise and Rd(τ) is the discrete cross-
correlation matrix function for the derivatives of the load
signatures with entry in i-the row and j-the column
defined as

[Rd]ij(τi, τj) :=
∑
`∈[k]

f ′i(t` − τi)f ′j(t` − τj).

Proof. The conditional probability density of observing y
given τ is equal to

p(y|τ) =
∏
`∈[k]

p

y` −∑
i∈[n]

fi(t` − τi)

 .

Differentiating logarithm of the conditional density p(y|τ)
results in

∂ log(p(y|τ))

∂τi
=
∑
j∈[k]

p′

yj −∑
i∈[n]

fi(tj − τi)


p

yj −∑
i∈[n]

fi(tj − τi)

 f ′i(tj − τi).

Following this, we can compute the entry in i-th row and
q-th column of the Fisher information matrix as
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Iiq :=Ey
{
∂

∂τi
log(p(y|τ))

∂

∂τq
log(p(y|τ))

}
=Ew

{( ∑
j∈[k]

p′(wj)

p(wj)
f ′i(tj − τi)

)

×

( ∑
j∈[k]

p′(wj)

p(wj)
f ′q(tj − τq)

)}

=
∑

j1,j2∈[k]

Ew

{
p′(wj1)

p(wj1)

p′(wj2)

p(wj2)

}
× f ′i(tj1 − τi)f ′q(tj2 − τq)

=Iw
∑
j∈[k]

f ′i(tj − τi)f ′q(tj − τq)

=Iw[Rd]iq(τi, τq).

Therefore, the Fisher information matrix is equal to

I :=Ey
{
∇τp(y|τ)∇τp(y|τ)>

}
= IwRd(τ).

Finally, we get

E{‖Π1/2(τ̂(y)− τ)‖22}
= trace(E{Π1/2(τ̂ − τ)(τ̂ − τ)>Π1/2})
= trace(Π1/2E{(τ̂ − τ)(τ̂ − τ)>}Π1/2)

≥ trace(Π1/2(IwRd(τ))−1Π1/2)

= trace(Π1/2Rd(τ)−1Π1/2)/Iw

= trace(ΠRd(τ)−1)/Iw.
This concludes the proof. �

If we assume that w` is a zero-mean Gaussian random
variable with variance σ2

w > 0 for all ` ∈ [k], we can
simplify the bound in Theorem 1 by noting that Iw = σ−2w .

Note that the bound in Theorem 1 is only valid for
unbiased estimators. We generalize this bound to unbiased
estimators in the next theorem.

Theorem 2. For any estimator τ̂ , we get

E{‖Π1/2(τ̂(y)− τ)‖22}

≥ 1

Iw
trace

(
Π
∂µ(τ)

∂τ
Rd(τ)−1

∂µ(τ)

∂τ

>
)

+ ‖Π1/2µ(τ)‖22,
where µ(τ) := E{τ̂(y)}.

Proof. The proof follows from that

E{‖Π1/2(τ̂(y)− τ)‖22}

≥ trace

(
Π1/2

(
∂µ(τ)

∂τ
(IwRd(τ))−1

∂µ(τ)

∂τ

>

+ µ(τ)µ(τ)>

)
Π1/2

)

=
1

Iw
trace

(
Π
∂µ(τ)

∂τ
Rd(τ)−1

∂µ(τ)

∂τ

>
)

+ ‖Π1/2µ(τ)‖22.
This concludes the proof. �

We can further simplify the lower bound in Theorem 2.

Corollary 1. For any estimator τ̂ , we get

E{‖Π1/2(τ̂(y)− τ)‖22} ≥
c1(τ)

Iw
trace(ΠRd(τ)−1) + c2(τ),

where

c1(τ) := λmin

(
Π−1/2

∂µ(τ)

∂τ

>
Π
∂µ(τ)

∂τ
Π−1/2

)
≥ 0,

c2(τ) := ‖Π1/2µ(τ)‖22 ≥ 0.

Proof. Note that

trace

(
Π
∂µ(τ)

∂τ
Rd(τ)−1

∂µ(τ)

∂τ

>
)

= trace

(
Π−1/2

∂µ(τ)

∂τ

>
Π
∂µ(τ)

∂τ
Π−1/2

×Π1/2Rd(τ)−1Π1/2

)

≥ λmin

(
Π−1/2

∂µ(τ)

∂τ

>
Π
∂µ(τ)

∂τ
Π−1/2

)
× trace(Π1/2Rd(τ)−1Π1/2),

where the inequality follows from the inequality on
traces of positive semi-definite matrices in (Kleinman and
Athans, 1968). Combining this inequality with the fact
that trace(Π1/2Rd(τ)−1Π1/2) = trace(ΠRd(τ)−1) con-
cludes the proof. �

Note that Rd(τ) in Theorems 1 and 2 is a function of
the sampling times (t`)`∈[k]. However, as k increases, this
dependence disappears. This is discussed in the following
corollary.

Corollary 2. For any unbiased estimator τ̂ , i.e., E{τ̂} = τ ,
we get

lim
k→∞

kE{‖Π1/2(τ̂ − τ)‖22} ≥
1

Iw
trace(ΠRc(τ)−1),

where Rc(τ) is the continuous cross-correlation matrix
function for the derivatives of the load signatures with
entry on i-the row and j-the column defined as

[Rc]ij(τi, τj) :=

∫ +∞

−∞
f ′i(t− τi)f ′j(t− τj)dt.

Proof. The proof follows from the convergence of the
Riemann integral. The bounds of the integral can be
pushed from [0, T ] to (−∞,+∞) due to the fact that the
load profiles are equal to zero outside [0, T ]. �

3. SMART-METER PRIVACY BY LOAD
SCHEDULING

In this section, we propose an approach for smart meter
privacy based on load scheduling. Clearly, the lower bound
on the performance of an adversary employing a non-
intrusive load monitoring algorithm for prying into a
household in Theorem 1 and Corollary 1 is a function of
the scheduling time of the appliances τ. This motivate us
to solve the following optimization problem for finding the
optimal privacy-preserving scheduling:

max
τ∈T

trace(ΠRd(τ)−1), (3)
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t [sec]

f i
(t

)

Fig. 1. Examples of three generic loads. The loads are
shifted for optimum visibility; otherwise, the user
wants to schedule all at the beginning.

where T denotes the set of feasible schedules. The cost
function of this optimization problem is however non-
convex. Therefore, there are many local optima that can be
recovered using numerical algorithms, such as the gradient
descent. For this, we note that

∂ trace(ΠRd(τ)−1)

∂τi

= trace

(
Π

(
∂Rd(τ)−1

∂τi

))

= − trace

(
Rd(τ)−1ΠRd(τ)−1

(
∂Rd(τ)

∂τi

))
,

where[
∂Rd(τ)

∂τi

]
ji

=

[
∂Rd(τ)

∂τi

]
ij

=


−2

∑
j∈[k]

f ′′i (tj − τi)f ′i(tj − τi), i = j,

−
∑
j∈[k]

f ′′i (tj − τi)f ′j(tj − τj), i 6= j,

and [
∂Rd(τ)

∂τi

]
q`

= 0, ∀q, ` 6= i.

Therefore, we can use the projected gradient ascent to
solve (3) by following

τk+1 = PT

[
τk + µk

∂

∂τ
trace(ΠRd(τ)−1)

]
, (4)

where µk > 0 denotes the step size and PT[·] denotes
projection into the set T. For large k, we can replace Rd(τ)
with Rc(τ) while noting that[
∂Rc(τ)

∂τi

]
ji

=

[
∂Rc(τ)

∂τi

]
ij

=


−2

∫ ∞
−∞

f ′′i (t− τi)f ′i(t− τi)dt, i = j,

−
∫ ∞
−∞

f ′′i (t− τi)f ′j(t− τj)dt, i 6= j,

τ2 [sec]

τ
1 [sec]

tr
a
ce

(R
d
(τ

)−
1
)

τ2 [sec]

τ
1 [sec]

tr
ac

e(
R

c
(τ

)−
1
)

Fig. 2. Lower bound on the estimation error of any non-
intrusive load monitoring algorithm in Theorem 1
[top] and Corollary 2 [bottom] versus scheduling de-
lays of the first two loads.

and, similarly, [
∂Rc(τ)

∂τi

]
q`

= 0, ∀q, ` 6= i.

4. NUMERICAL EXAMPLE

4.1 Illustrative Example

Here, we use an illustrative example to demonstrate the
results of this paper. For this purpose, let us consider three
generic loads depicted in Figure 1. These loads possess
simple forms for ease of demonstration. Assume that the
additive noise is Gaussian with zero mean and standard
deviation σw = 0.1.

Assume that the non-intrusive load monitoring algorithm
has access to the total measurements at {0, 0.5, . . . , 9.5, 10}.
Figure 2 [top] illustrates the lower bound on the estimation
error of any non-intrusive load monitoring algorithm in
Theorem 1 versus scheduling delays of the first two loads
τ1, τ2 when fixing τ3 = 0. Figure 2 [bottom] illustrates the
lower bound on the estimation error of any non-intrusive
load monitoring algorithm in Corollary 2 versus scheduling
delays of the first two loads. Clearly, these two bounds
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Fig. 3. Examples of two real loads in a house. Again, the
loads are shifted for optimum visibility; otherwise, the
user wants to schedule all at the beginning.
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Fig. 4. Lower bound on the estimation error of any non-
intrusive load monitoring algorithm in Theorem 1
versus scheduling delays of the first two loads.

are very close to each other due to the high number of
measurements in the discrete case.

Furthermore, as expected, the lower bounds in Theorem 1
and Corollary 2 are non-convex in the decision variables of
the scheduling problem τ and possess many local optima.
However, there are two points for which the lower bounds
become very large, in fact these points are the globally-
optimal privacy-preserving schedules when fixing τ3 = 0.
They corresponds to schedules for which its is impossible
to determine if the second load is scheduled first or the
third load. Therefore, the estimation error of any non-
intrusive load monitoring algorithm is large. Therefore,
these are the most privacy-preserving schedules.

4.2 Real Appliances

In this subsection, we consider two realistic household
appliances: a dishwasher and a washer-dryer. The load
profiles of these appliances is borrowed from (Farokhi and
Cantoni, 2015). Let us assume that the additive noise is

Gaussian with zero mean and given standard deviation σw.
The non-intrusive load monitoring algorithm has access to
the combined measurements at regular 30 min intervals.
Figure 4 shows the lower bound on the estimation error of
any non-intrusive load monitoring algorithm in Theorem 1
versus scheduling delays of the first two loads τ1, τ2. The
optimum scheduling delay is given by τ1 = 0.25 and
τ2 = 0.2633. This schedule combined with the fact that the
non-intrusive load monitoring algorithm can only monitor
the total consumption at half-hourly intervals render the
task of distinguishing the start time of the dishwasher
difficult for any non-intrusive load monitoring algorithm.

5. CONCLUSIONS AND FUTURE RESEARCH

We proved that the expected estimation error of non-
intrusive load monitoring algorithms is lower bounded by
the trace of the inverse of the cross-correlation matrix be-
tween the derivatives of the load profiles of the appliances.
We developed privacy-preserving load scheduling policies
by maximizing the lower bound on the expected estimation
error of non-intrusive load monitoring algorithms. Future
work can focus on experimental demonstration and valida-
tions of these results with off-the-shelf non-intrusive load
monitoring algorithms.
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Giaconi, G., Gündüz, D., and Poor, H.V. (2017). Smart
meter privacy with renewable energy and an energy
storage device. IEEE Transactions on Information
Forensics and Security, 13(1), 129–142.

Haghighat-kashani, A., Cheam, J.T.N., and Hallam, J.M.
(2015). System and method of compiling and organizing
power consumption data and converting such data into
one or more user actionable formats. US Patent App.
14/372,056.

Hosseini, S.S., Agbossou, K., Kelouwani, S., and Cardenas,
A. (2017). Non-intrusive load monitoring through home
energy management systems: A comprehensive review.
Renewable and Sustainable Energy Reviews, 79, 1266–
1274.

Jin, Y., Tebekaemi, E., Berges, M., and Soibelman, L.
(2011). Robust adaptive event detection in non-
intrusive load monitoring for energy aware smart facili-
ties. In 2011 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 4340–
4343. IEEE.

Kleinman, D. and Athans, M. (1968). The design of subop-
timal linear time-varying systems. IEEE Transactions
on Automatic Control, 13(2), 150–159.

Leeb, S.B. and Kirtley Jr, J.L. (1996). Transient event
detector for use in nonintrusive load monitoring systems.
US Patent 5,483,153.

Liu, E. and Cheng, P. (2017). Achieving privacy protec-
tion using distributed load scheduling: A randomized

approach. IEEE Transactions on Smart Grid, 8(5),
2460–2473.

Liu, Y.H., Lee, S.H., and Khisti, A. (2017). Information-
theoretic privacy in smart metering systems using cas-
caded rechargeable batteries. IEEE Signal Processing
Letters, 24(3), 314–318.

McDaniel, P. and McLaughlin, S. (2009). Security and
privacy challenges in the smart grid. IEEE Security &
Privacy, 7(3), 75–77.

Rashid, H., Stankovic, V., Stankovic, L., and Singh,
P. (2019). Evaluation of non-intrusive load monitor-
ing algorithms for appliance-level anomaly detection.
In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
8325–8329. IEEE.

Sankar, L., Rajagopalan, S.R., Mohajer, S., and Poor, H.V.
(2012). Smart meter privacy: A theoretical framework.
IEEE Transactions on Smart Grid, 4(2), 837–846.

Shao, J. (2003). Mathematical Statistics. Springer Texts
in Statistics. Springer-Verlag New York.

Yao, J. and Venkitasubramaniam, P. (2017). Privacy
aware stochastic games for distributed end-user energy
storage sharing. IEEE Transactions on Signal and
Information Processing over Networks, 4(1), 82–95.

Zhao, B., Stankovic, L., and Stankovic, V. (2015). Blind
non-intrusive appliance load monitoring using graph-
based signal processing. In 2015 IEEE Global Confer-
ence on Signal and Information Processing (GlobalSIP),
68–72. IEEE.

Zoha, A., Gluhak, A., Imran, M., and Rajasegarar, S.
(2012). Non-intrusive load monitoring approaches for
disaggregated energy sensing: A survey. Sensors, 12(12),
16838–16866.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2319


