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Abstract: Using a nonlinear model for the glucose-insulin dynamics in type 2 diabetes,
formulated in continuous-time as a stochastic differential equation, we seek to estimate
the system states and parameters based only on discrete-time self-monitored blood glucose
measurements of fasting glucose and the known exogenous insulin dose. This is done by means of
continuous-discrete unscented Kalman filtering. The results are compared to an implementation
of a continuous-discrete extended Kalman filter. Simulations show that it is possible to estimate
all states with good accuracy using the CD-UKF, while it is also possible to estimate one
unknown parameter at the same time. Further simulations show that increasing the sample rate
makes it possible to estimate more parameters, given that the meal intake of the patient is
known perfectly.
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1. INTRODUCTION

Diabetes is a chronic disorder which prevents the body
from naturally regulating the blood glucose level. We usu-
ally distinguish between type 1 diabetes (T1D) and type
2 diabetes (T2D). In non-diabetic people, the pancreas
produces insulin to lower the glucose level, but in T1D
patients no insulin is produced at all, while T2D patients
may have a lowered production rate or insufficient response
to insulin, which results in elevated glucose levels.

Too high glucose levels, called hyperglycemia, can lead to
long-term complications such as cardiovascular diseases,
while too low glucose levels, called hypoglycemia, can have
immediate consequences such as coma or, in very severe
cases, death.

T2D can usually be treated by changing to a healthier
diet and by doing more physical exercise, but if this is
not sufficient, insulin treatment is also an option, typically
through long-acting insulin injected before breakfast. The
treatment goal is to reach a safe level of fasting blood
glucose level, i.e., the blood glucose level in the morning,
of typical 4-5 mmol/L.

Because each T2D patient is different, it is difficult to
choose the right insulin dose needed for the patient to
reach the target glucose level. The process of adjusting the
dose until a specific target glucose level is reached is called
titration. As a too high dose may cause hypoglycemia,
doctors have to be careful not to increase the dose too
much, which in general results in the titration period being
very long.
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This titration may possibly be improved by applying
closed-loop control to decide the insulin dose. In order to
realize this in an optimal manner, knowledge about the
states of the system is important.

A lot of research has gone into state estimation in T1D.
This is among others used for closed-loop control within
the research area of artificial pancreases and for calculating
pre/post meal insulin injection doses. For instance, Eberle
and Ament (2011) has compared different Kalman filter
approaches for estimating plasma insulin concentration
evaluated on clinical data, while Szalay et al. (2014) in
a simulation study investigates the use of different sigma-
point methods for estimating different states in the T1D
model, both showing good results when using the discrete
unscented Kalman filter (UKF). In a simulation study by
Boiroux et al. (2017), the continuous-discrete unscented
Kalman filter (CD-UKF) is used to estimate states as
well as the parameter describing insulin sensitivity for cal-
culating meal-time insulin injections, and latest, Boiroux
et al. (2019) has applied a maximum likelihood approach
using the continuous-discrete extended Kalman filter (CD-
EKF) to estimate various parameters, both studies based
on continuous glucose monitor (CGM) measurements.

However, in T2D, research related to state and parameter
estimation is less prevalent. Aradóttir et al. (2017) has,
based on a typical T1D model augmented with endogenous
insulin production, proposed a model for the insulin-
glucose dynamics in T2D, in which some parameters are
estimated by Aradóttir et al. (2018) using a maximum
likelihood approach based on sparse clinical data.

In this paper, we seek to investigate state and parameter
estimation in this T2D model further. As the UKF and
CD-UKF previously have shown good results when used
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on T1D models, we will investigate this further by applying
a new method for computing the CD-UKF, as proposed by
Knudsen and Leth (2019). The main contribution of this
paper is that, based on simulations, we show that, using
this method, it is possible to estimate all states successfully
based only on fasting glucose measurements, as well as the
possibility of estimating some parameters without having
to use maximum likelihood methods.

The rest of the paper is organized as follows. In section
2, the investigated model describing the insulin-glucose
dynamics in T2D is presented. In section 3-5, the main
results are presented.

2. THE INVESTIGATED MODEL

2.1 Insulin-Glucose Dynamics in T2D

This paper will be based on the model for glucose-insulin
dynamics in T2D suggested in Aradóttir et al. (2017). The
model is given as follows:

İsc(t) = 1/(τ1 CI)U(t)− 1/τ1 Isc(t), (1a)

İp(t) = 1/τ2 Isc(t)− 1/τ2 Ip(t), (1b)

İeff(t) = p2 SI
(
Ip(t) + Iendo(t)

)
− p2 Ieff(t), (1c)

Ġ(t) = −
(
GEZI + Ieff(t)

)
G(t) + EGP +RA. (1d)

Equation (1a) and (1b) describe how the injected insulin
U(t) diffuses from the subcutaneous compartment Isc(t)
(the tissue just under the skin) to the blood plasma
compartment Ip(t). The characteristics of this diffusion
depends on the insulin absorption time constants τ1 and
τ2, as well as the insulin clearance rate CI , which describes
how much plasma is cleared of insulin per time unit. The
magnitude of the time constants depends on which kind of
insulin is used, e.g., whether it is long-acting or fast-acting
insulin.

Equation (1c) and (1d) of the model describe how insulin
affects the blood glucose level G(t). The insulin effect is
modelled by Ieff(t), such that when Ieff(t) is positive, the
rate of change in blood glucose concentration will decrease.
The magnitude of the effect depends on the gain given by
the insulin sensitivity SI of the patient. When the plasma
insulin concentration Ip(t) increases, the insulin does not
take immediate effect, which is described by the delay
given by the inverse time constant p2.

Unlike T1D patients, T2D patients also have an en-
dogenous insulin production. This is taken into account
through the term Iendo(t), which is modelled as

Iendo(t) = SGG(t), (2)

where SG is a constant that can be interpreted as glucose
sensitivity of the insulin producing cells in the pancreas.

When at zero insulin, the rate at which the glucose concen-
tration is lowered still depends on the current glucose con-
centration. This is accounted for by the parameter GEZI,
which represents the effect of glucose to lower endogenous
glucose production at zero insulin. The endogenous glucose
production itself is represented by the parameter EGP,
and the rate of glucose appearing due to food ingestion
is contained within RA.

To describe food ingestion (or orally ingested carbohy-
drates), the following second-order model is used:

Ḋ1(t) = 1000/MwG d(t)− 1/τmD1(t), (3a)

Ḋ2(t) = 1/τmD1(t)− 1/τmD2(t), (3b)

where D1(t) and D2(t) are two meal compartments, d(t) is
the rate of glucose consumption, MwG is the molar weight
of glucose and τm is the time constant corresponding to
meal absorption. This is included in the model (1) by
inserting

RA = D2(t)/(VG τm), (4)

where VG is the glucose distribution volume, i.e. the
volume of the part of the body in which the glucose is
distributed.

2.2 Parameter Values

Values for all the different parameters in (1) have not pre-
viously been directly estimated for T2D patients. However,
in Aradóttir et al. (2018) some parameters have been esti-
mated based on sparse data sets from T2D patients. Due
to the low sampling frequency of at most one sample per
day, it is difficult to estimate all gains and time constants.
Therefore, they instead estimated parameters by rewriting
the model using the following substitutions:

Ĩsc = Isc CI , Ĩp = Ip CI , Ĩeff = Ieff CI/SI ,

S̃I = SI/CI , β̃ = SG CI , τ1 = τ2.

This results in the following model, which is the one we
will investigate in the sequel:

˙̃Isc(t) = 1/τ1 U(t)− 1/τ1 Ĩsc(t), (5a)

˙̃Ip(t) = 1/τ1 Ĩsc(t)− 1/τ1 Ĩp(t), (5b)

˙̃Ieff(t) = p2

(
Ĩp(t) + β̃ G(t)

)
− p2 Ĩeff(t), (5c)

Ġ(t) = −
(
GEZI + S̃I Ĩeff(t)

)
G(t) + EGP + D2(t)/(VG τm),

(5d)

Ḋ1(t) = 1000/MwG d(t)− 1/τmD1(t), (5e)

Ḋ2(t) = 1/τmD1(t)− 1/τmD2(t). (5f)

In this model, values of all parameters have previously
been estimated in one way or another. The parameter τ1
is assessed based on knowledge about long-acting insulin in
Aradóttir et al. (2018), p2 and GEZI are estimated based
on clinical data from T1D patients in Kanderian et al.
(2009), S̃I , EGP and β̃ are estimated based on clinical
data from T2D patients in Aradóttir et al. (2018) and τm
and VG are based on data in Wilinska et al. (2010). The
parameter values can be found in Table 1 and these are
the parameter values we use to simulate the system.

Table 1. Parameter values for (5).

Value Unit

τ1 0.5 [day]

p2 15.8 [1/day]

S̃I 1.80 [1/U]

GEZI 3.31 [1/day]

EGP 368 [mmol/L/day]

β̃ 1.68 [UL/mmol/day]

τm 0.026 [day]

VG 22 [L]
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2.3 The Model in a Stochastic Setting

Process noise The fasting glucose level in T2D patients
is not the same each day. This may both be due to external
factors such as exogenous insulin and meal intake, but
some of it is also simply due to biological variability, which
is best modelled as a stochastic process.

The day-to-day variability of fasting blood glucose in
newly diagnosed T2D patients has been shown to be
around 14% (Ollerton et al. (1999)). A useful way of
introducing this variability is by formulating the model
as a stochastic differential equation (SDE), i.e.,

where x = [Ĩsc Ĩp Ĩeff G D1 D2]T, u = [U d]T, f is the
function corresponding to the right-hand side of (5) and
wt ∈ R6 is a standard Wiener process, i.e., wt ∼ N (0, I t).
The diffusion term σ ∈ R6×6 is chosen to be a constant
matrix, and hence independent of x. No specific values for
σ is found in the literature. Instead, σ has been tuned such
that the coefficient of variation (CV) of fasting glucose in
the simulation is 14%. Choosing σ as twice the identity
matrix has been shown to accomplish this.

Measurement noise For T2D patients, it is standard
medical procedure for the patient to measure the blood
glucose in the morning before breakfast, usually through
finger-pricking. This results in so-called self-monitored
blood glucose (SMBG) data of fasting glucose levels. This
measurement can be modelled simply as a discrete-time
sample of the state x4(t) = G(t) in the model with some
measurement noise. The measurement function is thus
given as

y(tk) = x4(tk) + v(tk), (6)

where tk is the time of the measurement and v(tk) is
white Gaussian noise with variance R(tk). The ISO 15197
standard requires devices used for SMBG measurements
to have an accuracy of ±20% for glucose levels above
4.2 mmol/L and an accuracy of ±0.83 mmol/L for glucose
levels below 4.2 mmol/L, compared to more advanced lab-
oratory measurements. This may be reasonably approxi-
mated by setting R(tk) = 1.

Generating the input When simulating the system, the
following assumptions are made regarding the inputs. An
insulin dose of 30 U is given every day at 07:00 in the
morning, simulated as an impulse.

The meal intake is assumed to consist of three major meals
and three smaller snacks, also simulated as impulses. The
size of each meal is uniformly distributed with a variance
of 30, with the means adding up to a total of 410 g daily
ingested carbohydrates.

3. SIMULATION RESULTS WITH KNOWN
PARAMETERS

We first test the CD-UKF on the system when all param-
eters are known. For details regarding the CD-UKF, see
Knudsen and Leth (2019).

The system is simulated using the Euler-Maruyama
method with a discretization time step of 2 minutes. For
estimating states in the T2D model, the CD-EKF and CD-
UKF has been implemented in Matlab®. The tuning

parameters for the UT has been chosen to be α = 1 and
κ = 2, yielding λ = 2 (see Grewal and Andrews (2008)
for notation). The number of subsamples in the CD-UKF
are 45. The insulin input is known, while the meal intake
is considered as an unmeasured disturbance and therefore
considered to be 0.

In the following, x̃+ = xk+1 − x̂k+1|k+1 is used to denote

the a posteriori state estimation error and ỹ− = yk+1 −
ŷk+1|k is used to denote the a priori output estimation
error or innovation.

In Table 2, the root mean squared (RMS) error of the
a posteori state estimates and the innovation are shown.
These values are the mean as well as standard deviation
of 100 simulation runs for a time period of 50 days.

In Fig. 1 and 2, data from one realization is shown for the
CD-UKF.

Table 2. RMS error values for 100 simulation
runs.

Mean RMS

x̃+1 x̃+2 x̃+3 x̃+4 x̃+5 x̃+6 ỹ−

CD-UKF 1.09 1.21 1.00 0.25 0.25 0.30 1.04

CD-EKF 1.08 1.23 1.00 0.25 0.25 0.30 1.05

Standard deviation of RMS

x̃+1 x̃+2 x̃+3 x̃+4 x̃+5 x̃+6 ỹ−

CD-UKF 0.12 0.12 0.10 0.03 0.02 0.03 0.11

CD-EKF 0.11 0.12 0.11 0.03 0.02 0.03 0.10
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Fig. 1. Example of state estimation compared to the actual
continuous-time state evolution. The crosses indicate
the estimated values.

The accuracy of the state estimation is in general good.
The innovation sequence is seen to be white based on
the autocorrelation function (ACF) shown in Figure 2.
A portmanteau lack-of-fit test confirms this with signifi-
cance level 0.95, indicating that the estimation is close to
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Fig. 2. ACF of the innovation. The dashed lines indicate
the 95% confidence interval for white noise.

optimal. Based on the 100 simulation runs, it is seen that
there is no significant difference in the accuracy of the state
estimation between the CD-UKF and the CD-EKF. The
computation time has, however, been observed to be on the
order of 30 times larger for the CD-UKF compared to the
CD-EKF. This is due to the high number of subsamples
in the CD-UKF time update, which is a necessity when
the measurement sampling time is as long as it is, i.e., one
sample per day.

As mentioned earlier, the meal intake is not taken into
account in the Kalman filter and it would therefore be
expected that the estimation error regarding D1 and D2

would be large. However, as we are considering fasting glu-
cose measurements, the meal compartments are expected
to be empty at the time of observation. This is indeed the
case, and the estimated value for the meal compartments
at this time should therefore always be zero, resulting in a
low estimation error. If the glucose measurement instead
is performed at a non-fasting time, e.g., at noon, the
estimation would be far off as the filter has no information
about the patient eating lunch.

4. PARAMETER ESTIMATION USING CD-UKF

Having shown that it is possible to estimate the states of
the T2D system using the CD-UKF, we next investigate
whether it is possible to estimate the parameters as well.
The simplest approach is to model the parameters as a
Wiener process and augment the state vector with the
parameter, giving an SDE on the form

d

[
xt
θt

]
=

[
f(xt,θ,ut)

0

]
dt+

[
σ 0
0 σθ

]
dw̃t, (7)

where θ is the vector of parameters to estimate, σθ is the
diffusion matrix specific to the parameters and w̃t is the
augmented standard Wiener process. We assume that the

initial state error covariance is of the form P̃0|0 =
[
Px 0
0 Pθ

]
.

Initial conditions may be handled in different ways. It
seems reasonable to choose the initial values based on some
a priori knowledge about the distribution of the parameter
to estimate. For instance, if the parameter θ is known
beforehand to be distributed as θ ∼ N (µ, σ2), it would

be natural to choose the initial mean value to be θ̂0|0 = µ.

In the following, we take the opposite approach. For
illustrative purposes, we keep the value of the parameters
in the model to always be the same (see Table 1 on page
2 for the parameter values) and instead either choose
(deterministically) our initial mean or draw it from a
probability distribution.

Estimation of a single parameter at a time As a starting
point, we attempt to estimate each parameter one at a time
based only on SMBG measurements of fasting glucose.
Examples of the time evolution of the parameter estimates
are shown in Figure 3. Simulations for four different initial

mean values θ̂0|0 are shown for each parameter, where the
four different initial mean values are chosen symmetrically
about the actual parameter value, such that two are close
to the actual value and two are farther away. In all
simulations, the parameter is modeled with zero diffusion,
i.e., σθ = 0, resulting in dθt = 0. As the estimates are slow
to converge, the system is simulated for 1000 days.
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Fig. 3. Time evolution of parameter estimates for four
different initial conditions when estimating a single
parameter at a time. The dashed line indicates the
true parameter value.

From these examples, it is evident that only the estimates
of S̃I , EGP and S̃G converge to the actual parameter value.
These observations agree with the results by Aradóttir
et al. (2018), where values for S̃I , EGP and S̃G were
estimated based on sparse clinical data using a maximum
likelihood approach.

Estimation of several parameters at a time In the fol-
lowing, we investigate whether these three parameters can
be estimated at the same time using only the CD-UKF.

For θ =
[
S̃I EGP S̃G

]T
, the initial mean value θ̂0|0

is drawn from a normal distribution with mean µθ =[
1.80 368 1.68

]T
and covariance

Cθ = diag(0.072, 42, 0.072).

The initial error state covariance is chosen to be Pθ =
diag(0.0252, 32, 0.0252). The diffusion is assumed zero.

For brevity, no examples are shown for this case. In
general, how the estimation evolves seems to depend
heavily on the initial condition and none of the parameter
estimates seem to converge to the actual parameter values.
These tendencies are the same when estimating only two
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parameters at a time, i.e., the remaining parameter is
known.

Remark: In the CD-UKF time update, when the sigma
points are propagated through the system, the integration
may risk diverging if the sigma points are not sufficiently
close to the true value, e.g., if a sigma point corresponding
to a time constant is negative. In the simulations so
far, this problem has been addressed by choosing Pθ

sufficiently small, which may be the cause of the slow
convergence. This problem is less pronounced when the
sampling time is shorter, which we will address in the
following.

5. INCREASING THE SAMPLING RATE

To estimate parameters related to faster dynamics, a
faster sampling time is needed, which furthermore would
make the parameter estimation converge faster as more
measurements would be processed.

While it is not uncommon for T1D patients to continuously
monitor their blood glucose throughout the day, it is more
rare for T2D patients to do so. Nevertheless, we here
consider a faster sampling rate in order to assess whether
more samples is of any use. Specifically, we consider a
case equivalent to a continuous glucose monitor (CGM),
where the blood glucose is continuously monitored with a
sampling time of 6 minutes.

When estimating states and parameters based on non-
fasting glucose measurements, the meal intake will have to
be taken into account as well. So far, the meal intake has
been considered as an unmeasured disturbance, which has
little to no impact when observing at a fasting time. While
it in this simulation study is possible to simply consider
it as a known input instead, it may be an unrealistic
assumption in practice, as it would require the patient to
note down the time and size of every meal. Nevertheless,
we here investigate the case where the meal intake is known
perfectly.

As before, we first take a look at estimating just one
parameter at a time. Some examples of the time evolution
of the parameter estimates are shown in Figure 4. For τ1,
p2, S̃I , GEZI and S̃G, the initial state error covariance is
set to Pθ = 0.12 while for EGP and τm it is set to Pθ = 102

and Pθ = 0.032, respectively.

Here it can be seen that with the higher sampling rate,
it is possible to estimate all parameters except p2 and
GEZI. Most notably, with a sampling time this fast, it is
now possible to estimate the time constants τ1 and τm as
well as the glucose distribution volume VG. Additionally,
compared to the results in Figure 3, the estimates converge
significantly faster (note the different time axes), which is
not surprising as there is a lot more information available
in a short amount of time.

Next, we investigate whether some parameters can be
estimated at the same time. As it is too much work to test
every single combination of parameters, we confine our-
selves to just look at all parameters, except p2 and GEZI, at
the same time. We employ the same approach as in Section
4.0.2, where we draw our initial mean from a probability
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Fig. 4. Time evolution of parameter estimates for different
initial conditions when estimating a single parameter
at a time with a sampling time of Ts = 6 min.

distribution. For θ =
[
τ1 S̃I EGP S̃G VG τm

]T
, the initial

mean value θ̂0|0 is drawn from a normal distribution with

mean µθ =
[
0.5 1.80 368 1.68 22 0.03

]T
and covariance

Cθ = diag(0.12, 0.12, 52, 0.12, 12, 0.722). We use Pθ = Cθ.
Some examples of this are shown in Figure 5.
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Fig. 5. Time evolution of parameter estimates when esti-
mating all parameters except p2 and GEZI at the same
time when sampling with Ts = 6 min.
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It can here be seen that only the time constants τ1 and
τm consistently converge to the actual parameter value,
while the remaining parameters do not. This may be due
to the fact that these two time constants each constitute
an individual subsystem directly related to an (in this case
known) input, namely the insulin compartmental subsys-
tem and the meal compartmental subsystem. Although not
shown here, having the remaining parameters, namely p2

and GEZI, be uncertain does not change the convergence
of τ1 and τm. These results thus suggest that using the
CD-UKF it is possible to estimate τ1 and τm based on
continuously monitored glucose measurements and known
insulin and meal intake, but with no specific knowledge
about the remaining parameters. To the best of the au-
thors’ knowledge, this result is novel.

Based on these observations, it does not seem far-fetched
to think that one or two other parameters may be esti-
mated along with the time constants. This is indeed the
case, as may be seen in Figure 6. For brevity, the estimates
of τ1 and τm are only shown for the case of the third
parameter being S̃I , but the behavior is similar for the
three other cases investigated.

From Figure 6, it is seen that it is possible to estimate τ1,
τm and one other parameter being either S̃I , EGP, S̃G or
VG. It has not been tested whether it is possible to estimate
any other combinations of parameters.
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Fig. 6. Left: Estimate of τ1, τm and S̃I . Right (upper;
middle; lower): Estimate of τ1, τm (not shown): and

EGP; and S̃G; and VG.

6. CONCLUSION

Based on simulations of a model describing the insulin-
glucose dynamics in T2D, it has been shown that, using a
recently developed method for computing the CD-UKF, it
is possible to estimate all system states satisfactorily us-
ing only fasting glucose measurements and known insulin
injections. Additionally, it was shown to be possible to esti-
mate one unknown parameter, the parameter being either

the insulin sensitivity S̃I , endogenous glucose production
EGP or glucose sensitivity of the insulin producing cells in
the pancreas S̃G, using only the CD-UKF.

Increasing the sampling rate to match CGM data and
assuming the meal intake is known perfectly made it
possible to estimate additional parameters with a faster
convergence rate.

These results may be useful for on-line parameter estima-
tion in advanced control strategies such as control based
on linear parameter-varying (LPV) models.

In future work, the results presented here will have to be
verified on clinical data as well.
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Aradóttir, T., Boiroux, D., Bengtsson, H., and Poulsen,
N. (2018). Modelling of fasting glucose-insulin dynamics
from sparse data. In Proceedings of 40th International
Conference of the IEEE Engineering in Medicine and
Biology Society, 2354–57. IEEE.

Boiroux, D., Mahmoudi, Z., and Jrgensen, J. (2019).
Parameter estimation in type 1 diabetes models for
model-based control applications. In 2019 American
Control Conference (ACC 2019).
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