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Abstract: This paper addresses the design of coordinated maneuvers in an autonomous driving
set-up involving multiple vehicles. In particular, we consider a lane change problem where a
vehicle has to merge in a platoon traveling in the adjacent lane of a two-lane one way road.
We propose a cooperative solution that trades optimality for computational feasibility without
simplifying the merging vehicle dynamics. The key idea is decoupling the problem into two
phases: an online coordination phase where vehicles in the platoon create a gap where the
merging vehicle can safely enter, and a merging phase, where the merging vehicle change lane by
tracking a pre-computed optimal maneuver. A numerical case study shows the achieved trade
off between performance degradation and reduction in computing time of the proposed solution.
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1. INTRODUCTION

Autonomous driving proved to have potential in reduc-
ing motor vehicle accidents, improving driving experience
(e.g., minimizing traffic jam), and increasing overall ef-
ficiency (e.g., cut down energy consumption and CO2

emissions). Many complex maneuvers in traffic comprise
a vehicle changing its lane and lane change is the reason
of a significant amount of accidents, see, e.g., (Fitch et al.,
2009).

Planning a lane change comprises two interwoven layers:
the strategic layer which decides whether a lane change
is desirable and feasible, and the trajectory generation
layer which computes the corresponding trajectory to be
tracked.

Several methods have been proposed for making strate-
gic decisions. If the vehicles are connected, a coopera-
tive strategy can be devised (see e.g. Manzinger et al.,
2017), if not, then the controlled vehicle can update its
strategy exploiting only the information coming from the
environment (see e.g. Coskun et al., 2019, Yang et al.,
2018, Luo et al., 2016). Once a lane change strategy is
determined, it is necessary to compute the corresponding
trajectory. For cooperative cases, trajectory planning for
multiple vehicles can be posed as a single nonlinear optimal
control problem (Li et al., 2017). For non-cooperative
cases, Nilsson et al. (2015) proposed a model predictive
control framework assuming that the future behavior of
the surrounding vehicles is available. A limited literature
exists also for cases when the behavior of the others is
unpredictable (Yang et al., 2018).

While computing the trajectory of the controlled vehicle,
the aforementioned research considers the kinematic model
of a single-track (Li et al., 2017), uses parametric curves
(Yang et al., 2018), or decouples the longitudinal motion
from the lateral one (Nilsson et al., 2015). All of these

approaches rely on the no-slip (pure rolling) assumption
on the tires, which is typically satisfied when the vehicle
moves at low speed but it does not hold when computing
agile maneuvers. For single vehicle trajectory generation,
efficient methods exist that take into account vehicle
inertia and tire slip. However, these methods either rely
on a linearized model (Hesse and Sattel, 2007) or apply
to specific optimization objectives such as minimizing the
trajectory duration (e.g. Jeon et al., 2013, Rucco et al.,
2012).

Interested reader can refer to (Bevly et al., 2016) for a
survey on the recent advances in computing lane change
maneuvers for connected and automated vehicles and
(Paden et al., 2016) on motion planning and control
techniques for single vehicle cases. Enabling technologies
for positioning, sensing, and communication are discussed
in (Bevly et al., 2016) besides the low level control platform
acting on throttle, brake, steering wheel to track some
reference trajectory. All these aspects are indeed key to
the actual implementation of any strategy.

In this work, we consider a cooperative multi-vehicle
setting and address the lane change problem in a two-lane,
one way road when a vehicle needs to merge into a platoon
in the adjacent lane. All vehicles are automated and they
coordinate to ease the merging maneuver. We assume that
the sensing, positioning, and communication systems, and
the low level control layer are in place to allow for the
implementation of a coordinated merging maneuver. Our
focus is on the design of such a joint maneuver involving
the merging vehicle and the vehicles in the platoon.

Computing an optimal maneuver while considering all the
agents simultaneously and adopting a realistic model for
the merging vehicle results in a nonlinear (non-convex)
mathematical program that is hard and excessively time
consuming for the currently available solvers. We then
head for a computationally aware solution which trades
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Fig. 1. Two-lane, one way road lane change problem (icons
design by Freepik).

optimality for computational feasibility but without re-
sorting to an over-simplification of the merging vehicle
model, as it is typically done in the literature by, e.g.,
treating separately its longitudinal and lateral dynamics
or neglecting tires slip.

To this purpose, we decouple the problem into (i) a
coordination phase to ensure that a gap is created which
satisfies the collision avoidance constraints; and (ii) a lane
change phase to make the vehicle merge into the platoon.

The coordination phase is formulated as a quadratic op-
timal control problem which is solved online based on
the current state of the multi-vehicle (merging vehicle
plus platoon) system so as bring the overall system to
a given state where a gap in the platoon is created for
the merging vehicle to join safely. The merging phase is
the computationally intense part of the overall problem
solution since it entails solving a non-convex optimization
problem. However, such a computation can be done once
and offline, since it involves only the merging vehicle with
initial and final states that are fixed and it does not depend
on the initial state of the multi-vehicle system. It is thanks
to the introduction of this offline phase that, differently
from the existing works in the literature, we are able to
account for the underlying accurate dynamic model of the
vehicle.

2. DESCRIPTION OF THE LANE CHANGE
PROBLEM AND ITS OPTIMAL SOLUTION

We consider a coordination problem for autonomous ve-
hicles where a vehicle has to merge into a platoon that is
traveling on a parallel lane of a two-lane, one way road,
due to, e.g., the presence of an obstacle, as shown in Fig. 1.

Our goal is to optimally plan the lane change by design-
ing accelerations and steering angles for all (automated)
vehicles to perform the joint maneuver safely.

This can be formulated as an optimal control problem
subject to actuation and safety constraints. As a criterion
for optimality, we consider the time needed for the merging
vehicle to enter the platoon, while safety is associated
with ensuring the vehicles to be at appropriate distances
between each other during the whole maneuver.

Before formulating the optimal control problem, we shall
describe the employed car dynamical model.

vx ψvy

δ
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ℓr

x

y
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Fig. 2. Vehicle reference frames and main quantities.

2.1 Vehicle dynamics

The dynamics of the vehicle is described by a normalized
version of the bicycle model in Rajamani (2011)

ẋ = vx cos(ψ)− vy sin(ψ), v̇x = ax + vyω

ẏ = vx sin(ψ) + vy cos(ψ), v̇y = −af − ar − vxω

ψ̇ = ω, ω̇ =
m

J
[−`faf + `rar]

(1)

where (x, y), ψ, and ω are the center of mass position, vehi-
cle heading angle, and yaw rate with respect to a Cartesian
absolute reference frame, with the x axis along the direc-
tion of the lanes, while vx and vy are the components of
the vehicle velocity in a reference frame centered in the
vehicle center of mass and rotated by ψ with respect to
the absolute reference frame. The acceleration ax (aligned
with vx) and the steering angle δ are the control inputs
of the vehicle. The normalized lateral forces af and ar
acting perpendicularly to the vehicle longitudinal axis on
the front and rear wheels, respectively, are given by

af =
2F

π
tan-1

( π

2F
kf (βf−δ)

)
and ar=

2F

π
tan-1

( π

2F
krβr

)
with

βf = tan-1

(
vy + `fω

vx

)
and βr = tan-1

(
vy − `rω

vx

)
being the side slip angles related to the front and rear
wheels, respectively, kf = µgcf `r/L and kr = µgcr`f/L
the front and rear normalized force coefficients, and F
the maximum normalized force. Finally, cf and cr are the
front and rear tire stiffness coefficients, `f and `r are the
distances of the center of mass from the front and rear axle,
L = `f+`r is the vehicle length, µ is a friction coefficient, g
is the acceleration of gravity, m is the mass of the vehicle,
and J is the moment of inertia. The main quantities in (1)
and the two reference frames are also depicted in Fig. 2
for the reader’s convenience.

Note that if we set the input δ(t) = 0, t ≥ 0, and initialize
(1) with y(0) = ȳ, vy(0) = ψ(0) = ω(0) = 0, then, the
dynamics described in (1) becomes

ẋ = vx, v̇x = ax (2)

with all other state variables constant: y(t) = ȳ, t ≥ 0,
vy(t) = ψ(t) = ω(t) = 0, t ≥ 0. This entails that we can
reduce the dynamics of the vehicles in the platoon to a
(linear) double integrator model along the lane, and adopt
the nonlinear model (1) only for the vehicle that has to
change lane to merge the platoon.
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2.2 Optimal coordinated maneuver design

We consider m vehicles in a platoon traveling at a constant
speed from left to right on the same lane. Vehicles are
numbered consecutively from 1 to m with vehicle m
leading the platoon, while in the other lane there is a single
vehicle (vehicle number 0) that has to merge the platoon
(see Fig. 1). We assume that vehicles in the platoon will
keep traveling in the same straight path along the lane and
will only modify their speed to accommodate for vehicle
0 merging maneuver. Accordingly, we shall set δi(t) = 0
for all t and i = 1, . . . ,m, and describe the platooning
vehicles by (2), while vehicle 0 will obey the dynamics
in (1). In the rest of the paper, superscript i will denote
quantities related to the corresponding vehicle. We shall
instead use label j to denote the merging scenarios: j = 0
represents the scenario in which the merging vehicle joins
the platoon at its tail (i.e., behind vehicle 1), j = m the
scenario in which the merging vehicle joins the platoon at
its head (i.e., in front of vehicle m), and j = i the scenario
in which the merging vehicle joins the platoon between
vehicles i and i+ 1, i = 1, . . . ,m− 1.

As a safety restriction, for vehicle 0 to be able to leave its
current lane and join the platoon, the following merging
conditions have to be satisfied:

• if j > 0, then the distance along the lane between
vehicle 0 and vehicle i = j during the lane change is
no-smaller than vjx(t) tmin

gap ;
• if j < m, then the distance along the lane between

vehicle 0 and vehicle i = j+ 1 during the lane change
is no-smaller than ẋ0(t) tmin

gap ,

where tmin
gap is a suitably defined time interval representing a

minimum required safe reaction time. Note that for vehicle
0 we used ẋ0 in place of v0x since safety distances are
measured in terms of projection onto the lane direction. If
we let ∆y denote the lane width and take the absolute ref-
erence frame so as the two lanes span the interval [0, 2∆y]
(bottom to top in Fig. 1), then the safety restriction can
be coded as the following implications

y0(t) > 0.5∆y =⇒ x0(t) ≥ xj(t) + vjx(t) tmin
gap

x0(t) < xj(t) + vjx(t) tmin
gap =⇒ y0(t) ≤ 0.5∆y,

(3)

for all t, in the case when j > 0, and

y0(t) > 0.5∆y =⇒ xj+1(t) ≥ x0(t) + ẋ0(t) tmin
gap

xj+1(t) < x0(t) + ẋ0(t) tmin
gap =⇒ y0(t) ≤ 0.5∆y,

(4)

for all t, if j < m. Furthermore, at any time instant t, we
also impose the safety restriction that the distance between
vehicle i and i+1, i = 1, . . . ,m−1, in the platoon should be
no-smaller than vix(t)tgap, with tgap > tmin

gap being a nominal
reaction time. This is formally stated as

xi+1(t) ≥ xi(t) + vix(t) tgap, i = 1, . . . ,m− 1, (5)

and for all t. We also enforce the speed limits

vmin ≤ ẋ0(t), v1x(t), . . . , vmx (t) ≤ vmax, (6)

for all t, lateral position constraints for vehicle 0 to belong
to the roadway

0 ≤ y0(t) ≤ 2∆y, (7)

for all t, and the actuation constraints

amin ≤ aix(t) ≤ amax, i = 0, 1, . . . ,m

δmin ≤ δ0(t) ≤ δmax,
(8)

for all t. Finally, we shall require that, at the end of the
maneuver, vehicle 0 merged the platoon and all vehicles
travel at some platooning speed vdes.

The optimal maneuver can then be obtained by solving
the following optimal control problem

min
Tf ,δ

0,a0x
a1x,...,a

m
x

∫ Tf

0

[
1 + εδδ

0(τ)2 + εa

m∑
i=0

aix(τ)2
]
dτ (9)

subject to: y0(0) = 0.5∆y

ψ0(0) = v0y(0) = ω0(0) = 0

y0(Tf ) = 1.5∆y

ψ0(Tf ) = v0y(Tf ) = ω0(Tf ) = 0

ẋ0(Tf ) = v1x(Tf ) = · · · = vmx (Tf ) = vdes
(1) for vehicle 0, t ∈ [0, Tf ]

(2) for vehicles 1, . . . ,m, t ∈ [0, Tf ]

(3), if j > 0, t ∈ [0, Tf ]

(4), if j < m, t ∈ [0, Tf ]

(5), (6), (7), (8), t ∈ [0, Tf ]

Tf > 0

where the decision variables a0x(t), a1x(t) . . . , amx (t) and
δ0(t) are continuous functions of time, while Tf is a scalar
quantity. Note that the cost function in (9) minimize the
time Tf needed to complete the maneuver while (slightly)
penalizing the control effort with the (small) weights
εδ, εa > 0 and that problem (9) is parametric in the
vehicles initial positions xi(0) and velocities vix(0), i =
0, . . . ,m, and in the merging position j. To optimize also
the merging position j one can solve (9) for j = 0, . . . ,m
and then choose the solution with the minimum Tf .

The infinite-dimensional nonlinear optimal control prob-
lem in (9) can be transformed, e.g., via direct collocation
methods, into a finite-dimensional nonlinear optimization
problem (see Betts, 2009), which can then be solved
numerically. However, the resolution strategy is time-
consuming and computationally intensive and we cannot
expect it to run on vehicle 0, online, since in case of an
obstacle causing the lane change, the obstacle would be
reached before completing the computations.

3. PROPOSED COMPUTATIONALLY AWARE
RESOLUTION STRATEGY

By looking at the structure of (9), we can see that
the nonlinear (hence hard) portion of the optimization
problem is given by the dynamics constraints (1) for
vehicle 0, together with the safety constraints (3) and (4).

To tackle the design problem, we thus propose to approx-
imately solve (9) by splitting the merging maneuver into
two phases:

i) a coordination phase in which all vehicles travel at
the center of their respective lanes, vehicles in the
platoon create the appropriate spacing for vehicle 0 to
change lane, while, in the meantime, vehicle 0 reaches
the platoon speed and the correct relative position to
satisfy the merging conditions and safety distances;

ii) a lane change phase in which, starting from the final
state of the previous phase, all vehicles maintain the
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platoon speed vdes (thus preserving safety distances)
while vehicle 0 changes lane and merges the platoon.

This splitting has several benefits discussed next. In the
coordination phase vehicle 0 is forced to stay on the
center of its lane, which implies that it also obeys the
dynamics in (2) and, consequently, y0(t) = 0.5∆y, for
all t. This simplifies dealing with the safety conditions,
as the coupling between x0(t) and y0(t) due to (3) and
(4) is removed. At the end of the coordination phase
all vehicles have a specific state (in terms of relative
position, velocity and orientation), which is independent
from their initial state. This implies that we can design
the (computationally intensive) lane change maneuver of
vehicle 0 alone, offline, and independently from the initial
state of all vehicles. Moreover, if all vehicles maintain the
platoon speed vdes along the lane, we do not need to
include safety constraints in the lane change design, thus
leaving the optimization problem with vehicle 0 dynamics
as the only nonlinear part.

Next, we describe in more details the design of the two
phases of the merging maneuver.

3.1 Coordination phase

In the coordination phase, each vehicle dynamics is de-
scribed by (2). To ease the computation, we discretize the
model in (2) with a sampling time interval of duration
dt seconds. For a generic vehicle i, we assume that the
acceleration is kept constant within each time slot, i.e.,

aix(t) = aix(k), t ∈ [kdt, (k + 1)dt), (10)

which is typically the case in digital control implemen-
tations with zero-order-hold (ZOH) converters. Then, the
following discrete time linear model is derived from (2)

xi(k + 1) = xi(k) + vix(k)dt+
1

2
aix(k)dt2

vix(k + 1) = vix(k) + aix(k)dt,
(11)

where k denotes the time instant kdt.

Safety constraints (5) between platooning vehicles, speed
limit constraints (6), and actuation constraints (8) with k
in place of t and v0x(k) in place of ẋ0(k), are linear in the
decision variables aix(k), i = 0, . . . ,m, k ≥ 0, and can be
easily enforced.

The goal of the coordination phase is to optimize aix(k) so
as to satisfy the merging conditions and reach the target
speed vdes (two conditions referred in the sequel as the
target set of states) as quickly as possible, given the initial
state of all vehicles. The minimum-time design, compliant
with the constraints above, can thus be obtained by solving
the following quadratic optimal control problem over the
finite-horizon [0, N ]

min
a,h

N∑
k=1

[
k dt h(k) + εa

m∑
i=0

aix(k)2

]
(12)

s.t. dyn. (11) ∀i, ∀k < N

vmin ≤ vix(k) ≤ vmax ∀i, ∀k
amin ≤ aix(k) ≤ amax ∀i, ∀k
xi(k) + vix(k)tgap ≤ xi+1(k) 0 < i < m, ∀k
xj(k) + vjx(k)tmin

gap ≤ x0(k) + h(k) ∀k, if j > 0

x0(k) + v0x(k)tmin
gap ≤ xj+1(k) + h(k) ∀k, if j < m

|vix(k)− vdes| ≤ h(k) ∀i, ∀k
where the decision vector a = [a0x(0) · · · amx (0) a0x(1) · · ·
amx (1) · · · a0x(N −1) · · · amx (N −1)]> contains the acceler-
ations of all vehicles along [0, N ], h = [h(0) · · · h(N)]>,
xi(0) and vix(0) are the initial position and velocity of
vehicle i, and xi(k) and vix(k) depend on the optimiza-
tion variables aix(0), aix(1), . . . , aix(N − 1) and the initial
states xi(0) and vix(0) through the constraint enforcing
the satisfaction of the dynamic equations in (11).

For each k = 0, . . . , N , h(k) represents the maximum
violation between the merging conditions and the con-
straints that the velocity of all vehicles must be equal to
the target platoon speed vdes, and measures the distance
at time instant kdt of the overall system from the target
set. The cost function in (12) increasingly penalizes such a
distance h(k) as k (i.e., time) increases, thus encouraging
the earliest possible attainment of the target condition.

Let εth be a tolerance threshold and denote by klc,j (lc
stands for lane change) the index of the first discrete time
instant such that h(klc,j) < εth. Since h(k) is a measure of
the distance from the target set at k, h(klc,j) < εth implies
that the state of the system belongs to the target set
within the tolerance prescribed by the threshold εth. We
can therefore consider the coordination phase completed
at k = klc,j , which correspond to time instant klc,j dt.

Now, recall that j is related to the position where the
merging vehicle enters the platoon. Clearly, the optimal
solution (a?j ,h

?
j ) of (12) as well as klc,j both depend on

j. We can then explore different values of j = 0, . . . ,m
and select a? = a?j? , with j? = arg minj=0,...,m klc,j , as
the minimum-time acceleration profile for the coordination
phase and let klc = klc,j? denote the number of time slots
required to complete the coordination phase. The reader
should note that, in the worst case, this procedure amounts
to solve m + 1 times the quadratic program (12), whose
complexity also scales with m.

The proposed coordination mechanism requires only to
measure the relative positions and velocities among all
vehicles and, if m is low, the approach can be sufficiently
lightweight to be performed online by the merging vehicle,
which then transmits to the other vehicles the optimal
acceleration profiles. In case of a big platoon (i.e., large
value of m) it may be the case that vehicle 0 alone cannot
afford the resulting computational burden. In this case,
all vehicles can join forces to solve (12) in a distributed
way, e.g., via the approaches in Falsone et al. (2017, 2020).
This way, problem (12) would be split into m smaller
sub-problems: one per vehicle with only those decision
variables and constraints pertaining to that vehicle. The
sub-problems would then be repeatedly solved in parallel
and their solution shared among the vehicles, in an itera-
tive process that is guaranteed to converge to the optimal
solution. Assessing the threshold value of m such that a
distributed solution is needed would require addressing
technological aspects such as those discussed in the survey
paper Bevly et al. (2016).

3.2 Lane change phase

The lane change phase starts right after the end of the
coordination phase, so that, in particular, all vehicles are

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15423



traveling along the center of their respective lane, with
zero lateral velocity viy and longitudinal velocity vix = vdes,
i = 0, . . . ,m.

We can therefore start from this initial state and optimize
the acceleration a0x(t) and steering angle δ0(t) profiles of
the merging vehicle so that it moves from the current lane
to the target lane within time Tf (to be minimized).

If, during the lane change, all other vehicles are forced
to keep traveling at vdes along the lane and we constrain
the merging vehicle to also keep ẋ0 equal to vdes during
the lane change, then all relative distances along the lane
between each pair of vehicles will not change and we are
guaranteed to meet all safety requirements during the
whole merging maneuver.

Clearly, for the lane change to be completed, we also need
to ensure the merging vehicle reaches a state where it keeps
traveling on the center of the target line at a constant
speed equal to vdes, at and after Tf .

The optimal values for a0x(t), δ0(t), and Tf can thus be
determined by solving the following infinite-dimensional
nonlinear optimal control program

min
Tf ,δ0,a0

∫ Tf

0

[
1 + εδδ

0(τ)2 + 4εaa
0
x(τ)2

]
dτ (13)

subject to: y0(0) = 0.5∆y

ψ0(0) = v0y(0) = ω0(0) = 0

y0(Tf ) = 1.5∆y

ψ0(Tf ) = v0y(Tf ) = ω0(Tf ) = 0

dyn. (1) for vehicle 0, t ∈ [0, Tf ]

ẋ0(t) = vdes, t ∈ [0, Tf ]

Tf > 0

which is simpler than (9) as the nonlinearities appear
only inside the dynamics in (1). Still, problem (13) is
hard to solve, and one needs to resort to a numerical
solver to get an approximate solution. However, since
(13) is independent from the vehicles’ initial state at the
beginning of the coordination phase, we can solve it once
offline and store the lane change reference profile onboard
the vehicle without the need to re-optimize every time.

4. NUMERICAL CASE STUDY

We consider a platoon of m = 3 vehicles traveling at a
platoon speed vdes = 70 km/h along one lane and the
merging vehicle traveling at a lower speed in the other
lane. Each lane is ∆y = 3.5 m wide. Safety regulation are
encoded in the parameters tmin

gap = 1 s and tgap = 1.5 s,
vehicles cannot go backwards, so vmin = 0 m/s, and the
speed limit is set to vmax = 90 km/h.

For each vehicle, actuation constraints are set to amin =
−3 m/s2 and amax = 2 m/s2 for the acceleration and to
δmin = −45◦ and δmax = 45◦ for the steering angle. The
maximum normalized force is set to F = 1 m/s2.

The origin of the absolute reference frame is placed at the
tail vehicle of the platoon (i.e., x1(0)) for the longitudinal
(x) direction and to the side of the road near the merging
vehicle for the lateral (y) direction. Positive x’s are in the
direction of motion of the vehicles and positive y’s toward
the center of the road.

The initial states of the vehicles in the platoon are

xi(0) = (i− 1)tgapvdes and vi(0) = vdes,

i = 1, . . . ,m, while the initial state for the merging vehicle
at the same time instant is given by

x0(0) = 1.6 · tgapvdes and v0(0) = 35 km/h.

The strategy proposed in Sections 3.1 and 3.2 have been
implemented in MATLAB R2019a on a laptop equipped
with an Intel Core i7-8565U CPU and 16 GB of RAM.
Implementation of the coordination phase is based on
YALMIP (Löfberg, 2004), with CPLEX 12.8 as solver,
while for the design of the lane change phase, we re-
sorted to the interface ICLOCS2 (Nie et al., 2018), which
translates, using a direct collocation method, the optimal
control problem (13) into a nonlinear program that is then
solved by IPOPT 3.11.8 (Wächter and Biegler, 2006).

As for the coordination phase, we design the optimal joint
maneuver using a sampling time interval dt = 0.05 s
and a control horizon equal to T = 10 s, giving rise
to N = 200 time slots. For the lane change phase we
used 50 equally spaced collocation points with linear and
cubic Hermite spline interpolation for the input and state
variables, respectively.

Computing time for the design of the coordination and
lane change phases is about 10 s and 57 s, respectively,
and, in Fig. 3a, we report the optimal vehicles trajectories
in terms of absolute position (xi(t), yi(t)) (upper and
middle plots) and velocity ẋi(t) along the x direction
(lower plot), for all vehicles i = 0, . . . ,m. The red dashed
vertical line identifies the first instant after which the
merging conditions (3) and (4) are satisfied, while the
black dashed vertical line identifies the separation between
the coordination phase and the lane change phase at klcdt,
which also requires ẋi(klcdt) = vdes, for all i = 0, . . . ,m.

As can be seen from Fig. 3a, vehicles 2 and 3 (yellow and
violet lines, respectively) increase their speed and vehicle
1 (red line) slightly reduces its speed to accommodate
for vehicle 0 (blue line). The latter tunes its acceleration
profile to approach the midpoint between vehicle 1 and 2.
This optimal solution resulted in a j? = 1 and a klc = 110,
which is equal to 5.5 s to reach the lane change phase. The
lane change then takes 3.2 s for an overall 8.7 s for vehicle
0 to merge the platoon.

For comparison purposes we also computed the optimal so-
lution to problem (9) using ICLOCS2 with IPOPT 3.11.8
as solver. We initialized ICLOCS2 with our solution leav-
ing all other solver parameters unchanged and, after about
4 hours, it returned the optimal solution reported in
Fig. 3b (color coding is the same of Fig. 3a). The optimal
merging maneuver takes 5.8 seconds, 2.9 seconds less than
the proposed solution. By comparing the longitudinal posi-
tion and speed (upper and lower plots) in Fig.s 3a and 3b,
we can see that the profiles of the coordination phase of the
proposed solution are remarkably similar to the optimal
ones, the main difference being that the optimal strategy
is able to handle the coordination and the lateral motion of
the merging vehicle simultaneously, while we need to solve
the two problems on separate time intervals. Note also
that the proposed strategy satisfies the merging conditions
already after 4.1 s, but it then has to wait for the velocities
to reach vdes before it can move to the lane change phase.
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(a) Proposed solution.
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(b) Optimal solution.

Fig. 3. Absolute position of all vehicles along the longitudinal x and lateral y directions and absolute velocity ẋ along
the longitudinal direction (solid lines). Merging condition satisfaction instant (red dashed line). Instant when the
lane change phase starts (black dashed line).

The increased maneuver time is the price to pay for the
incredibly reduced computational time.

5. CONCLUSION

In this paper we propose a computationally efficient res-
olution strategy for addressing optimal coordinated lane
change of a vehicle merging into a platoon. The approach
appears amenable for onboard implementation. Its ac-
tual implementation in real vehicles requires to consider
technological aspects related to sensing, positioning and
communication systems, and to assess the actual compu-
tational time required when adopting embedded systems
for vehicle control.
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