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Abstract: In plate rolling, reversing roughing mills are commonly used as a first processing
step after casting. They are typically equipped with edger rolls for width reduction. During a
rolling pass, lateral asymmetries like temperature gradients or thickness inhomogeneities can
cause two major problems. The plate may rotate in the rolling gap and thus move in lateral
direction. Another problem is that the plate may leave the mill stand with a cambered shape. In
the worst case, these problems entail collisions with the mill stand or other equipment along the
roller table. It is an essential control task to avoid such problems. In general, the exit thickness
profile and the motion of the plate are controlled by adjusting the roll gap height. The latter
has also an influence on the contour shape but, for active control of the plate width and contour
shape, the use of edger rolls is more common. This is especially true if the roll gap adjustment
is self-retaining, meaning that it cannot be adjusted during a rolling pass. In this work, such a
roughing mill and its edger rolls are considered. A mathematical model for the motion and the
camber of the plate is derived. Based on this model, a linear quadratic regulator (LQR) for both
the plate motion and the resulting camber is developed. It uses the lateral forces of the edgers
as control inputs. In a cascaded control structure, these forces are regulated by a subordinate
admittance controller. The developed control system is validated in simulation studies.

Keywords: Heavy-plate hot rolling, roughing mill with edger rolls, steel industry, model-based
control, camber control, optimal control, Riccati equation

1. INTRODUCTION

Roughing mills are typically used in the production of
flat steel products downstream of the casting process and
upstream of the (tandem) finishing mill. A typical revers-
ing roughing mill equipped with edger rolls is outlined in
Fig. 1. In such roughing mills, the thickness of the plate
is reduced in several (reversing) passes. The width of the
plates increases due to spreading and can be reduced by
the edger rolls. If the edger rolls are located upstream
(downstream) of the mill stand, they may be used in
forward (reverse) rolling passes only. In this paper, forward
(reverse) rolling passes are assigned odd numbers, i. e.,
1, 3, 5, . . . (even numbers, i. e., 2, 4, 6, . . . ). In the best
case, a straight rectangular-shaped plate without camber
and thickness inhomogeneities is produced by the roughing
process.

Some mathematical models of the lateral plate motion and
stability analyses are reported in the literature. Most pub-
lications address tandem finishing mills (Ishikawa et al.,
1988; Tarnopolskaya et al., 2005; Gates and Tarnopol-
skaya, 2008; Lee and Choi, 2014). A roughing mill is
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Fig. 1. Reversing roughing mill: forward pass with active
edger rolls (Ettl et al., 2018).

considered in (Ettl et al., 2018), where a model of the
lateral plate motion is developed and utilized to examine
how local asymmetric forces on the entry and exit side of
the rolling gap affect the stability of the plate motion.

Models of the evolution of the plate contour are reviewed
in (Steinboeck et al., 2017). Model-based control concepts
for camber reduction are given in (Tanaka et al., 1987;
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Cuzzola and Dieta, 2003; Schausberger et al., 2016a, 2018).
In these works, the roll gap height is adjusted during the
rolling pass to minimize the camber of the outgoing plate.

In (Kurz et al., 2015; Kainz et al., 2016), finite element
analyses of the camber evolution are reported. The main
focus of these works is how camber can be reduced by
applying lateral forces to the plate. These papers describe
neither the lateral motion of the plate nor a suitable
control concept for both, the plate motion and the camber.

There has been also some research on contour detection
by camera systems (Yang et al., 2008). In (Schausberger
et al., 2015, 2016b), for example, the contour shape and the
motion of the plate are estimated with an optimization-
based algorithm that uses a kinematic model of the plate.

In this paper, a reversing roughing mill is considered
where the roll gap height cannot be adjusted during the
rolling pass because of self-retaining electromechanical
actuators. In this case, the only control inputs are the
lateral forces applied by the edger rolls. The focus of this
work are roughing mills, where the product thickness is
still high enough to prevent buckling of the product as a
consequence of asymmetric edger forces. From Ettl et al.
(2018) it is known that edger rolls on the entry side of the
roll gap have a stabilizing influence on the plate motion. To
perform a safe plate motion during the rolling pass (even if
edger rolls are located at the exit side of the roll gap) and
to minimize the camber of the outgoing product, a linear
quadratic regulator (LQR) is used in the outer loop of a
cascade control structure. In the inner loop, an admittance
controller positions the edger rolls so that the desired edger
forces are realized. The design of the control system as well
as its closed-loop performance are investigated for three
different scenarios. In the first scenario, the edger rolls are
located on the entry side of the roll gap, in the second
scenario on the exit side, and the third scenario considers
edger rolls on both sides of the roll gap.

In Section 2, a mathematical model of the plate motion
and the resulting camber is derived. Section 3 deals with
the design of an admittance controller and an LQR in the
outer loop. Simulation studies are conducted in Section 4.
Section 5 summarizes the outcomes of the paper and gives
a short outlook.

2. MATHEMATICAL MODEL

This section describes a mathematical model of the plate
motion (Section 2.1) and the evolution of the camber
(Section 2.2) during the rolling pass. The outputs of the
model are the curvature and the lateral displacement of
the centre line of the plate for the first rolling pass. The
inputs of the model are the external forces acting on the
plate, the camber and the thickness profile of the incoming
plate and the lateral asymmetries of the roll gap height.
For brevity, the argument t for the time is omitted in this
paper wherever confusion is ruled out.

2.1 Dynamical model of the plate motion

A free body diagram of the plate is shown in Fig. 2.
The external forces F− and F+ (e. g. applied by edger
rolls) are assumed to act on the plate upstream and
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Fig. 2. Free body diagram of the plate (top view) (Ettl
et al., 2018).

downstream, respectively, of the roll gap. Following Ettl
et al. (2018), the dynamics of the lateral displacement W
and the angular deflection Φ− of the plate in the roll gap
can be given in the time-free formulation[
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(·)′ =
d

dzin
(·) =

1

vin

d

dt
(·) . (2)

The processed length zin of the incoming plate serves as
independent variable and vin is the mean entry velocity
of the plate. In (1), Φ− = ϕ(0−) and W = w(0−) are
the angular deflection of the cross section and the lateral
displacement of the plate centre line on the entry side
z = 0− of the roll gap. The length l is defined in Fig. 2, El
is the Young’s modulus of the plate in the roll gap, I−y and

I+
y the area moment of inertia of the plate cross section

on the entry and exit side, respectively, GlA
−
s is the shear

stiffness of the incoming plate cross section in the roll gap,
w0 is the width of the plate, and κ− is the camber of the
incoming plate. The sensitivities K−Σ− , K−Σ+ , K−h , and K−H
determine how the forces F−, F+, the thickness wedge ∆h
of the linearised thickness distribution

h (X, z) = h̄ (z) + ∆h (z)X/w0 (3)

of the incoming plate, and the tilt of the roll gap ∆H, with

H (X) = H̄ + ∆HX/w0 , (4)

affect the input velocity profile and thus also the lateral
movement of the plate. In (3) and (4), X is the Lagrangian
coordinate, measured from the plate centre line with X ∈
[−w0/2, w0/2]. Moreover, h̄(z) and H̄ donate the mean
thickness of the incoming plate and the mean roll gap
height, which corresponds to the mean output thickness
of the plate.

As described by Ettl et al. (2018), (1) follows from Timo-
shenko’s beam theory. However, in contrast to Ettl et al.
(2018), three beams with different Young’s moduli are
assumed in this paper as shown in Fig. 3. In this way, it
is considered that the area where plastification takes place
differs from the areas outside the roll gap. The area left
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Fig. 3. Partitioning the plate into three Timoshenko beams
with different Young’s moduli (side view).

and right are modelled with a Young’s modulus of Eh. The
inner one is defined by the contact length L (Lenard, 2014)
and a reduced Young’s modulus of El to consider a softer
area. Knowing that this does not cover plastic deformation
in a physically correct way, the benefit of keeping a simple
linear system structure is utilized at this point.

2.2 Camber evolution

Considering (Steinboeck et al., 2017), the curvature of the
outgoing plate centre line (camber) is given by
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Here, λ = h̄−/H̄ is the ratio of the mean input and mean
output thickness. The sensitivities K+

Σ− , K+
Σ+ , K+

h , and

K+
H determine how the input forces F−, F+, the thickness

wedge ∆h of the incoming plate, as well as the tilt of
the roll gap ∆H affect the output velocity profile and
therefore the resulting camber κ+. The sensitivities satisfy
(Steinboeck et al., 2017)

K−Σ− = K+
Σ− 1 = h̄

(
K+
h −K

−
h

)
K−Σ+ = K+

Σ+ 1 = H̄
(
K−H −K

+
H

)
.

3. CONTROL DESIGN

In addition to the reduction of the plate thickness, an
important control task of the roughing mill is to minimize
the lateral motion and the camber of the outgoing plate.
From (Steinboeck et al., 2017), it is known that a cambered
plate can pass the roll gap without lateral motion and
thus both the lateral motion and the camber have to be
controlled. In the considered rolling mill, only the inputs
F− and F+ (defined by the edger positions) can be chosen
and actively modified during the rolling pass. In this
paper, a cascade control structure as depicted in Fig. 4
is proposed, with an admittance controller (AC) in the
inner loop and an LQR in the outer loop.

plantACLQR
Φ−, W

κ+ F±

F d

− −
0

Φ−, W
F±

x̄d

Fig. 4. Cascade control structure. Inner loop: admittance
control (AC); Outer loop: LQR.

3.1 Admittance control

In the considered rolling mill, the edger rolls are positioned
with an underlying position controller. In this way, the
desired plate width w0 = x1 − x2 − 2R, where x1 and x2

are the lateral positions of the edger rolls and R is their
radius, can be reliably maintained and their mean position
x̄ = x1+x2

2 , which is relevant for F− and F+, can be
easily adjusted. To exert the desired forces but also satisfy
given constraints for x̄ and ˙̄x, an admittance control with
nonlinear coefficients is designed. Assume that F d is the
desired lateral force of the edger rolls 1 . The admittance
control law (Flixeder et al., 2017)

md ¨̄xd + dd ˙̄xd + kdx̄d = kP e+ kI
∫
edτ︸ ︷︷ ︸

F̃

, (6)

with the desired mass md, the damping coefficient dd, the
stiffness kd, the control parameters kP and kI , and the
force control error e = F d−F , is used. The integral term on
the right-hand side of (6) ensures a zero steady-state error.
This controller requires the lateral force F to be measured,
which can be easily done based on measured hydraulic
pressures of the hydraulic edger positioning system.

In the steady state, (6) reduces to

kdx̄d = F̃ . (7)

The stiffness coefficient kd is chosen in the form

kd = kd1 + kd2 , kd1 =
k0

e
|F̃ |

k0x̄
d
max

, kd2 =

∣∣∣F̃ ∣∣∣
x̄dmax

(8)

to avoid that the absolute lateral displacement |x̄d| exceeds
the bound x̄dmax in the stationary case. In (8), k0 is a
constant tuning parameter. Figure 5 shows the chosen
stiffness and the resulting desired displacement x̄d. In an
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Fig. 5. Desired stiffness kd (solid red), components of the
stiffness kd1 and kd2 (dashed blue) and displacement x̄d

(dashdotted green) depending on F̃ for x̄dmax = 50 mm
(dotted orange) and k0 = 1 MN m−1.

analogous manner, a nonlinear damping coefficient

dd =
d0

e
|F̃−kdx̄d|
d0 ˙̄xdmax

+

∣∣∣F̃ − kdx̄d∣∣∣
˙̄xdmax

, (9)

with a constant d0 > 0, is used to avoid an absolute
velocity | ˙̄xd| larger than ˙̄xdmax. Note that (8) and (9)

1 Note that in this paper desired values are denoted by the super-
script d.
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cannot strictly guarantee satisfaction of the constraints of
x̄d. For instance, small values of dd can lead to x̄d > x̄dmax
during transient phases. The desired mass is chosen as a
constant md = m0.

Because of the nonlinear stiffness (8), the steady-state
error e is not necessarily zero and thus the integral term on
the right hand side of (6) would grow without bounds. To
avoid this undesirable behaviour, an anti-wind-up (AWP)
strategy must be considered in the control design. It was
found that simple box constraints of the value of the
integral yield a satisfactory result. Moreover, this value
is set to zero if the error e changes its sign.

3.2 LQR for the plate motion and camber

In this section, an LQR for the lateral motion and the
camber of the outgoing plate is designed. It is assumed that
the underlying admittance controller works sufficiently fast
and thus the following control concept is developed for the
model (1) and (5) with the control inputs F− and F+.

Because the shape of the plate is measured with cameras
directly before and after the mill stand, the curvature κ− is
known (cf. Schausberger et al., 2015, 2016b). The roll gap
height ∆H is defined by self-retaining electromechanical
actuators. This implies that ∆H can only be adjusted
before every rolling pass. During the pass, ∆H remains
essentially constant, apart from the load-induced mill
stretch. It is assumed that the roll gap height equals the
thickness profile of the outgoing plate. Therefore, ∆h is
known for the subsequent rolling pass. Furthermore, the
process variables ∆H and ∆h can be treated as known
disturbances in the controller design.

Assume that the design model (1) and (5) is discretized in
the form

xk+1 = Φxk + Γu,αuk + Γddk (10a)

yk = Dαuk + Hdk , α ∈ {b, i, o} . (10b)

Note that the index k = 1, . . . , N refers to the nodes
of a homogenous grid on the incoming plate with the
spatial (independent) variable zin and the grid spacing
∆zin. Thus, the length Lp of the incoming plate satisfies
the relation Lp = N∆zin. Moreover, Φ− and W are
summarized in the vector xk, F− and F+ in uk and dk
combines the known inputs κ−, ∆h and ∆H. Because the
camber of the outgoing plate (5) does not depend on the
lateral position of the plate in the roll gap (1), (10b) does
not depend on xk. In (10), three operational situations for
a rolling mill with edger rolls on the entry and exit side
are distinguished:

• edgers are active on both sides of the roll gap α = b
• edgers are active on the entry side of the roll gap
α = i
• edgers are active on the exit side of the roll gap α = o

During a rolling pass, the system switches between these
three situations. Situation α = i is relevant for the thread-
in phase. Then, situation α = b follows and finally situ-
ation α = o describes the thread-out phase. By analogy,
model formulations for rolling mills that have edger rolls
only at the entry or only at the exit side can be found. In
these cases, however, there are also situations where the
plate is clamped in the roll gap but not in contact with

any edger rolls. During these phases, the motion and the
camber of the plate cannot be controlled. In essence, three
different controllers have to be designed for the situations
α ∈ {b, i, o}.
The control task is to regulate both the lateral plate
motion W and the camber κ+ of the outgoing plate
to zero. The relative importance should be adjustable
based on user-defined weighting parameters. Analogous
to the classical LQR approach, the following optimization
problem

arg min
u0,...uN

J (x0) ,

J (x0) =

N−1∑
k=0

[
xT
k uT

k yT
k

] [Q 0 0
0 Rα 0
0 0 T

][
xk
uk
yk

]
+

[
xT
N uT

N yT
N

] [PN 0 0
0 Rα 0
0 0 T

][
xN
uN
yN

]
(11)

has to be solved subject to system dynamics (10). In (11),
Q, Rα, PN denote positive definite weighting matrices,
and T > 0 is a weighting factor. Applying dynamic
programming to (11) directly leads to the optimal control
input

u∗k = Kx,αxk + Kd,αdk , k = 0, . . . N − 1 (12)

with

Kx,α = −
(
Rα + DT

αTDα + ΓT
u,αPNΓu,α

)−1

ΓT
u,αPNΦ (13a)

Kd,α = −
(
Rα + DT

αTDα + ΓT
u,αPNΓu,α

)−1

(
DT
αTH + ΓT

u,αPNΓd

)
(13b)

and

u∗N = −
(
Rα + DT

αTDα

)−1

DT
αTHdN . (14)

Moreover, P k is iteratively found by the discrete Riccati
equation

P k = Q + ΦTP k+1Φ−ΦTPT
k+1Γu,α·(

Rα + DT
αTDα + ΓT

u,αP k+1Γu,α

)−T

ΓT
u,αP k+1Φ ,

(15)

with PN according to (11).

During the rolling pass, the control law (12), (13) switches
from Kx,i and Kd,i to Kx,b and Kd,b and further to
Kx,o and Kd,o. Because the switching points depend
only on zin and each controller is used just once, the
asymptotic stability of the individual control laws implies
the asymptotic stability of the switched control law.

4. SIMULATION STUDIES

As can be seen in Fig. 4, the input to the plant, which
corresponds to the output of the admittance controller, is
the desired mean position x̄d of the edger rolls. For the
mathematical model (1), (5), the forces F− and F+ serve
as control inputs. Thus, a model is required that links
x̄d with F− and F+, respectively. Using the three Tim-
oshenko beams with different Young’s moduli according
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to Fig. 3, the forces F− and F+ can be calculated as a
function of x̄ in the form

F± = V ±x̄ , (16)

with

V − =
1

(l−L)3

3EhI
−
y

+ L(L2−3Ll+3l2)

3ElI
−
y

+ l−L
GhA

−
s

+ L
GlA

−
s

(17a)

and

V + =
1

l3

3EhI
+
y

+ l
GhA

+
s

. (17b)

Moreover, the underlying position control loop can be well
approximated, with an error of less than 2.5 %, by a lag
element of second order

GPT2 =
ˆ̄x

ˆ̄xd
=

1

T 2
e s

2 + 2ξTes+ 1
, (18)

where a hat (̂·) symbol refers to the corresponding Laplace
transform.

The following simulations were conducted with the param-
eters given in Table 1 and a sampling time of Ts = 1 ms.
The grid spacing ∆zin of the independent coordinate zin
thus satisfies the relation ∆zin,k = vin,kTs.

Table 1. Plant parameters.

name value unit name value unit

l 3.3 m kP 0.25 1
L 0.14 m kI 1 m−1

El 5e8 N m−2 k0 1 MN m−1

Eh 1e11 N m−2 d0 1 N s m−1

I−y 0.075 m4 m0 1 kg

I+
y 0.063 m4 x̄dmax 50 mm
Gl 2 · 108 N m−2 ˙̄xdmax 0.4 m s−1

Gh 4 · 1010 N m−2 AWP lim. 500 kN

A−
s 0.29 m2 Te 30 ms

A+
s 0.25 m2 ξ 3 1

4.1 Admittance control

In this section, the admittance control is investigated
based on the plant model (16), (18). Consider a scenario
where the plate is clamped by the edgers on the entry side
and the work rolls in the roll gap. Assume that the plate
does not move forward, i. e., vin = 0. In this situation, a
step of the desired asymmetric edger force is requested.
The simulated response of the inner admittance control
loop is shown in Fig. 6. The desired force level is not
reached because of the constraint x̄d ≤ x̄dmax. Fig. 6 also
shows that neither x̄d and ˙̄xd nor x̄ and ˙̄x violate their
constraints.

4.2 LQR for the plate motion and camber

A simulation study of the whole cascade control struc-
ture according to Fig. 4 is performed. The LQR uses the
parameters from Table 2. Figure 7 shows the correspond-
ing simulation results 2 . It can be clearly seen that the
system behaviour significantly changes at the switching
points (between 2.8 m and 6.7 m both edgers are active).
Moreover, the figure shows that the desired values Φ− = 0,

2 Note that the x-axis of Fig. 7 has the dimension m because of the
time-free formulation of (1) and (5).
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Fig. 6. Desired and actual force (upper graph) caused by a
lateral displacement of the edger rolls (lower graph).

Table 2. Control parameters.

name value unit name value unit

w0 1.6 m K−
h

-4.02 m−1

h̄ 220 mm K+
h

0.53 m−1

H̄ 185 mm K−
H 4.75 m−1

κ− 1 km−1 K+
H -0.66 m−1

∆h 0.1 mm K±
Σ− 2.12 1/GN m2

∆H 0.25 mm K±
Σ+ -2.12 1/GN m2

Ri, Ro 0 N−2 Rb I · 10−14 N−2

Q I · 0.1 {rad,m}−2 T 106 m2
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Fig. 7. Angular deflection (upper left graph), lateral dis-
placement (upper right graph), camber of the outgo-
ing plate (lower left graph), and control input (lower
right graph) for the first rolling pass depicted for
the case of edger rolls on the entry (solid red), exit
(dashed blue) and both sides (dashdotted green) of
the roll gap.
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W = 0 and κ+ are asymptotically reached if the controller
is active.

From Fig. 7, it can be inferred that the control perfor-
mance of a rolling mill with edgers at the entry and at the
exit side is not significantly better compared to a rolling
mill with edger rolls just on one side.

5. CONCLUSIONS

In heavy-plate rolling, there are many roughing mills
where the roll gap height cannot be adjusted during the
rolling pass. For such roughing mills, the possibility of
using edger rolls to improve the lateral motion of the plate
and to reduce its camber was examined.

The mathematical model of Ettl et al. (2018) was extended
by partitioning the plate into three parts with different
Young’s moduli. With this approach, a softer area in the
roll gap is considered by keeping the benefit of a simple
linear model.

Because the extended model as well as the camber model
of Steinboeck et al. (2017) have an external asymmetric
force as their model input, an admittance controller was
designed to provide those forces with the underlying posi-
tion controller of the edger rolls. The proposed approach
incorporates constraints on the lateral displacement of
the edger rolls by nonlinear formulations of the stiffness
and the damping coefficient in the target dynamics of the
admittance controller.

In an outer control loop, an LQR controls the lateral
displacement of the plate in the rolling gap and the
camber of the outgoing plate. With user-defined weighting
parameters the relative importance of these two system
outputs can be considered in the controller design. Despite
the switching behaviour of the plant, asymptotic stability
of the system with the LQR is ensured, no matter if edgers
are located on the entry, the exit, or on both sides of the
roll gap.

Simulation studies showed that both the lateral displace-
ment and the camber can be improved by the proposed
cascade control concept. Moreover, the proposed concept
can also be used for configurations with edgers at the entry
or at the exit side of the roll gap. Configurations with
edgers on both sides have the advantage that the control-
lability is ensured throughout the whole rolling pass.

The mathematical model as well as numerical values of this
paper are based on real measurement data. Encouraged by
the simulation results, an implementation and validation
of the proposed control system at an industrial plant is
planned for the near future.
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