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Abstract: This paper considers the deterministic Susceptible-Infected-Susceptible (SIS) epi-
demic network model, over strongly connected networks. It is well known that there exists an
endemic equilibrium (the disease persists in all nodes of the network) if and only if the effective
reproduction number of the network is greater than 1. In fact, the endemic equilibrium is unique
and is asymptotically stable for all feasible nonzero initial conditions. We consider the recovery
rate of each node as a control input. Using results from differential topology and monotone
systems, we establish that it is impossible for a large class of distributed feedback controllers to
drive the network to the healthy equilibrium (where every node is disease free) if the uncontrolled
network has a reproduction number greater than 1. In fact, a unique endemic equilibrium exists
in the controlled network, and it is exponentially stable for all feasible nonzero initial conditions.
We illustrate our impossibility result using simulations, and discuss the implications on the
problem of control over epidemic networks.
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1. INTRODUCTION

The control community has recently increased its atten-
tion on the mathematical modelling of disease outbreaks
in a large population, as it is a fundamental issue in
epidemiology and public health studies (Anderson and
May, 1991; Nowzari et al., 2016). The salient behaviour of
many epidemic models can be characterised by an effective
reproduction number, R0 (the quantitative definition of
which may depend on the model). Roughly speaking, the
disease is eventually eradicated from the system if R0 ≤ 1,
but will persist if R0 > 1. Since experiments in epidemics
are usually expensive and impossible for large human
networks, mathematical modelling and analysis can be
an economical and effective approach to understand an
epidemic process. Then, the motivation to study control
techniques for epidemic models becomes clear.

? B. D. O. Anderson and M. Ye are supported by the Australian
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771687) and the Netherlands Organization for Scientific Research
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The Susceptible-Infected-Susceptible (SIS) model sup-
poses that each individual in the population is either
Infected with a disease of interest, or Susceptible but not
Infected, and able to transition between the two states
(Pastor-Satorras and Vespignani, 2001; Mieghem et al.,
2009). It is a fundamental model, having both probabilis-
tic (Fagnani and Zino, 2017) and deterministic variants
(Lajmanovich and Yorke, 1976; Fall et al., 2007; Mieghem
et al., 2009). This paper considers the deterministic vari-
ant, which has at least two perspectives: (i) a disease
spreading on a network of interconnected individuals, or
(ii) a disease spreading across a network of interconnected
populations, viz. a metapopulation (each node represents
one well-mixed population). To simplify our exposition, we
focus on the metapopulation narrative, but our theoretical
conclusions also hold for the first perspective.

On strongly connected SIS networks, R0 uniquely deter-
mines the limiting behaviour of the disease (Fall et al.,
2007). If R0 ≤ 1, the healthy equilibrium (also the unique
equilibrium) is asymptotically stable for all feasible 1 ini-

1 By feasible, we mean initial conditions which are meaningful and
of interest in the epidemic context.
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tial conditions; the disease is eradicated from every node.
If R0 > 1, then in addition to the healthy equilibrium,
there is a unique endemic equilibrium in which the disease
is present in each node, and it is asymptotically stable for
all feasible nonzero initial conditions.

A number of works have investigated different control ap-
proaches. A common, centralised, approach is to formulate
an optimisation problem to minimiseR0 given a set of con-
straints and knowledge of all network parameters, either by
(i) setting network parameters such as the recovery rate of
each node or the infection rates between nodes (Preciado
et al., 2014; Ramı́rez-Llanos and Mart́ınez, 2014; Torres
et al., 2016), or (ii) by removing certain nodes or links in
the network (Bishop and Shames, 2011). A recent method
avoids this issue, but requires a synchronised stopping time
across the network and/or additional consensus process
to compute a piece of centralised information (Mai et al.,
2018). Optimal control approaches remain a considerable
open challenge (Nowzari et al., 2016).

Alternatively, heuristic feedback controllers may be used
to dynamically adjust node parameters, often in a dis-
tributed manner relying only on local node information:
it is this approach that this paper will investigate. A key
issue is that the feedback controller changes the closed-
loop dynamics, and consequently one must investigate
whether there still exists a unique endemic equilibrium,
and whether the convergence behaviour has changed. This
can make analysis difficult since most existing techniques
rely on specialised algebraic calculations of the model
equations, e.g. (Fall et al., 2007; Lajmanovich and Yorke,
1976; Mieghem et al., 2009), meaning conclusions might
be specific to the controller. Existing results are limited.
Indeed, (Liu et al., 2019) establishes an impossibility result
on the SIS network model for a specific feedback controller.

We resolve this issue by presenting a novel unified analysis
framework based on the Poincaré–Hopf Theorem from
differential topology (Milnor, 1997), and monotone dy-
namical systems (Smith, 1988). We analyse a broad class
of distributed feedback algorithms which control the re-
covery rate of each node. We show that if R0 > 1 for
the underlying uncontrolled network, then it is impossible
for the the controlled network to reach the healthy equi-
librium. It is proved that from all nonzero feasible initial
conditions, the controlled network converges to the unique
endemic equilibrium exponentially fast. However, we show
feedback control will always control the unique endemic
equilibrium to be closer to the healthy equilibrium. Our
results highlight the challenges of feedback control for SIS
networks, while leaving the door open for other approaches
such as controlling the infection rates between nodes, or
time-varying or nonsmooth or adaptive controllers.

We conclude this section by introducing notation, and
relevant aspects of graph theory. Section 2 introduces the
SIS model, and defines the control problem, while Section 3
establishes the main result. Section 4 provides discussions
and a simulation, and conclusions are drawn in Section 5.

1.1 Notation

The n-column vector of all ones and zeros is given by 1n
and 0n, respectively. The n×n identity and n×m zero ma-

trices are given by In and 0n×m, respectively. The ith entry
of a vector a and (i, j)th entry of a matrix A are ai and
aij , respectively. For vectors a, b ∈ Rn, we write a ≥ b and
a > b if ai ≥ bi and ai > bi, respectively, for all i. A matrix
A ∈ Rn×m is nonnegative or positive if A ≥ 0n×m or
A > 0n×m, respectively. For a real square matrix M with
spectrum σ(M), define ρ(M) = max {|λ| : λ ∈ σ(M)}
and s(M) = max {Re(λ) : λ ∈ σ(M)} as the spectral ra-
dius of M and the largest real part among the eigenvalues
of M , respectively. A matrix M is said to be Hurwitz if
s(M) < 0. A matrix A is called an M -matrix if it can
be written as A = cIn − B, with c > 0, B ≥ 0n×n and
c ≥ ρ(B) (Berman and Plemmons, 1979)

For a set M with boundary, we denote the boundary as
∂M, and the interior Int(M) ,M\ ∂M. We denote by

Rn≥0 = {x : xi ≥ 0 ,∀ i = 1, . . . , n}
the positive orthant. We define the set

Ξn = {x ∈ Rn≥0 : 0 ≤ xi ≤ 1, i ∈ {1, . . . , n}}.

1.2 Graph Theory

For a directed graph G = (V, E , A), V = {1, . . . , n} is the
set of vertices (or nodes). The set of ordered edges is given
by E ⊆ V × V and the edge eij = (vi, vj) is said to be
incoming with respect to vj and outgoing with respect
to vi. The matrix A ≥ 0n×n is the weighted adjacency
matrix, defined such that eij ∈ E if and only if aji > 0.
We will sometimes write “the matrix A associated with
G”, or write G[A] to denote G = (V, E , A). We define the

neighbour set of vi as Ni , {vj : eji ∈ E}. A directed path
is a sequence of edges of the form (vp1 , vp2), (vp2 , vp3), ...,
where vpi ∈ V are distinct and epipi+1

∈ E . A graph G[A]
is strongly connected if and only if there is a path from
every node to every other node, which is equivalent to A
being irreducible (Berman and Plemmons, 1979).

2. THE SIS MODEL AND CONTROL PROBLEM

This section will introduce the SIS network model, and
then formulate the feedback control problem.

2.1 The Deterministic SIS Network Model

The network Susceptible-Infected-Susceptible model is
fundamental within the deterministic epidemic modelling
literature. To keep the paper concise and focused on the
feedback control problem, we refer the interested reader to
(Lajmanovich and Yorke, 1976; Nowzari et al., 2016) for
details on modelling derivations.

As explained in the introduction, this SIS model has at
least two popular contexts under which it is studied, and
we focus on the metapopulation context. Each individual
resides in a well-mixed population, with the size of each
population being large and constant. It is assumed that
each individual is either Infected (I) with some disease
of interest, or is Susceptible (S) but not infected. Each
individual can transition between the two states. There is
a network of n ≥ 2 such populations (forming a metapop-
ulation), captured by a directed graph G = (V, E , B),
with each node representing a population. Associated with
node i ∈ V is the variable xi(t) ∈ [0, 1], which represents
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the proportion of population i that is Infected (and thus
1− xi(t) represents the proportion of population i that is
Susceptible). The SIS dynamics are given by

ẋi(t) = −dixi(t) + (1− xi(t))
∑
j∈Ni

bijxj(t), (1)

where di > 0 is called the recovery rate of node i, and
for a node j ∈ Ni, bij > 0 is called the infection rate
from node j to node i. If j /∈ Ni, then bij = 0. Defining
x = [x1, . . . , xn]> ∈ Rn yields

ẋ(t) = (−D +B −X(t)B)x(t), (2)

with X(t) = diag(x1(t), . . . , xn(t)), D = diag(d1, . . . , dn)
being diagonal matrices. The nonnegative matrix B is
associated with the graph G. One can prove that if x(0) ∈
Ξn, then x(t) ∈ Ξn ∀t ≥ 0. Thus, Eq. (2) is well defined and
x(t) has a physically consistent meaning for all x(0) ∈ Ξn.
From the modelling context, we say an initial condition
x(0) is feasible if x(0) ∈ Ξn, and from here on, we only
consider feasible initial conditions.

Obviously, x = 0n is an equilibrium of Eq. (2), and we
call this the healthy equilibrium. Any other equilibrium
x∗ ∈ Ξn \ 0n is said to be an endemic equilibrium, as the
disease persists in at least one population. Consistent with
the literature, we define

R0 , ρ(D−1B) (3)

as the effective reproduction number of the disease on
the network. The following result fully characterises the
number of equilibria and the limiting behaviour of Eq. (2)
usingR0, with different proofs in (Lajmanovich and Yorke,
1976; Fall et al., 2007; Mieghem et al., 2009).

Proposition 1. Consider the system Eq. (2), and suppose
that G = (V, E , B) is strongly connected.

(1) If R0 ≤ 1, then 0n is the unique equilibrium of
Eq. (2), and for all x(0) ∈ Ξn, limt→∞ x(t) = 0n.

(2) If R0 > 1, then in addition to the equilibrium 0n,
there is a unique endemic equilibrium x∗ ∈ Int(Ξn).
Moreover, limt→∞ x(t) = x∗ for all x(0) ∈ Ξn \ 0n.

Proposition 1 states that R0 ≤ 1 is equivalent to the
disease eventually being eradicated, since limt→∞ x(t) =
0n for all x(0) ∈ Ξn. There is an endemic equilibrium if
and only if R0 > 1, and then in fact x∗ ∈ Int(Ξn) is the
unique endemic equilibrium that is asymptotically stable
for all feasible nonzero initial conditions (the Jacobian of
Eq. (2) at x∗ is Hurwitz).

2.2 Problem Formulation: Distributed Feedback Control

From the conclusions of Proposition 1, it is obviously of in-
terest in the epidemic spreading context to develop control
methods to drive the SIS networked system Eq. (2) to the
healthy equilibrium 0n when R0 > 1. In the introduction,
we detailed several existing approaches for controlling the
SIS networked system Eq. (2). Some involve adjusting
of parameters in D and B, perhaps by optimisation, to
ensure that R0 is minimised. If in fact one reduces R0

to be less than 1, then convergence to 0n follows as per
Proposition 1. In this paper, we consider a form of feedback
control.

In the metapopulation modelling context, the value di > 0
in Eq. (1) represents the recovery rate of the population i

against the disease in question. Suppose that we can dy-
namically control (and in particular increase) the recovery
rate at node i, e.g. by increasing medical resources at node
i, using a feedback controller. Specifically, let us replace di
in Eq. (1) with d̄i(t) = di + ui(t), where di > 0 is the
base recovery rate if no additional recovery resources are
provided, and ui(t) the control input at node i.

Consider the class of local feedback controllers of the form

ui(t) = hi(xi(t)), (4)

with the following property:

P1 For all i, hi : [0, 1]→ R≥0 with hi(0) = 0 is bounded,
of class C∞, and monotonically nondecreasing.

Obviously, Eq. (4) satisfying P1 contains a broad class of
controllers, and one can assume hi(0) = 0 without loss
of generality. We are motivated to consider Eq. (4) for
practical reasons. The controller in Eq. (4) is distributed,
since only the local state xi is required for population i.
This contrasts with many existing approaches described
in the Introduction which require global (and in some
instances complete) information regarding D and B. Also,
such controllers are intuitive: we increase the recovery rate
d̄i(t) as the infection xi(t) in node i increases. The work
(Liu et al., 2019) considers a controller of the special form
hi(xi) = kixi with ki > 0 and di = 0, and this paper
significantly expands on that result 2 .

The dynamics for population i then become

ẋi(t) = −
(
di + hi(xi(t))

)
xi(t) + (1− xi(t))

∑
j∈Ni

bijxj(t),

(5)
and the network dynamics become

ẋ(t) = (−D −H(x(t)) +B −X(t)B)x(t), (6)

where H(x(t)) = diag(h1(x1(t)), . . . , hn(xn(t))) is a non-
negative diagonal matrix. The following result establishes
that Ξn is a positive invariant set of Eq. (6). Since the
right hand side of Eq. (6) is smooth in x, the solution for
any x(0) ∈ Ξn exists for all t ≥ 0 and is unique.

Proposition 2. Consider the system Eq. (6) with strongly
connected G = (V, E , B). If x(0) ∈ Ξn, then x(t) ∈ Ξn ∀t ≥
0. Any endemic equilibrium x∗ satisfies x∗ ∈ Int(Ξn).

Proof. The simple calculations closely mirror those in
existing works, e.g. (Lajmanovich and Yorke, 1976), and
we omit the steps. 2

Define R0 as in Eq. (3) as the effective reproduction
number of the uncontrolled network, and observe the
following:

Theorem 1. Consider the system Eq. (6), with G =
(V, E , B) strongly connected. Suppose that R0 ≤ 1 and for
all i ∈ V, hi satisfies P1. Then, 0n is the unique equilibrium
of Eq. (6) in Ξn, and for all x(0) ∈ Ξn, limt→∞ x(t) = 0n.

Proof. Suppose that x∗ is a nonzero equilibrium, and
thus x∗ > 0n according to Proposition 2. If R0 < 1,
then s(−D + B) < 0 (the case where R0 = 1 and thus
s(−D + B) = 0 can be similarly treated). One can use
the result of (Berman and Plemmons, 1979, Theorem 2.3)
to prove that (i) D − B is an irreducible nonsingular M -
matrix, and then subsequently (ii) D+H(x∗)−(In−X∗)B
2 We assume di > 0 for simplicity and consistency with Eq. (1).
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is also an irreducible nonsingular M -matrix. However, the
nonsingularity property contradicts the assumption that
x∗ > 0n satisfies (D + H(x∗) − (In − X∗)B)x∗ = 0n
according to Eq. (6). Thus, there are no endemic equilibria
when R0 ≤ 1.

From Eq. (6), we obtain that ẋ ≤ ẏ = (−D+B)y because
In − X(t) is a diagonal matrix with entries in [0, 1], and
H(x(t)) is nonnegative. Since s(−D+B) < 0 means −D+
B is Hurwitz, initialising ẏ = (−D+B)y with y(0) = x(0)
yields limt→∞ x(t) = 0n. 2

The problem of this paper is summarised as follows.

Problem 1. Establish and characterise the behaviour of
Eq. (6), including the limiting behaviour limt→∞ x(t) if
it exists, for the system Eq. (6) under the assumptions

(1) G = (V, E , B) is strongly connected and R0 > 1,
(2) for all i ∈ V, hi : [0, 1]→ R≥0 satisfies P1.

3. MAIN RESULT

In Section 3.1, we present a sufficient condition for a non-
linear autonomous system to have a unique equilibrium,
which we use in Section 3.2 to help solve Problem 1.

3.1 Uniqueness of Equilibrium For Nonlinear Systems

The condition presented in this subsection is derived from
the Poincaré–Hopf Theorem, which is a classical result
from differential topology. Since the focus of this paper
is on feedback control of epidemic networks, details on
differential topology are differed Appendix B.

Consider the autonomous system

ẋ(t) = f(x(t)) (7)

where f = [f1(x), . . . , fn(x)]> ∈ Rn is a nonlinear vector-
valued function, and x = [x1, . . . , xn]>. We assume that
fi, i = 1, . . . , n, belongs to the class of C∞ functions. The
Jacobian of f evaluated at a point x is denoted by dfx.

For a topological space X, we introduce the Euler charac-
teristic χ(X) (Guillemin and Pollack, 2010; Milnor, 1997),
an integer number associated 3 with X. A key property is
that distortion or bending of X (specifically a homotopy)
leaves χ(X) invariant. Euler characteristics are known
for a great many topological spaces. A manifold M is
contractible ifM is homotopy equivalent to a single point,
and has Euler characteristic χ(M) = 1. Any compact and
convex subset of Rn is contractible.

Theorem 2. Consider the system Eq. (7), and suppose
that M ⊂ Rn is an m-dimensional compact, contractible
and smooth manifold with boundary ∂M, with m ≤ n.
Suppose further that f points inward to M at every
x ∈ ∂M. If dfx̄ is Hurwitz for every x̄ ∈ M satisfying
f(x̄) = 0, then Eq. (7) has a unique equilibrium x∗ ∈
Int(M). Moreover, x∗ is locally exponentially stable.

Proof. The focus of this paper is on feedback control for
the SIS network system; we defer the proof to Appendix B.

3 While the Euler characteristic can be extended to noncompact X,
this paper will only consider the Euler characteristic for compact X.

3.2 Distributed Feedback Control: An Impossibility Result

We are interested in applying Theorem 2 for R0 > 1.
In order to do so, we first need to find a contractible
manifold M for the system Eq. (6) with the property
that at all points on ∂M, f(x) is pointing inward. To
identify one suchM, we first define a Metzler matrix as a
matrix with all off-diagonal entries nonnegative (Berman
and Plemmons, 1979), and state the following result.

Lemma 1. ((Varga, 2009, Section 2.1)). Let A be an irre-
ducible Metzler matrix. Then, s(A) is a simple eigenvalue
of A and there exists a unique (up to scalar multiple)
vector x > 0n such that Ax = s(A)x. If Az = λz for
some scalar λ and nonzero vector z ≥ 0n, then s(A) = λ.

Let φ , s(−D + B), and suppose y > 0n satisfies (−D +
B)y = φy as in Lemma 1. Without loss of generality,
assume maxi yi = 1. For ε ∈ (0, 1), define the set

Mε , {x : εyi ≤ xi ≤ 1,∀i = 1, . . . , n} ⊂ Ξn (8)

The boundary ∂Mε is the union of the faces

Pi = {x : xi = εyi, xj ∈ [yj , 1]∀j 6= i}, (9a)

Qi = {x : xi = 1, xj ∈ [εyj , 1]∀j 6= i}. (9b)

It can be shown that s(−D + B) > 0 ⇔ ρ(D−1B) =
R0 > 1 and s(−D + B) = 0 ⇔ R0 = 1 (Liu et al., 2019,
Proposition 1). Then, the following invariance result holds
(see Appendix C for the proof).

Lemma 2. Consider the system Eq. (6), and suppose that
G = (V, E , B) is strongly connected. Suppose further that

φ , s(−D + B) > 0. Then, there exist sufficiently small
εu ∈ (0, 1) and εv ∈ (0, εu] such that:

(1) for every ε ∈ (0, εu], Mε in Eq. (8) and Int(Mε) are
both positive invariant sets of Eq. (6), and

−e>i ẋ < 0 ∀ x ∈ Pi , i = 1, . . . n (10a)

e>i ẋ < 0 ∀ x ∈ Qi , i = 1, . . . n (10b)

where ei is the ith canonical unit vector, and
(2) for all x(0) ∈ ∂Ξn \ 0n, x(κ̄) ∈ Mεv for some

finite κ̄ > 0. Any endemic equilibrium x̄ must satisfy
x̄ ∈ Int(Mεv ).

We now explain the intuition behind Lemma 2, and
refer the reader to the helpful diagram in Fig. 1 for an
illustrative example, with ε ∈ [εv, εu]. The inequalities
Eq. (10) imply that the vector field

f(x) = (−D +H(x) +B −XB)x (11)

points inward at all points on ∂Mε. Notice that Mε is
an n-dimensional hypercube, so it is contractible, but it
is not smooth on the edges and corners formed by the
intersections of the faces defined in Eq. (9). In order to
apply Theorem 2, we consider the system Eq. (6) on the

manifold M̃ε, which is simplyMε as defined in Eq. (8) for
some ε ∈ (0, εu], but with each edge and corner rounded

by arbitrarily small amounts so that M̃ε is a smooth,
contractible manifold with boundary ∂M̃ε. By continuity,
f(x) in Eq. (11) will also point inward at all points on

∂M̃ε. Nagumo’s Theorem (Aubin, 1991) implies that M̃ε

is a positive invariant set of Eq. (6). We now establish an
impossibility result to answer Problem 1 in Section 2.2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11105



(0, 1)
(1, 1)

(0, 0) (1, 0)

x1

x2

(εy1, εy2)

−e1
f(x)

−e2

f(x)

e1

f(x)

f(x)

e2

Fig. 1. An illustration of the manifolds Mε and M̃ε for
Eq. (6), with n = 2 and ε ∈ [εv, εu]. The cube Ξn
is in light grey, with dotted black boundaries. The
dashed red line identifies Mε, and notice the lower
corner (εy1, εy2) with exaggerated size (in reality, ε
is small). The solid red line and shaded red area

identify M̃ε and Int(M̃ε), respectively. Then, M̃ε is
simplyMε with the corners rounded by an arbitrarily
small amount (the corner (1, 1) is magnified and
exaggerated for clarity). Referring to Eq. (10), black
arrows denote vectors e1, e2 (with direction), and blue
arrows show the vector field f pointing inward at
example points on the boundary ∂M̃ε.

Theorem 3. Consider the system Eq. (6), with G =
(V, E , B) strongly connected. Suppose that R0 > 1 and
for all i ∈ V, hi satisfies P1. Then,

(1) In Ξn, Eq. (6) has two equilibria: x = 0n and a unique
endemic equilibrium x∗ ∈ Int(Ξn), which is unstable
and locally exponentially stable, respectively.

(2) For all x(0) ∈ Ξn \ 0n, there holds limt→∞ x(t) = x∗

at an exponentially fast rate.

Proof. The proof consists of two parts. In Part 1, we
establish the existence and uniqueness of the equilibrium
x∗ ∈ Int(Ξn), and the local stability properties of x∗ and
0n. In Part 2, we establish the convergence to x∗.

Part 1: Lemma 2 states that there exists a sufficiently
small εv > 0 such that Mεv in Eq. (8) and Int(Mεv )
are both positive invariant sets of Eq. (6), and for every
x ∈ ∂Mεv , the vector field f(x) in Eq. (11) points inward.
As discussed above the statement of Theorem 3, we can
obtain from Mεv a smooth, contractible and compact

manifold M̃εv by rounding the corners and edges of
Mεv by arbitrarily small amounts. By continuity, f(x) in

Eq. (11) points inward at every x ∈ ∂M̃εv , and thus M̃εv

and Int(M̃εv ) are both positive invariant sets of Eq. (6).
Moreover, if x(t) ∈ ∂Ξn \ 0n for some time t ≥ 0, then

x(t + τ) ∈ Int(M̃εv ) for some τ > 0. Thus, any nonzero

equilibrium of Eq. (6) must be in Int(M̃εv ) ⊂ Int(Ξn).

Suppose that x̃ ∈ Int(M̃εv ) is an equilibrium of Eq. (6).
Then, x̃ must satisfy 0n < x̃ < 1n and

0n = (−D +H(x̃) +B − X̃B)x̃. (12)

This implies that In − X̃ is a positive diagonal matrix,
and because B ≥ 0n×n is irreducible, (In − X̃)B is also
an irreducible nonnegative matrix. Define for convenience
F (x) , D+H(x)−(In−X)B. Obviously, F (x) has all off-

diagonal entries nonpositive for all x ∈ M̃εv , implying that

−F (x̃) is a Metzler matrix for any equilibrium x̃ ∈ M̃εv .
Lemma 1 and Eq. (12) indicate that s(−F (x̃)) = 0, and as
a consequence, (Qu, 2009, Theorem 4.27) establishes that
F (x̃) is a singular irreducible M -matrix.

Define Γ(x) = diag(∂h1

∂x1
x1, . . . ,

∂hn
∂xn

xn) and because hi is

monotonically nondecreasing in xi, Γ(x) is a nonnegative

diagonal matrix for all x ∈ M̃εv . The Jacobian of Eq. (6)

at a point x ∈ M̃εv is

dfx = − (F (x) + ∆(x) + Γ(x)) (13)

where ∆(x) =
∑n
i=1

(∑n
j=1 bijxj

)
eie
>
i is a diagonal ma-

trix. Because B is irreducible, there exists for all i =
1, . . . , n, a ki such that biki > 0. This implies that∑n
j=1 bijxj ≥ bikixki > 0 for all x ∈ M̃εv . In other words,

∆(x) is positive diagonal for all x ∈ M̃εv . It follows from
(Qu, 2009, Theorem 4.31) that F (x̃) + ∆(x̃) + Γ(x̃) is a
non-singular M -matrix, with eigenvalues having strictly
positive real parts. This implies that dfx̃ is Hurwitz for
all x̃ ∈ M̃εv satisfying Eq. (12). Application of Theo-
rem 2 establishes that there is in fact a unique equilibrium
x∗ ∈ Int(M̃εv ) ⊂ Int(Ξn), and x∗ is locally exponentially
stable.

For the healthy equilibrium 0n, Eq. (13) yields df0n =
−D + B. Since R0 > 1 ⇔ s(−D + B) > 0 by hypothesis,
the Linearization Theorem (Sastry, 1999, Theorem 5.42)
yields that 0n is an unstable equilibrium of Eq. (6).

Part 2: To complete the proof, we need only show that
limt→∞ x(t) = x∗ for all x(0) ∈ Int(M̃εv ). We shall use key
results from the theory of monotone dynamical systems,
the details of which are presented in Appendix A.

It is clear that for all x ∈ Int(M̃εv ), dfx in Eq. (13)
is an irreducible matrix with all nonnegative offdiagonal
entries. Thus, Eq. (6) is an Rn≥0 monotone system in

Int(M̃εv ) (see Lemma 3 in the Appendix A). Note that

Int(M̃εv ) ⊂ Rn≥0. Because there is a unique equilibrium

x∗ ∈ Int(M̃εv ), one can show using an extension of a well-
known monotone systems result that limt→∞ x(t) = x∗

asymptotically for all x(0) ∈ M̃εv (see below Lemma 4
in Appendix A for details). It remains to prove that
convergence is exponentially fast.

Since dfx∗ is Hurwitz, let B denote the locally exponen-
tially stable region of attraction of x∗. For every x0 ∈ M̃εv ,
the fact that limt→∞ x(t) = x∗ implies that there exists
a finite Tx0

≥ 0 such that x(0) = x0 for Eq. (6) yields

x(t) ∈ B for all t ≥ Tx0
. Now, M̃εv is compact, which

implies that there exists a T̄ ≥ maxx0∈M̃εv
Tx0

such that

for all x(0) ∈ M̃εv , there holds x(t) ∈ B for all t ≥ T̄ . In
other words, there exists a time T̄ independent of x(0) such

that any trajectory of Eq. (6) beginning in M̃εv enters
the region of attraction B. Because T̄ is independent of
x(0), there exist positive constants α1 and α2 such that

‖x(t)− x∗‖ ≤ α1e
−α2t‖x(0)− x∗‖ for all x(0) ∈ M̃εv and
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t ≥ 0. I.e., limt→∞ x(t) = x∗ exponentially fast for all

x(0) ∈ M̃εv . �

We conclude the section by comparing the endemic equi-
librium of the controlled and uncontrolled SIS network.

Corollary 1. Suppose that G = (V, E , B) is strongly con-
nected, and R0 > 1. Suppose further that for all i ∈ V,
hi satisfies P1 and ∃j : xj > 0 ⇒ hj(xj) > 0. Let x∗ and
x̄∗ in Int(Ξn) denote the unique endemic equilibrium of
Eq. (2) and Eq. (6), respectively. Then, x̄∗ < x∗.

Proof. The proof is provided on a pre-print in arXiv, see
(Ye et al., 2020, Appendix C)

4. SIMULATIONS AND DISCUSSIONS

The introduction of the control input hi(xi(t)) into the SIS
dynamics changes the vector field from

f(x) = (−D + (I −X)B)x (14)

as in Eq. (2) to

f̄(x) = (−D −H(x) + (I −X)B)x (15)

as in Eq. (6). However, the changes to the vector field
through hi(xi), i ∈ V are such that the uniqueness of
the endemic equilibrium, and the property that it is
convergent for all nonzero feasible initial conditions (in
fact exponentially stable), are both preserved.

We now use a simple simulation of an SIS system in Eq. (6)
with n = 2 nodes to help intuitively explain Theorem 3,
and to discuss the implications of the impossibility result.
The aim is to illustrate the change from Eq. (14) to
Eq. (15), so we choose the parameters and controllers
arbitrarily; the salient conclusions are unchanged for many
other choices of parameters and controllers. We set

D =

[
0.3 0
0 0.8

]
, B =

[
0.2 0.5
0.7 0.1

]
, (16)

which yields s(−D +B) = 0.2633 and R0 = 1.6334.

We first consider Eq. (6) when there is no control, i.e.
h1(x1) ≡ h2(x2) ≡ 0. Fig. 2 shows the vector field in
Eq. (14). The figure shows that the unique endemic equi-
librium x∗ = [0.4413, 0.2973]> (the red dot) is attractive
for all feasible nonzero x(0), which is consistent with ex-
isting results (Proposition 1, Item 2) since R0 > 1.

Next, we introduce the controllers h1(x1) = 0.5x1
0.5 and

h2(x2) = 0.9x2 into Eq. (6). The resulting vector field in
Eq. (15) is presented in Fig. 3; there is a unique endemic
equilibrium x̄∗ = [0.15, 0.1142]> which is attractive for all
feasible nonzero x(0). This is consistent with Theorem 3.
Comparing Fig. 2 and 3, we see the introduction of the
controllers h1(x1) and h2(x2) has changed the vector field,
and shifted the unique endemic equilibrium from x∗ to x̄∗,
with 0n < x̄∗ < x∗ as per Corollary 1.

The state feedback controllers taking the form in Eq. (4),
with property P1, comprises a large class of controllers.
In the context of network SIS epidemic models, Theo-
rem 3 establishes the following broad conclusion on such a
class of feedback controllers: If the underlying uncontrolled
system (the underlying vector field f in Eq. (14)) has
a unique endemic equilibrium x∗ that is convergent for
all feasible nonzero x(0), i.e. R0 > 1, then regardless of

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x1

x 2

Fig. 2. Vector field of an uncontrolled SIS network with
n = 2 nodes. The red dot identifies the unique en-
demic equilibrium x∗ = [0.4413, 0.2973]> ∈ Int(Ξn).

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

0.8
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x 2

Fig. 3. Vector field of a controlled SIS network with n = 2
nodes. The red dot identifies the unique endemic
equilibrium x̄∗ = [0.15, 0.1142]> ∈ Int(Ξn).

which controllers hi(xi) satisfying P1 we introduce, viz.
regardless of how we modify Eq. (14) to become Eq. (15),
there will always exist a unique endemic equilibrium x̄∗

that is convergent for all feasible nonzero x(0). Moreover,
x̄∗ is always closer to the healthy equilibrium than x∗

(as illustrated in a simulation example above). It is worth
noting that the presence of a single node j with positive
control input, i.e. xj > 0 ⇒ hj(xj) > 0, leads to an
improvement for every node i, viz. x̄∗i < x∗i . As per The-
orem 1, the healthy equilibrium is globally asymptotically
stable for the controlled network if and only if R0 ≤ 1, i.e.
the underlying uncontrolled network itself has the property
that the unique equilibrium is x = 0n.

5. CONCLUSION

We have investigated the problem of distributed feedback
control for the deterministic SIS epidemic network model
when the uncontrolled system converges to a unique en-
demic equilibrium for all feasible nonzero initial condi-
tions. We considered the recovery rate of each node as
a control input. Using tools from differential topology
and monotone systems, we proved that for a large class
of distributed controllers, the controlled network had a
unique endemic equilibrium that was almost globally ex-
ponentially stable. Although no solution to the problem
of controlling the network to the healthy equilibrium was
provided, we have established an impossibility result on
a broad class of controllers. Still, we proved that feedback
control can help improve the endemic equilibrium, pushing
it closer to the origin. Our findings may provide insight on
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possible future work that consider other approaches, such
as control of the infection rates (including infection be-
tween nodes), time-varying and/or nonsmooth controllers.

Appendix A. MONOTONE SYSTEMS

We provide a simple introduction to monotone systems,
and a convergence result sufficient for the purposes of this
paper. For details, the reader is referred to (Smith, 1988).

Consider the system Eq. (7) on a convex, open set U ⊂ Rn,
with f sufficiently smooth such that dfx exists for all x ∈ U
and the solution x(t) is unique for every initial condition
in U . We use φt(x0) to denote the solution x(t) of Eq. (7)
with x(0) = x0. If whenever x0, y0 ∈ U , satisfying x0 ≤ y0,
implies φt(x0) ≤ φt(y0) for all t ≥ 0 for which both φt(x0)
and φt(y0) are defined, then the system Eq. (7) is said to
be an Rn≥0 monotone system. The following is a necessary
and sufficient condition for a system to be Rn≥0 monotone.

Lemma 3. ((Smith, 1988, Lemma 2.1)). Suppose that f in
Eq. (7) is of class C1 in an open and convex U ⊂ Rn. Then,
Eq. (7) is Rn≥0 monotone if and only if dfx has nonnegative
off-diagonal entries for every x ∈ U .

We say Eq. (7) is an irreducible Rn≥0 monotone system if
dfx is irreducible for all x ∈ U . The following result for Rn≥0

monotone systems will be used for analysis in Section 3.2.
Let E and B(e) denote the set of equilibria of Eq. (7), and
the basin of attraction of e ∈ E, respectively.

Lemma 4. ((Smith, 1988, Theorem 2.6)). Let M be an
open, bounded, and positive invariant set for an irreducible
Rn≥0 monotone system Eq. (7). Suppose the closure of

M, denoted by M, contains a finite number of equilibria.
Then, ∪e∈E∩M Int(B(e)) ∩M is open and dense 4 in M.

Lemma 4 can be strengthened if the irreducible Rn≥0

monotone system Eq. (7) has a unique equilibrium e∗ ∈M
and no equilibrium in M\M: nonattractive limit cycles
can be ruled out, and one can establish that x0 ∈ M,
limt→∞ φt(x0) = e∗. The details are omitted due to spatial
limitations, and provided in an arXiv pre-print, see (Ye
et al., 2020, Appendix A).

Appendix B. PROOF OF THEOREM 2

We first introduce some definitions and concepts from
differential topology, and then recall the Poincaré-Hopf
Theorem. For details, see classical texts such as (Milnor,
1997; Guillemin and Pollack, 2010).

Consider a smooth map f : X → Y , where X and Y
are manifolds. A point x ∈ X is said to be a zero of f
if f(x) = 0. Associated with f at any x ∈ X is a linear
derivative mapping dfx : TxX → Tf(x)Y , where TxX and
Tf(x)Y are the tangent space of X at x ∈ X and Y at
y = f(x) ∈ Y , respectively. If X locally at x looks like Rm,
then dfx is simply the Jacobian of f evaluated at x in the
local coordinate basis. A zero x of f with nonsingular dfx
is said to be nondegenerate, and for such a zero, we define
sign det(dfx) as +1 or −1 according as the sign of the
determinant of dfx is positive or negative. A nondegenerate
4 A set S ⊂ A is dense in A if every point x ∈ A is either in S or in
the closure of S.

zero x of f is isolated: there exists an open ball around x
with no other zeros.

Variations of the Poincaré–Hopf Theorem exist, with dif-
ferences. To avoid introducing too much material, we state
a version slightly adjusted from that in (Milnor, 1997).

Theorem 4. (The Poincaré-Hopf Theorem (Milnor, 1997)).
Consider a smooth vector field f on a compact m-
dimensional manifoldM. IfM has a boundary ∂M, then
f must point outwards at every point on ∂M. Suppose
that every zero xi ∈M of f is nondegenerate. Then,∑

i

sign det(dfxi) = χ(M), (B.1)

where χ(M) is the Euler characteristic of M.

Proof of Theorem 2: The proof presented here is
compressed due to spatial limitations. For an expanded
proof and further details on differential topology, see the
arXiv preprint: Ye et al. (2020).

We make two remarks. First, one can consider ẋ = f(x) as
a system in M, or f as a smooth vector field on M, and
we are conceptually considering the same thing. Second, x̄
is a zero of f if and only if x̄ is a zero of −f ; the possibly
empty sets of zeros of f and −f are the same (we have
not yet established the existence of a zero x̄ ∈ M). For
convenience, denote g(x) = −f(x).

Next, recall that for any square matrix A, the product of
its eigenvalues is equal to det(A). If dfx̄ is Hurwitz for some
x̄ ∈ M, then all eigenvalues of dgx̄ = −dfx̄ have positive
real part. It follows that for any x̄ ∈M satisfying f(x̄) = 0
and dfx̄ is Hurwitz, we have sign det(dgx̄) = +1.

We are now ready to apply Theorem 4 to the vector
field g = −f on the manifold M. We know that if x̄ is
a zero of g (and if it exists), then it is nondegenerate,
since dgx̄ = −dfx̄ is nonsingular by hypothesis. Now, the
hypothesis that f points inwards at every x ∈ ∂M is
equivalent to having the vector field g point outwards at
every x ∈ ∂M. From Eq. (B.1), we have that∑

i

sign det(dgx̄i) = χ(M), (B.2)

with χ(M) = 1 sinceM is contractible. Because every zero
x̄i is nondegenerate, sign det(dgx̄i) = ±1. This implies
that there must be at least one zero contributing to the
left-hand side of Eq. (B.2), i.e. there exists at least one
nondegenerate zero x̄ ∈ M. The hypothesis that dfx̄i is
Hurwitz for every zero x̄i implies as established in the
preceding paragraph that sign det(dgx̄i) = +1 for all x̄i,
which proves x̄1 = x∗ is unique. Now, f and g have the
same set of zeroes, which establishes the theorem claim,
with the local exponential stability of x∗ given by dfx̄ being
Hurwitz. The analysis also yields x∗ ∈ Int(M). �

Appendix C. PROOF OF LEMMA 2

Item 1: Fix i ∈ {1, . . . , n}, and consider a point x ∈ Pi,
expressed as x = εy+z where z =

∑n
j 6=i(xj− εyj)ej ≥ 0n,

with ei defined below Eq. (10). Note that e>i Az = 0 for
any diagonal matrix A, and e>i Bz ≥ 0 for any B ≥ 0n×n.

We drop the argument t from x(t) when there is no
risk of confusion, and define Y = diag(y1, . . . , yn) and
Z = diag(z1, . . . , zn). At a point x ∈ Pi, Eq. (6) yields
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ẋ = (−D −H(x) +B − (εY + Z)B)(εy + z)

= φεy + (−D +B)z −H(x)(εy + z)

− (ε2Y By + εZBy + εY Bz + ZBz) (C.1)

since (−D + B)y = φy. Computing −e>i ẋ from Eq. (C.1)
and simplifying yields

−e>i ẋ = −εyi
(
φ− hi(εyi)− ε

∑
j∈Ni

bijyj
)

− e>i (In − εY )Bz (C.2)

because e>i (φIn−εY B−H(x))y=yi(φ−hi(εyi)−εyi
∑
j bijyj)

and e>i Z = 0>n . There exists a sufficiently small ε̄ such that
(In− ε̄Y ) is nonnegative, which implies that (In− ε̄Y )B is
nonnegative. Thus, e>i (In−ε̄Y )Bz ≥ 0. Since maxj yj = 1,
hi is monotonically nondecreasing and hi(0) = 0, there
exists a sufficiently small ε̃ > 0 such that

φ− hi(ε̃yi)− ε̃
∑
j∈Ni

bijyj > 0, ∀xj ≤ 1

By selecting εi = min{ε̄, ε̃}, we establish from Eq. (C.2)
that −e>i ẋ < 0 for all x ∈ Pi. This analysis holds for
all i = 1, . . . n, and selecting εu = mini εi ensures that
Eq. (10a) holds for all i = 1, . . . n, for all ε ∈ (0, εu].

Next, fix i ∈ {1, . . . , n}, and consider a point x ∈ Qi
expressed as x = ei + z, where z =

∑n
j 6=i xjej . Similar

to the above, one can show that at x ∈ Qi, there holds

ẋ = (−D−H(x)+B)(ei+z)−(EiBei+EiBz+ZBei+ZBz)

where Ei = eie
>
i . Using this equality, and observing that

e>i Ei = e>i and e>i Z = 0>n , one can compute e>i ẋ as

e>i ẋ = e>i (−D −H(x))ei = −di − hi(1) < 0 (C.3)

This analysis holds for all i = 1, . . . n, and thus Eq. (10b)
holds. It follows from Nagumo’s Theorem (Aubin, 1991)
that Mε,∀ε ∈ (0, εu] is a positive invariant set of Eq. (6).
Moreover, Eq. (10) shows that ∂Mε is not invariant for
Eq. (6). Thus, Int(M) is also an invariant set of Eq. (6).

Item 2: At some t ≥ 0, suppose that x(t) ∈ ∂Ξn \ 0n.
If xi(t) = 1, then Eq. (5) yields ẋi = −(di + hi(1)) < 0.
Thus, if x(t) > 0n, then obviously x(t+κ) ∈Mε1 for some
sufficiently small κ and ε1 ∈ (0, εu].

Let us suppose then, that x(t) ∈ ∂Ξn \0n has at least one

zero entry, and define the set Ut , {i : xi(t) = 0, i ∈ V}.
The assumption that G is strongly connected implies that
∃ k ∈ Ut such that xj(t) > 0 for some j ∈ Nk. Eq. (5)
yields ẋk =

∑
l∈Nk blkxl(t) ≥ bjkxj(t) > 0. This analysis

can be repeated to show that there exists a finite κ such
that Ut+κ is empty. It follows that x(t+κ) ∈Mε2 for some
sufficiently small ε2 ∈ (0, εu].

Since ∂Ξn \ 0n is bounded, there exists a finite κ̄ and
sufficiently small εv ∈ (0,min{ε1, ε2}] such that x(κ̄) ∈
Mεv for all x(0) ∈ ∂Ξn\0n. Thus, any endemic equilibrium
x̄ must be in Int(Mεv ). �

REFERENCES

Anderson, R.M. and May, R.M. (1991). Infectious Diseases
of Humans. Oxford University Press.

Aubin, J.P. (1991). Viability Theory. Systems & Control:
Foundations & applications. Birkhauser: Boston.

Berman, A. and Plemmons, R.J. (1979). Nonnegative Ma-
trices in the Mathematical Sciences. Computer Science
and Applied Mathematics. Academic Press: London.

Bishop, A.N. and Shames, I. (2011). Link operations for
slowing the spread of disease in complex networks. EPL
(Europhysics Letters), 95(1), 18005.

Fagnani, F. and Zino, L. (2017). Time to Extinction
for the SIS Epidemic Model: New Bounds on the Tail
Probabilities. IEEE Transactions on Network Science
and Engineering, 6(1), 74–81.

Fall, A., Iggidr, A., Sallet, G., and Tewa, J.J. (2007). Epi-
demiological Models and Lyapunov Functions. Mathe-
matical Modelling of Natural Phenomena, 2(1), 62–83.

Guillemin, V. and Pollack, A. (2010). Differential Topol-
ogy, volume 370. American Mathematical Soc.

Lajmanovich, A. and Yorke, J.A. (1976). A Deterministic
Model for Gonorrhea in a Nonhomogeneous Population.
Mathematical Biosciences, 28(3-4), 221–236.
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Başar, T. (2019). Analysis and Control of a Continuous-
Time Bi-Virus Model. IEEE Transactions on Automatic
Control, 64(12), 4891–4906.

Mai, V.S., Battou, A., and Mills, K. (2018). Distributed
Algorithm for Suppressing Epidemic Spread in Net-
works. IEEE Control Systems Letters, 2(3), 555–560.

Mieghem, P.V., Omic, J., and Kooij, R. (2009). Virus
spread in networks. IEEE/ACM Transactions on Net-
working, 17(1), 1–14.

Milnor, J.W. (1997). Topology from the Differentiable
Viewpoint. Princeton University Press.

Nowzari, C., Preciado, V.M., and Pappas, G.J. (2016).
Analysis and Control of Epidemics: A Survey of Spread-
ing Processes on Complex Networks. IEEE Control
Systems, 36(1), 26–46.

Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic
spreading in scale-free networks. Physical Review Let-
ters, 86(14), 3200–3203.

Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A.,
and Pappas, G. (2014). Optimal Resource Allocation
for Network Protection: A Geometric Programming
Approach. IEEE Transactions on Control of Network
Systems, 1(1), 99–108.

Qu, Z. (2009). Cooperative Control of Dynamical Systems:
Applications to Autonomous Vehicles. Springer Science
& Business Media.

Ramı́rez-Llanos, E. and Mart́ınez, S. (2014). A distributed
algorithm for virus spread minimization. In Proceedings
of the 2014 American Control Conference, 184–189.

Sastry, S. (1999). Nonlinear systems: analysis, stability,
and control, volume 10. Springer New York.

Smith, H.L. (1988). Systems of Ordinary Differential
Equations Which Generate an Order Preserving Flow.
A Survey of Results. SIAM Review, 30(1), 87–113.

Torres, J.A., Roy, S., and Wan, Y. (2016). Sparse Resource
Allocation for Linear Network Spread Dynamics. IEEE
Transactions on Automatic Control, 62(4), 1714–1728.

Varga, R.S. (2009). Matrix Iterative Analysis, volume 27.
Springer Science & Business Media.

Ye, M., Liu, J., Anderson, B.D.O., and Cao, M. (2020).
Applications of the Poincaré–Hopf Theorem: Epi-
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