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Abstract: In this paper, we propose a novel distributed algorithm to address constraint-coupled
optimization problems in which agents in a network aim at cooperatively minimizing the sum
of local objective functions subject to individual constraints and a common, linear coupling
constraint. Our optimization scheme embeds a dynamic average consensus protocol in the
(parallel) Alternating Direction Method of Multipliers (ADMM) to design a fully distributed
algorithm. More precisely, the dual variable update step of the master node in ADMM is now
performed locally by the agent, which update their own copy of the dual variable in a consensus-
based scheme using a dynamic average mechanism to track the coupling constraint violation.
Under convexity, we show convergence of the primal solution estimates to an optimal solution
of the constraint-coupled target problem. A numerical example supports the theoretical results.
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1. INTRODUCTION

This paper investigates a distributed constraint-coupled
optimization set-up often arising in network control appli-
cations, where agents in a network want to minimize the
sum of local cost functions, each one depending on a local
variable, subject to individual constraints and a common
linear coupling constraint. The presence of the coupling
constraint, involving all the decision variables in the net-
work, makes the problem solution nontrivial especially in
a distributed context, where agents can communicate only
with their neighbors.

Despite of the relevance of the constraint-coupled set-
up, until recently, most of the effort in the distributed
optimization literature has been devoted to solve decision-
coupled optimization problems where the sum of local
cost functions depends on a common decision variable,
which introduces the coupling. Various methods have been
proposed to address decision-coupled problems, such as
consensus-based methods leveraging (sub)gradient itera-
tions and proximal operators (Johansson et al. (2008);
Nedić and Ozdaglar (2009); Nedić et al. (2010); Zanella
et al. (2011); Shi et al. (2015); Margellos et al. (2018)),
algorithms based on Lagrangian duality (Duchi et al.
(2012); Necoara and Nedelcu (2015); Zhu and Mart́ınez
(2012); Mateos-Núnez and Cortés (2017)), and strategies
based on the Alternating Direction Method Multipliers
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(ADMM) 1 (Mota et al. (2013); Ling and Ribeiro (2014);
Shi et al. (2014); Jakovetić et al. (2015); Iutzeler et al.
(2016); Makhdoumi and Ozdaglar (2017)). The available
distributed approaches typically suffer from slow conver-
gence rate due to, e.g., the use of diminishing step-size
rules. Recently (Di Lorenzo and Scutari (2016); Varagnolo
et al. (2016); Nedić et al. (2017); Qu and Li (2018); Xu
et al. (2018); Xi et al. (2018)), a tracking technique based
on the dynamic average consensus – originally proposed
in Zhu and Mart́ınez (2010) and more deeply discussed
in Kia et al. (2019) – has been combined with gradi-
ent schemes to design distributed optimization algorithms
with constant step-size for decision-coupled problems, sig-
nificantly improving their convergence rate.

A possibility to address a constraint-coupled problem on a
network is then to interpret it as a decision-coupled prob-
lem and apply the available solution strategies. This, how-
ever has two major drawbacks. First, one would need to
stack the local decision variables of all agents in a common
decision vector, which then needs to be stored, updated,
and exchanged among neighboring agents, thus wasting
memory, computational resources, and bandwidth. Sec-
ondly, each agent would require also some information
about other agents’ constraints, thus raising privacy issues.
These drawbacks call for novel and efficient strategies
to directly address constraint-coupled optimization over
networks by leveraging the structure of the considered set-
up. Next, we review some recent works addressing this
scenario using Lagrangian duality.

1 For more details regarding ADMM we refer the interested reader
to Bertsekas and Tsitsiklis (1989); Boyd et al. (2011).
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In Chang et al. (2014) a distributed consensus-based
primal-dual perturbation algorithm is proposed. In Fal-
sone et al. (2017) a distributed dual subgradient algorithm
is described. An alternative approach based on successive
duality steps is investigated in Notarnicola and Notarste-
fano (2020). All these works adopt a diminishing step-size
to guarantee convergence to a primal optimal solution,
which, however, dramatically reduces the overall conver-
gence rate. The work in Simonetto and Jamali-Rad (2016)
is similar to Falsone et al. (2017) but uses a constant
step-size and shows convergence only to a neighborhood
of the optimal solution. In Chang (2016) a strategy com-
bining consensus-ADMM and proximal operators allowing
for a constant step-size is introduced, while Liang et al.
(2020) a primal-dual algorithm with constant step-size is
proposed. Tracking mechanisms have been also employed
to solve constraint-coupled problems based on augmented
Lagrangian approaches, Kia (2017).

In this paper, we propose a novel, fully distributed opti-
mization algorithm to solve constraint-coupled problems
over networks by means of an ADMM-based approach.
Differently from distributed ADMM schemes for problems
with common decision variable (Mota et al. (2013); Ling
and Ribeiro (2014); Shi et al. (2014); Jakovetić et al.
(2015); Iutzeler et al. (2016); Makhdoumi and Ozdaglar
(2017)), our Tracking-ADMM distributed algorithm em-
beds a tracking mechanism into the parallel ADMM for
constraint-coupled problems. Our algorithm has the fol-
lowing appealing features:

(i) no parameter tuning is needed, in fact our algorithm
works for all the choices of a constant penalty param-
eter and no other coefficients are necessary;

(ii) agents solve optimization problems depending on
their local small-sized decision vector and asymp-
totically compute only their portion of an optimal
solution to the given problem;

(iii) the local estimate of the coupling constraint violation,
provided by the tracking mechanism, gives each agent
an approximate local assessment on the amount of
infeasibility, which can be useful, e.g., in designing
distributed (receding horizon) control schemes.

It is worth mentioning that the recent paper Zhang and
Zavlanos (2018) uses a tracking mechanism similar to
the one proposed in this paper. However, the algorithm
proposed in Zhang and Zavlanos (2018) exhibits a (non-
zero) steady state error, which can be set by the user
by carefully selecting the number of consensus steps per
iteration to be performed. Furthermore, the proposed
approach compares favorably in simulation against other
methods in terms of convergence speed.

The rest of the paper is organized as follows. In Section 2
we present the problem set-up and some preliminaries on
ADMM. In Section 3 we introduce our novel Tracking-
ADMM distributed algorithm along with its convergence
guarantees. In Section 4 we test our algorithm in a numer-
ical example, and in Section 5 we draw some conclusions.
Due to space limitation, we give here only a sketch of the
proof of the main result. A detailed proof with all technical
derivations can be found in Falsone et al. (2020).

2. CONSTRAINT-COUPLED OPTIMIZATION

In this section we introduce the optimization set-up and
recall some preliminaries about the Alternating Direction
Method of Multipliers (ADMM).

2.1 Optimization Problem and Assumptions

Consider a system composed of N agents which are willing
to cooperatively solve an optimization program formulated
over the entire system. Each agent has to set its local
decision vector xi ∈ Rni so as to minimize the sum of
local objective functions fi : Rni → R, while satisfying
local constraints Xi ⊂ Rni as well as a linear constraint
that couples the decisions of all the agents. Formally, the
following mathematical program can be posed

min
x1,...,xN

N∑
i=1

fi(xi) (P)

subject to:

N∑
i=1

Aixi = b

xi ∈ Xi i ∈ {1, . . . , N},
where Ai ∈ Rp×ni and b ∈ Rp specify the coupling
constraint.

In order to deal with the coupling constraint
∑N
i=1Aixi =

b the dual of P can be introduced. To this end, let
x = [x>1 · · · x>N ]>, consider a vector λ ∈ Rp of Lagrange
multipliers and let

L(x, λ) =

N∑
i=1

fi(xi) + λ>
( N∑
i=1

Aixi − b
)

(1)

be the Lagrangian function obtained by dualizing the cou-

pling constraint
∑N
i=1Aixi = b. Then, the dual problem

of P is

max
λ∈Rp

N∑
i=1

ϕi(λ), (D)

with the i-th contribution ϕi : Rp → R defined as

ϕi(λ) = min
xi∈Xi

fi(xi) + λ>(Aixi − bi), (2)

where the vectors b1, . . . , bN are such that
∑N
i=1 bi = b.

We impose the following regularity conditions on P.

Assumption 1. (Convexity and compactness). For all i ∈
{1, . . . , N}, the function fi is convex and the set Xi is
convex and compact. 2

The next assumption ensures that P and D are well-posed.

Assumption 2. (Existence of optimal solutions). Problem
P admits an optimal solution x? = [x?1

> · · · x?N>]> and
problem D admits an optimal solution λ?. 2

Notice that, under Assumption 2, by the Saddle Point
Theorem in (Bertsekas and Tsitsiklis, 1989, pag. 665) we
have that x? ∈ X and

L(x?, λ) ≤ L(x?, λ?) ≤ L(x, λ?), (3)

for all x ∈ X and for all λ, where X = X1 × · · · ×XN .

Next, we revise the ADMM algorithm which provides an
effective way to solve P by splitting the computation over
N processors coordinated by a master node.
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2.2 The ADMM Algorithm

A version of the ADMM algorithm specifically tailored to
problem P is presented in (Bertsekas and Tsitsiklis, 1989,
pag. 254, eq. (4.75)) and is reported here with our notation
for the reader’s convenience. Given initial values d0 ∈ Rp
and λ0 ∈ Rp, the ADMM algorithm is a parallel scheme
in which, at each iteration k ≥ 0, a set of m processors
and a master node perform the following two alternate
steps. First, each processor i ∈ {1, . . . , N} computes and
sends to the master node the minimizer of the following
optimization problem

xi,k+1 ∈ argmin
xi∈Xi

{
fi(xi) + λ>k Aixi

+
c

2
‖Aixi −Aixi,k + dk‖2

}
,

(4a)

where c > 0 is a (constant) penalty parameter. Then,
the master node updates and broadcasts back to the
processors the following two vectors

dk+1 =
1

N

N∑
i=1

(Aixi,k+1 − bi) (4b)

λk+1 = λk + c dk+1, (4c)

where the parameter c is the same as in (4a). The reader
should note that dk+1 has no dynamics and can be seen
as the average of the local contributions Aixi,k+1 − bi to
the coupling constraint. This “average” structure will be
exploited in the design of our Tracking-ADMM distributed
algorithm.

The evolution of (4) is analyzed in (Bertsekas and Tsit-
siklis, 1989, pp. 254-256) and its convergence property is
reported below, cf. (Bertsekas and Tsitsiklis, 1989, Propo-
sition 4.2).

Proposition 1. Let Assumptions 1 and 2 hold. Then, any
limit point x? = [x?1

> · · · x?N>]> of the primal sequences
{xi,k}k≥0, i ∈ {1, . . . , N}, generated by (4a), is an optimal

solution (vector) of P, and the dual sequence {λk}k≥0,

generated by (4c), converges to an optimal solution λ?

of D. 2

Notice that, since the limit points of the primal sequence
are optimal, they are necessarily feasible for the coupling
constraint. Thus, it follows that {dk}k≥0 converges to zero.
Moreover, it is worth mentioning that no requirement on
the penalty parameter c is necessary, albeit its value can
affect the convergence rate of ADMM.

Note that the ADMM algorithm (4) is parallel since it
requires a master node. This hampers the applicability of
ADMM to a distributed computation framework, where
peer agents communicate only with neighbors in a com-
munication graph.

In the next section, we devise our fully distributed
Tracking-ADMM.

3. TRACKING-ADMM DISTRIBUTED ALGORITHM

We assume that the N agents communicate according to
a graph G = (V, E), where V = {1, . . . , N} and E ⊆ V × V
is the set of edges. The presence of edge (i, j) in E models
the fact that agent i receives information from agent j.

We denote by Ni = {j ∈ V | (i, j) ∈ E} the set of
neighbors of agent i in G, assuming that (i, i) ∈ E for
all i ∈ {1, . . . , N} to ease the notation. Also, we impose
the following connectivity property on G.

Assumption 3. (Connectivity). The graph G is undirected
and connected, i.e., (i, j) ∈ E if and only if (j, i) ∈ E and
for every pair of vertices in V there exists a path of edges
in E that connects them. 2

3.1 Algorithm Description

In this section, we start from the parallel ADMM and grad-
ually introduce the reader to our proposed algorithm to
jointly gain insights about the underlying mechanism and
motivate the role of the consensus and tracking schemes.

The update (4c) for λk in the parallel ADMM represents
a gradient ascent step on D. Its distributed counterpart
can be obtained by employing a consensus-based gradient
iteration, as done in, e.g., Nedić and Ozdaglar (2009).
Thus, we let each agent i maintain a vector λi,k ∈ Rp
representing a local version (or copy) of λk in (4c). If dk+1

were available to each agent, λi,k ∈ Rp could be updated
according to a consensus-based scheme to force agreement
of the local copies, i.e.,

λi,k+1 =
∑
j∈Ni

wij λj,k + c dk+1, (5)

for all i = 1, . . . , N , where wij ∈ R, j ∈ Ni, are proper
coefficients describing how agent i weights the information
received by its neighbor j.

However, update (5) cannot be implemented in a fully
distributed scheme since dk+1 ∈ Rp is not locally available
and should be computed by a master node, as in (4b).
In order to overcome this issue, we equip agent i with
a local, auxiliary variable, denoted by di,k ∈ Rp, that
serves as a local estimate of dk. Since the vector dk is the
average value of Aixi,k − bi, i = 1, . . . , N , (cf. eq. (4b)),
we propose to update di,k according to a (distributed)
dynamic average consensus mechanism Zhu and Mart́ınez
(2010); Kia et al. (2019). In this way, the variable di,k
acts as a distributed tracker of the (time-varying) signal

(1/N)
∑N
i=1 (Aixi,k − bi). Using di,k+1 in place of dk+1

in (5) makes the update of λi,k fully distributed. Formally,
the update law for di,k is reported in Steps 6 and 9 while
the corresponding update for λi,k is given in Steps 7 and 10
in Algorithm 1.

Clearly, since the centralized quantities λk and dk have
been replaced by local counterparts, the local minimization
needs to be consistently adapted. Specifically, we propose
to implement the local minimization to compute xi,k+1 as
shown in Step 8, where λk and dk of the original centralized
update (4a), are replaced by the local averages `i,k and δi,k,
respectively (cf. Step 6 and 7).

Algorithm 1 summarizes the proposed Tracking-ADMM
from the perspective of agent i.

Some remarks are in order. First, we point out that all the
steps in the distributed algorithm are well posed. Specifi-
cally, in Step 8, c > 0 is a constant penalty parameter and
the minimization is well defined in view of Assumption 1.
Moreover, all the updates are fully distributed, in the sense
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Algorithm 1 Tracking-ADMM for agent i

1: Initialization
2: xi,0 ∈ Xi

3: di,0 = Aixi,0 − bi
4: λi,0 ∈ Rp
5: Repeat until convergence
6: δi,k =

∑
j∈Ni

wij dj,k
7: `i,k =

∑
j∈Ni

wij λj,k

8: xi,k+1 ∈ argmin
xi∈Xi

{
fi(xi) + `>i,kAixi

+
c

2
‖Aixi −Aixi,k + δi,k‖2

}
9: di,k+1 = δi,k +Aixi,k+1 −Aixi,k

10: λi,k+1 = `i,k + c di,k+1

11: k ← k + 1

that they can always be performed based on information
locally known or collected via neighboring communications
at each iteration k.

Consistently with other tracking-based approaches as, e.g.,
the ones mentioned in the introduction, the initialization
of the local trackers di,k as per Step 3 is crucial for
guaranteeing converge to a feasible point for P. In absence
of prior information, one may set bi = b/N for all i =
1, . . . , N , as b and N are known to every agent.

3.2 Algorithm Convergence

Before stating the convergence result for our Tracking-
ADMM distributed algorithm, we introduce some addi-
tional assumptions on the consensus weights associated to
the communication graph G = (V, E).

Assumption 4. (Balanced information exchange). For all
i, j ∈ V, wij ∈ [0, 1) and wij = wji. Furthermore

•
∑N
i=1 wij = 1 for all j ∈ V,

•
∑N
j=1 wij = 1 for all i ∈ V,

and wij > 0 if and only if (i, j) ∈ E . 2

Let W ∈ RN×N be the matrix whose (i, j)-th entry is
wij . Assumption 4 translates into requiring the consensus
matrix W to be symmetric and doubly-stochastic, i.e.,
W1N = W>1N = 1N , with 1N being the N -dimensional
vector with all entries equal to one. We should point out
that this assumption is common in the consensus-based
distributed optimization literature, see, e.g., Nedić and
Ozdaglar (2009); Nedić et al. (2010). Finally, we impose
the following additional assumption on the consensus
matrix.

Assumption 5. The matrixW is positive semidefinite. 2

Note that Assumption 5 is not too restrictive. Indeed,
starting from any consensus matrixW satisfying Assump-
tion 4, we can easily construct (in a distributed way) the
matrix 1

2 (I+W), which satisfies both Assumptions 4 and 5
and matches the connectivity property of the communica-
tion graph.

The main result of the paper, i.e., the convergence of
Algorithm 1, is summarized in the following theorem.

Theorem 1. Under Assumptions 1-5, the sequences gener-
ated by Tracking-ADMM are such that:

(i) any limit point of the primal sequences {xi,k}k≥0, i =

1, . . . , N , is an optimal solution x? = [x?1
> · · · x?N>]>

of P;
(ii) each dual sequence {λi,k}k≥0 converges to a (com-

mon) optimal solution λ? of D, for all i = 1, . . . , N ;
(iii) each tracker sequence {di,k}k≥0 converges to zero, for

all i = 1, . . . , N . 2

Like the parallel ADMM, also the proposed Tracking-
ADMM works for any choice of c > 0, but its actual value
can affect the convergence rate.

We point out that Theorem 1 guarantees that the se-
quences {xi,k}k≥0 are asymptotically optimal, hence fea-

sible for the local and the coupling constraint, without
the need of any recovery procedure and without requiring
strict convexity of the primal objective functions.

Also, the local tracker convergence ensures that each agent
is able to locally estimate the amount of infeasibility of the
current primal iterates for the coupling constraint. This
can be very useful in applications where feasibility up to
a given tolerance is sufficient.

3.3 Sketch of the proof

In this subsection we sketch the main idea behind the
proof of Theorem 1. The complete proof along with all
preparatory results can be found in Falsone et al. (2020).

Algorithm 1 can be regarded as a discrete-time dynamical
system constituted by two parts: a) two consensus and
update steps for di,k and λi,k (see Steps 6 and 7 together
with Steps 9 and 10, respectively) giving rise to a linear
dynamics in di,k and λi,k, i = 1, . . . ,m; and b) a minimiza-
tion step for xi,k (see Steps 8) which originates a nonlinear
dynamics.

Starting from a), in the first part of the proof we study
the evolution of the consensus errors, i.e., the distance
of di,k and λi,k from their respective network averages

d̄k = (1/N)
∑N
i=1 di,k and λ̄k = (1/N)

∑N
i=1 λi,k, and show

that they evolve according to an asymptotically stable
dynamics.

Next, we focus on the nonlinear update step in point b). By
the optimality condition for the minimizer xi,k+1 of Step 8,
we can derive an inequality which relates the quantity
‖λ̄k − λ?‖2 (i.e., the dual optimality error of the network
average λ̄k) across iterations with the consensus errors.
Notably, if the consensus errors were equal to zero, then
the inequality would result in the map identified by one
iteration of Algorithm 1 being firmly quasi-non-expansive
(Bauschke et al., 2011, Definition 4.1).

Since the distributed nature of Algorithm 1 gives rise to
non-zero consensus errors, then, in the remainder of the
proof, we study the interaction between the previously
derived inequality and the linear system representing the
evolution of the consensus errors. Specifically, we build
a proper candidate storage function (satisfying suitable
constraints) to show convergence of Algorithm 1 resorting
to a Lyapunov approach.
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4. NUMERICAL STUDY

In this section we provide a numerical example to corrob-
orate the results in Theorem 1 and showcase the perfor-
mance of Algorithm 1.

Consider a multi-agent linear program given by

min
x1,...,xN

N∑
i=1

γ>i xi (6)

subject to:

N∑
i=1

Aixi = b

LBi ≤ xi ≤ UBi i ∈ {1, . . . , N},
with N = 10 (agents), ni = 2 decision variables each,
and p = 3 coupling constraints. We can generate an
instance of the multi-agent program (6) as follows. For
each agent i = 1, . . . , N , the coefficients γi of its linear cost
function are drawn according to a uniform distribution
in [0, 10]2. The lower and upper bounds LBi and UBi
on its local decision vector xi are also drawn according
to a uniform distribution over [−15,−5]2 and [5, 15]2,
respectively. Each entry of the matrix Ai is drawn from
a Gaussian distribution with zero mean and variance 100,
and vector b is drawn according to a uniform distribution
over [0, 50]3. All extractions are performed independently.

The optimization problem (6) clearly fits the structure of
P and therefore Algorithm 1 can be applied to compute
an optimal solution in a distributed way.

The communication graph is generated at random ac-
cording to the Erdos-Renyi model with probability 0.25.
The positive-definite, doubly stochastic matrix W com-
pliant with the adjacency matrix of the (undirected and
connected) graph is obtained according to the procedure
described in Sinkhorn and Knopp (1967).

We run Algorithm 1 for 5000 iterations using the following
values for the penalty parameter: c = 10−1, c = 10−2,
c = 10−3, c = 10−4, and c = 10−5.

In Figure 1 we report, on a logarithmic scale, the relative
error

|
∑N
i=1 γ

>
i xi,k − f?|
|f?|

between the cost achieved by the primal solution estimates
and the optimal cost f? computed by a centralized algo-
rithm (upper plot), and the relative constraints violation

‖
∑N
i=1Aixi,k − b‖
‖b‖

(lower plot), for all the different values of the penalty
parameter c (different solid line colors). For comparison
purposes we also report the fastest run of the algorithm
proposed in Chang (2016) (dashed lines). As it can be
seen from the picture, even though the behavior of the
sequences is not monotonic, the cost error and constraint
violation eventually converge to zero exponentially fast
(linearly in logarithmic scale), until they hit the the solver
numerical precision 2 . From the picture we can also see

2 Step 8 of Algorithm 1 is solved using the dual simplex optimizer
of IBM ILOG CPLEX 12.9 with the minimum achievable tolerance
of 10−9 both for optimality and feasibility.
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Fig. 1. Relative error between the cost achieved by the
primal solution estimates and the optimal cost (upper
plot) and relative constraint violation (lower plot),
on a logarithmic scale, for different values of c of
Tracking-ADMM (solid lines) and for the fastest run
of Chang (2016) (dashed lines).
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Fig. 2. Consensus error for di,k (blue) and λi,k (red) across
the first 1000 iterations for the case c = 10−3.

how the value of c affects the convergence rate, with
c = 10−1 being the slowest case and c = 10−3 the fastest.
Despite of the fact that the convergence rate is affected by
c, the proposed Tracking-ADMM converges to an optimal
solution of (6) in all cases. From the picture we can also see
how for most values of c the proposed method outperforms
the one in Chang (2016) in terms of convergence rate.

Finally, for c = 10−3, we also plot in Figure 2 the quantities√√√√ N∑
i=1

‖di,k − d̄k‖2 and

√√√√ N∑
i=1

‖λi,k − λ̄k‖2,

which represent the norms of the consensus errors of di,k
and λi,k with respect to their network averages d̄k and
λ̄k, respectively, for the first 1000 iterations. From the
picture the reader can see how the agents eventually reach
consensus both on di,k and λi,k also with an exponential
rate.
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5. CONCLUSIONS

In this paper we have proposed a novel distributed method
to solve constraint-coupled convex optimization problems
in which the sum of local cost functions needs to be mini-
mized while satisfying both individual constraints (involv-
ing one component of the decision vector) and a common,
linear coupling constraint (involving all the components).
The distributed algorithm combines the (parallel) ADMM
algorithm tailored for this class of optimization problems
with a dynamic tracking mechanism. Each node asymptot-
ically computes an optimal dual solution and its portion of
an optimal solution to the target (primal) problem. More-
over, the tracking scheme allows agents to obtain a local
estimate of the coupling-constraint violation. Numerical
computations corroborated the theoretical results.
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