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Abstract: In this paper a distribution-free methodology is presented for providing robustness guarantees
for Nash equilibria (NE) of multi-agent games. Leveraging recent a posteriori developments of
the scenario approach, we provide probabilistic guarantees for feasibility problems with polytopic
constraints. This result is then used in the context of multi-agent games, allowing to provide robustness
certificates for constraint violation of any NE of a given game. Our guarantees can be used alongside any
NE seeking algorithm. Finally, by exploiting the structure of our problem, we circumvent the need of
employing computationally prohibitive algorithms to find an irreducible support subsample, a concept
at the core of the scenario approach. Our theoretical results are accompanied by simulation studies that
investigate the robustness of the solutions of two different problems, namely, a 2-dimensional feasibility
problem and an electric vehicle (EV) charging control problem.
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1. INTRODUCTION

Decentralized optimization and control of large scale systems
is of significant interest for a variety of fields ranging from
engineering and biology to economics and social sciences. In
many cases, systems of this kind can be modelled as a network
comprising self-interested entities/agents that interact/compete
with each other in order to meet their own individual goals, thus
giving rise to a non-cooperative set-up. Aiming at the resolution
of the inherent conflict among the agents, a vast amount of
research work has been focused on game-theoretic approaches.
Especially in engineering, this framework has been extensively
used for the analysis of communication (Scutari et al., 2014)
and traffic (Smith, 1979) networks, smart grids (Saad et al.,
2012), and electricity markets (Chen et al., 2014).

In real-world applications, however, the system is affected by
uncertainty that can be due to several factors. This gives rise
to games of incomplete information (Harsanyi, 1968). The
concept of Nash equilibrium (NE) (see Definition 2) typi-
cally assumes complete information. For incomplete informa-
tion games the notion of NE appears insufficient to deal with
the presence of uncertainty, as the resulting agents’ strategies
do not necessarily exhibit any robustness properties against
uncertainty. Motivated by this observation, two main research
directions are encountered: 1) NE analysis based on particu-
lar models for the probability distribution of the uncertainty,
(Couchman et al., 2005), (Singh et al., 2016) and/or the ge-
ometry of its support (Aghassi and Bertsimas, 2006), (Hayashi
et al., 2005) and, 2) Distribution-free NE analysis, where no
assumption on the probability distribution of the uncertainty is
imposed.

? Research was supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grant agreement EP/P03277X/1.

In this paper we focus on distribution-free NE seeking, where
algorithmic developments have been quite restricted. Motivated
by the lack of distribution-free results, we leverage the recent
developments of the so called scenario approach (Campi et al.,
2018) and represent the uncertainty by means of scenarios
that could be either available as historical data, or extracted
via some prediction model. We attempt to transfer concepts
from the scenario approach, well-understood in the context
of optimization, to multi-agent games aiming to accompany
game equilibria with guarantees on the probability of constraint
satisfaction.

The scenario approach is a well-established mathematical tech-
nique (Campi and Calafiore, 2006), (Campi and Garatti, 2008),
originally introduced to provide a priori probabilistic guaran-
tees for solutions of uncertain convex optimization programs.
Very recently, the theory has been extended to non-convex
decision making problems (Campi et al., 2018), where the
probabilistic guarantees are obtained in an a posteriori fashion.
The main advantage of the scenario approach is its applicability
under very general conditions, since it does not require the
knowledge of the uncertainty set or the probability distribution,
key assumptions in robust (Bai et al., 1997) and stochastic
optimization (Birge and Louveaux, 1997), respectively. Ac-
cording to the scenario approach, the original problem can be
approximated by solving a computationally tractable approxi-
mate problem, the so called scenario program consisting of a
finite number of constraints, each of them corresponding to a
different realization of the uncertain parameter.

Only a few data-driven works for distribution-free NE seeking
have appeared in the literature with (Paccagnan and Campi,
2019) and (Fele and Margellos, 2019a), (Fele and Margellos,
2019b) being the most closely related to our work. Both pa-
pers attempt to bridge multi-agent games with the scenario
approach, thus providing a distribution-free way to determine
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NE with quantifiable robustness properties. Specifically, in
(Paccagnan and Campi, 2019), the authors focus on variational
inequalities affected by uncertainty represented by means of
scenarios. Due to the connection between variational inequal-
ities and NE, their developments naturally find applications to
multi-agent games. However, the theoretical analysis requires
strong monotonicity of the operator associated with the varia-
tional inequalities, which in a gaming setting implies unique-
ness of the NE. The latter is quite restrictive, as many games of
practical interest have multiple (possibly infinite) NE. In (Fele
and Margellos, 2019a) and (Fele and Margellos, 2019b), multi-
agent games with uncertainty affecting agents’ cost functions
are considered, and once again uncertainty is tackled by means
of the scenario approach. However, agents’ constraint sets are
assumed to be deterministic. Uncertain constraints could still
be considered, under the restrictive assumption that they are
decoupled. The approach proposed here is instead applicable
to general uncertain constraints. The contributions of our paper
with respect to the aforementioned works are the following:

(1) Leveraging the recent results of (Campi et al., 2018), we
provide a posteriori robustness certificates for the entire
feasibility region of feasibility programs with polytopic
constraints.

(2) Focusing on multi-agent games, we provide distribution-
free probabilistic guarantees for the entire set of NE in an
a posteriori fashion. We extend the results of (Fele and
Margellos, 2019a) to account for uncertainty in agents’
(possibly) coupling constraints, while we do not require
uniqueness of the associated NE as in (Paccagnan and
Campi, 2019).

(3) The probabilistic results of recent works in an a posteri-
ori context rely on certain algorithms for quantifying a
so called irreducible support subsample (see Definition
2 in (Campi et al., 2018)). Restricting our attention to
multi-agent games, the use of such algorithms alongside
NE seeking iterative algorithms, apart from being com-
putationally prohibitive, leads to erratic behaviour due to
numerical issues. In our case, the cardinality of the support
subsample coincides with the number of facets of the
polytopic constraint set, which is directly available.

The rest of the paper is organized as follows: Section 2 intro-
duces the problem under study and offers a motivating appli-
cation. Section 3 provides the theoretical analysis and proof
of the main results, namely, providing a posteriori guarantees
for feasibility problems. Section 4 provides numerical examples
and revisits the electric vehicle application of Section 2. Finally,
Section 5 concludes the paper and provides some directions for
future work.

2. SCENARIO-BASED MULTI-AGENT GAMES WITH
UNCERTAIN CONSTRAINTS

Let M be the total number of agents and xm = (xm
t )

d
t=1 the

decision vector of dimension d ∈ N of agent m ∈ M =
{1, ...,M} taking values in the uncertain set Xm

δ
⊆ Rd param-

eterized by the uncertain parameter δ . The uncertainty param-
eter is defined on the (possibly unknown) probability space
(∆,F ,P), where ∆ is the sample space, equipped with a σ -
algebra F and a probability measure P. Similarly, we de-
fine x−m = (x1, ...,xm−1,xm+1, ...,xM) ∈ X−m

δ
, where X−m

δ
=

∏ j∈M , j 6=m X j
δ
⊆ Rd(M−1), as the vector comprising the deci-

sions of all other agents except for that of agent m. Finally, let

{δi}N
i=1 ∈ ∆N be a finite collection of independent and identi-

cally distributed (i.i.d.) scenarios/realisations of the uncertain
vector δ , where ∆N is the cartesian product of multiple copies
of the sample space ∆. In our set-up, agents are considered
as self-interested entities, i.e., they are interested in minimiz-
ing their own deterministic cost function Jm : X → R, where
X = ∏

M
m=1 Xm ⊆ RdM . Furthermore, we impose the following

assumption:
Assumption 1. Each agent’s decision set is formed by the in-
tersection of a deterministic decision space Xm and uncer-
tain affine constraints affected by any realization δ ∈ ∆, i.e.,⋂

δ∈∆ Xm
δ
= {xm ∈ Xm : g(xm,x−m,δ )≤ 0}, ∀ m ∈M 1 , where

g : X×∆→ R is an affine function with respect to its first two
arguments.

Under Assumption 1, we consider a multi-agent game, whose
constraints are affected by uncertainty. Each agent m ∈ M
seeks to minimize her own cost function, given the strategies
x−m of all other players, by solving the following program

min
xm∈Xm

Jm(xm,x−m) subject to xm ∈
⋂

δ∈∆

Xm
δ
. (1)

For the aforementioned problem, we consider the solution
concept of NE as presented in Definition 2.
Definition 2. (Adapted from (Başar and Olsder, 1999)) A vec-
tor xNE = (xm

NE)m∈M is a NE of the associated game if and only
if Jm(xm

NE ,x
−m
NE ) ≤ Jm(xm,x−m

NE ) for any xm ∈
⋂

δ∈∆ Xm
δ

and for
any m ∈M .

Due to the presence of uncertainty and the (possibly) infinite
cardinality of ∆, problem (1) is very difficult to solve, without
imposing any assumptions on the geometry of the sample set
∆ or the underlying probability distribution P. To circumvent
those issues, we approximate problem (1) by drawing multiple
i.i.d. samples {δi}N

i=1 ∈ ∆N and then considering the following
scenario-based NE seeking problem, where each agent m ∈M
solves the following optimization program

min
xm∈Xm

Jm(xm,x−m) subject to xm ∈
⋂

i=1,...,N

Xm
δi
. (2)

Our aim is to provide probabilistic feasibility guarantees for
the entire set of NE of (2) returned by an arbitrary NE seeking
algorithm, i.e., to quantify the probability that any NE strategy
xm

NE of (2) belongs to the constraint set Xm
δ
, ∀ m ∈M for a

new unseen sample δ ∈ ∆. To this end, our analysis is primarily
focused on feasibility problems affected by uncertainty. Based
on the derived results we revisit problem (1) and attempt
to provide robustness certificates for the obtained NE for a
motivating application which fits in this class of games, i.e, the
electric vehicle (EV) charging control problem

The EV-charging control problem can be treated as a non-
cooperative game comprised of self-interested agents-vehicles
each of them aiming at minimizing their own electricity cost,
while their charging schedules are subject to certain specifi-
cations. The two main requirements for the operation of the
system, namely, the lower and upper bounds imposed on the
charging schedule and the total energy level to be achieved at
the end of charging, can be modelled as constraints of affine
form. However, most of the work up to this point assumed
1 Formally, each agent’s decision set possibly depends on the strategies of all
other agents, thus allowing the use of our results in generalised NE problems.
For simplicity we drop this dependence in the subsequent analysis, as our main
focus is the treatment of uncertainty.
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that these constraints are purely deterministic (Ma et al., 2013),
(Paccagnan et al., 2019), (Deori et al., 2018). We extend this
framework by imposing uncertainty on the constraints. In this
case, each agent m ∈M solves the following problem

min
xm∈Rd

Jm(xm,x−m) subject to

xm ∈
⋂

δ∈∆

{[xm(δ ),xm(δ )]
⋂
{xm ∈ Rd :

d

∑
t=1

xm
t ≥ Em(δ )}}. (3)

The variables xm = (xm
t )

d
t=1 and Jm denote, respectively, the

charging schedule for all time instances t ∈ {1, . . . ,d} and the
electricity cost to be minimized for each vehicle m ∈M . The
uncertain constraint for each vehicle m comprises of uncertain
lower and upper bounds xm(δ ) and xm(δ ) and total energy
levels Em(δ ). Due to the presence of a variety of unpredictable
internal and external influences contributing to the uncertainty
of the system, it is very difficult to address the problem using
traditional probabilistic approaches. We thus adopt a data-based
approach, a more viable alternative.

3. PROBABILISTIC GUARANTEES OF FEASIBILITY
PROGRAMS

Motivated by the EV-charging control problem discussed in the
previous section, we leverage the recent results of the scenario
approach (Campi et al., 2018) to provide probabilistic guaran-
tees for the (possibly) multiple NE of (3) in a computationally
efficient manner. As NE constitute feasible solutions as far
as constraint satisfaction is concerned, we focus on obtaining
robustness certificates for a more general class of problems, that
of feasibility problems under uncertain constraints, where the
NE problem (3) emerges as a special case. As such, we consider
the following feasibility problem:

P∆ : find x ∈ X , subject to x ∈
⋂

δ∈∆

Xδ ,

where x is a decision vector belonging to the set X ⊂ Rd and
δ is a random variable, defined as in Section 2, that encodes
the uncertainty parameterizing agents’ constraint sets. Note that
for the gaming set-up, as introduced in Section 2, X = X =
∏m∈M ,Xm and Xδ = ∏m∈M Xm

δ
. For the feasibility problem

under study, we define the following scenario program:

PN : find x ∈ X subject to x ∈
⋂

i=1,...,N

Xδi ,

where N denotes the number of samples δi, i= 1, ...,N, drawn in
an i.i.d. fashion from ∆ according to the probability distribution
P and Xδi their respective constraints. Our results depend on
an affine constraint structure, thus we impose the following
standing assumption:
Assumption 3.
(1) The deterministic constraint set X is a non-empty, com-

pact and convex polytope.
(2) For each δ ∈ ∆, Xδ = {x ∈ Rd : g(x,δ ) = aT x− b ≤ 0},

where g is an affine function given by the mapping g : X×
∆→ R, where a ∈ Rd , b ∈ R and δ = (aT b) ∈ Rd+1.

(3) For each multi-sample {δi}N
i=1 the polytope

ΠN = {
⋂N

i=1 Xδi}
⋂

X = {x ∈ X : g(x,δi)≤ 0, i = 1, ...,N}
has a non-empty interior.

Note that vector valued affine functions are also captured by our
framework; see example of Section 4. Assumption 3 guarantees
that the polytope ΠN is compact and PN admits at least one so-

lution for any chosen multisample {δi}N
i=1. Under Assumption

3 the feasibility problem PN can be equivalently written as
PN : find x subject to x ∈ΠN .

Upon finding the feasibility domain ΠN of the problem PN ,
we are interested in investigating the robustness properties
collectively for all the points of this domain to yet unseen
samples, in other words in quantifying the probability that a
new sample δ ∈ ∆ is drawn such that the constraint Xδ defined
by this sample is not satisfied by some given point x∈ΠN . This
concept, which is of crucial importance for our work, is known
in the literature as the probability of violation and is adapted in
our context to represent the probability of violation of a set. By
Definition 1 in (Campi and Calafiore, 2006) the probability of
violation of a given point x ∈ΠN is defined as

V (x) = P
{

δ ∈ ∆ : x /∈ Xδ

}
. (4)

By Assumption 3, the probability of violation can be equiva-
lently written as V (x) = P

{
δ ∈ ∆ : g(x,δ ) > 0

}
. We can now

define the probability of violation of the polytope ΠN .
Definition 4. Let P ⊆ 2X be the set of all non-empty, compact
and convex polytopes that are subsets of X . For any ΠN ∈P we
define the probability of violation of the set ΠN as a mapping
V : P → [0,1] given by the following relation:

V(ΠN) = sup
x∈ΠN

V (x).

Definition 4 can be considered a special case of Definition 2
in (Grammatico et al., 2016). In Definition 5 three concepts of
crucial importance are introduced.
Definition 5. (1) For any N, an algorithm is a mapping AN :

∆N → P that associates the multisample {δi}N
i=1 to a

unique polytope ΠN ∈P .
(2) Given a multisample {δi}N

i=1 ∈ ∆N , a support subsample
S ⊆ {δi}N

i=1 is a subset of the entire multisample with
cardinality k ≤ N so that for i1 < i2 < ... < ik and Ik =
{i1, i2, ..., ik}, S = {δi}i∈Ik is such that Ak({δi}i∈Ik) =

AN({δi}N
i=1), i.e., the solution returned by an algorithm

when fed with the subsample is the same with the one
obtained when the entire multisample is used.

(3) A support subsample function is a function of the form
BN : {δi}N

i=1 → {i1, ..., ik} that takes as input all the sam-
ples and returns as output the indices of only these samples
that constitute an irreducible 2 support subsample.

Note that the notions of support subsample and support sub-
sample function in Definitions 5.2, 5.3 are respectively referred
to as compression set and compression function in (Margellos
et al., 2015).

Let KN = |v(ΠN)| and FN be the number of vertices and
the number of facets of ΠN , respectively. It is important to
emphasize that the dependence of the polytope ΠN on the
multi-sample {δi}N

i=1 implies that both FN and KN are random
variables that depend on {δi}N

i=1. Next we define the set
Pδ = {Π ∈P : g(x,δ )≤ 0, ∀ x ∈ v(Π)}

= {Π ∈P : Π⊆ Xδ}, (5)
of all the non-empty, compact and convex polytopes Π that
satisfy the constraint associated with the sample δ ∈ ∆. Note
2 A support subsample S = {δi}i∈Ik ⊆ {δi}N

i=1 is said to be irreducible if no
element can be further removed from S leaving the solution unchanged.
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that if all the vertices of the polytope satisfy the inequality
g(·,δ )≤ 0, then every point x ∈Π of the polytope satisfies it as
well, since x can always be expressed as a convex combination
of the polytope’s vertices.

We now introduce the following theorem, which is the main
result of our paper.
Theorem 6. Consider Assumption 3 and any AN ,BN as in Def-
inition 5. Fix β ∈ (0,1) and define the violation level ε :
{0, ...,N}→ [0,1] as a function such that

ε(N) = 1 and
N−1

∑
k=0

(
N
k

)
(1− ε(k))N−k = β . (6)

We have that PN
{
{δi}N

i=1 ∈ ∆
N : V(ΠN)> ε(FN)

}
≤ β , (7)

where PN = ∏
N
i=1P is the product probability measure, and FN

is the number of facets of ΠN .
Proof 1. The first part of the proof closely follows that of The-
orem 1 in (Grammatico et al., 2016). For a fixed multisample
{δi}N

i=1 ∈ ∆N consider an arbitrary point x ∈ ΠN . Then, the
following inequalities are satisfied
V (x) = P{δ ∈ ∆ : x /∈ Xδ}= P{δ ∈ ∆ : g(x,δ )> 0}
(i)
= P{δ ∈ ∆ : g( ∑

j∈Id+1

λ jx j,δ )> 0} (ii)
= P{δ ∈ ∆ :∑

j∈Id+1

λ jg(x j,δ )> 0}

≤ P{δ ∈ ∆ : max
j∈Id+1

g(x j,δ )> 0}= P{
⋃

j∈Id+1

{δ ∈ ∆ :g(x j,δ )> 0}}

(iii)
≤ P

{ KN⋃
j=1

{
δ ∈ ∆ : g(x j,δ )> 0

}}
. (8)

Equality (i) is derived from Caratheodory’s Theorem, where the
set under study is the polytope ΠN . In our case, Caratheodory’s
Theorem states that any arbitrary point of the polytope x ∈ ΠN
can be represented as a convex combination of at most d + 1
vertices from the set v(ΠN), which means that there exists a
subset of indices Id+1 ⊆ {1, ...,KN} such that x = ∑ j∈Id+1

λ jx j,
where ∑ j∈Id+1

λ j = 1 and λ j ≥ 0, ∀ j ∈ Id+1. Equality (ii) stems
from the fact that g is an affine function of x for any given δ ∈ ∆

due to Assumption 3. The last inequality follows from the fact
that Id+1 ⊆ {1, ...,KN}, due to the fact that KN ≥ d + 1 as the
polytope has a non-empty interior by Assumption 3 (3). Since
(8) holds for all x ∈ΠN , we have that

V(ΠN) = sup
x∈ΠN

V (x)≤ P
{ KN⋃

j=1

{
δ ∈ ∆ : g(x j,δ )> 0

}}
.

Therefore, for any multisample {δi}N
i=1 and for any cardinality

(not necessarily irreducible) of the support subsample k ∈
{1, ...,N} the following inequalities are satisfied:

PN
{
{δi}N

i=1 ∈ ∆
N : V(ΠN)> ε(k)

}
≤ PN

{
{δi}N

i=1 ∈ ∆
N : P

{ KN⋃
j=1

{
δ ∈ ∆ : g(x j,δ )> 0

}}
> ε(k)

}
= PN

{
{δi}N

i=1∈ ∆
N :P

{
δ ∈ ∆ : ∃x ∈ v(ΠN),g(x,δ )>0

}
>ε(k)

}
= PN

{
{δi}N

i=1 ∈ ∆
N : P

{
δ ∈ ∆ : ΠN 6⊆ Xδ

}
> ε(k)

}
, (9)

where the last inequality is due to (5). Define now an algorithm
AN as in Definition 5.1, that returns the polytope confined
by the feasibility region of PN . By construction, AN satisfies
Assumption 1 of (Campi et al., 2018), since for any multisam-
ple {δi}N

i=1 it holds that A({δi}N
i=1) ∈Pδi , for all i = 1, ..,N.

The satisfaction of Assumption 1 paves the way for the use
of Theorem 1 of (Campi et al., 2018). In particular, Theorem
1 of (Campi et al., 2018) implies that the right-hand side of
(9) can be upper bounded by β , for k being the cardinality
of an irreducible support subsample (see Definition 5.1). For
our case, an irreducible (in fact minimal) subsample coincides
with the minimum number of facets that construct the polytope
ΠN , i.e., k = FN = rank([H L]), where matrices H, L are of
appropriate dimension and constitute the H-representation of
ΠN , i.e., ΠN = {x ∈ Rd : Hx≤ L}. As such, we have that

PN
{
{δi}N

i=1 ∈ ∆
N : P

{
δ ∈ ∆ :ΠN 6⊆ Xδ

}
> ε(FN)

}
=

PN
{
{δi}N

i=1 ∈ ∆
N : P

{
δ ∈ ∆ :ΠN /∈Pδ

}
> ε(FN)

}
≤ β .

(10)
From (9) and (10) we obtain that:

PN
{
{δi}N

i=1 ∈ ∆
N : V(ΠN)> ε(FN)

}
≤ β , (11)

thus concluding the proof. 2

The cardinality of the minimal support subsample in our case
coincides with the number of facets, thus circumventing the
need of employing the greedy algorithm in (Campi et al., 2018).
A direct consequence of Theorem 6 is that we can provide
distribution-free guarantees for any NE of problem (1). To
solidify this statement we introduce the following corollary
Corollary 7. Consider Assumption 3 and the setting of Theo-
rem 6. We have that

PN
{
{δi}N

i=1 ∈ ∆
N : V (xNE)> ε(FN), for any xNE of (2)

}
≤ β .

Note that the choice of algorithm to determine a NE of the
problem is arbitrary. Corollary 7 can be easily extended to
provide guarantees on the probability that the set of Nash
equilibria remains the same after the occurrence of a new yet
unseen sample.

4. NUMERICAL EXAMPLES

We initially apply our results to a 2-dimensional example of a
polytope constructed by the intersection of random halfspaces
of the form a1x1 +a2x2−b≤ 0, where a1,a2 and b are scalars
following uniform distributions with support [−4,4], [−4,4]
and [10,15], respectively. Each sample δ is defined as a vector
δ = (a1,a2,b) ∈ R3. To test the validity of our theoretical
bounds in practice we need to compute the probability of vi-
olation V(ΠN) and compare it with the guarantees provided
by Theorem 6. Let V̂(ΠN) denote an empirical estimate of
V(ΠN) and V̂ (x) an empirical estimate of a point x ∈ ΠN .
By gridding the polytope using a large enough number of
points xr,r = 1, ...,R that cover the entire polytope we have
that V̂(ΠN) = maxr=1,...,R V (xr). A sufficiently large number of
test samples is used, different from those used to construct the
polytope. To this end, we generate a total number of N = 100
samples for the construction of the random polytope shown in
Figure 1 and use 10000 test samples to compute the empirical
probability of violation for each point of the grid. The highest
probability of violation occurs at a polytope vertex; Lemma 1 in
the extended version of the current paper (Pantazis et al., 2020)
provides some theoretical support to this numerical evidence,
by showing that the worst-case probability of violation is pro-
portional to the worst-case vertex violation. A tighter relation
for certain class of programs is currently under investigation.
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Fig. 1. The empirical probability of violation of each point of the poly-
tope under study constructed by 100 random realizations of the affine
constraints. The number of grid points is R = 48633, while 10000 test
samples are used. Note that the higher probability of violation occurs at
one of the vertices (red diamonds).

10 11 12 13 14 15 16 17 18 19

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 2. Comparison of the theoretical ε(k) derived from Theorem 6 (blue) and
the worst-case empirical probability of violation of the entire polytope
that corresponds to each k (red). Note that the non-monotonic behaviour
for the empirical probability of violation is due to the fact that for any
number of facets k the number of polytopes among which the worst-case
probability of violation is calculated is not the same.

Finally, we validate the derived theoretical bounds against the
empirical probability of violation of 50 independent realiza-
tions of polytopes. Each polytope is constructed using a differ-
ent multi-sample {δi}2000

i=1 . By keeping the same value for β , as
in the previous case, we count the number of facets FN of each
polytope and then compute the theoretical bound of the viola-
tion level that corresponds to it. Subsequently, using 20000 test
samples we compute an empirical estimate of the probability
of violation for each polytopic realisation, as outlined above.
If there are more than one polytope among the 50 that share
the same number of facets, we choose the one with the max-
imum empirical probability of violation. As anticipated, ε(k)
constitutes an upper bound for any of the computed empirical
probabilities of violation.

We now revisit the EV charging control game of Section 2.
Our aim is to provide guarantees on the probability that a
NE satisfies the constraints of (3). We assume that the upper
constraint (xm(δu))m∈M ∈ RMd is affected by an additive un-
certainty in the form of δu ∈RMd , whose elements are extracted
according to the probability distribution 0.3U(0,1)N (1,3),

20000 50000 75000 100000 200000
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Fig. 3. The empirical probability of violation of the entire polytope V̂(ΠN)
(green) and the empirical probability of violation of the computed NE
returned by the NE seeking algorithm V̂ (xNE ) (red) versus the theoretical
violation level of Theorem 6 (blue) with respect to the number of
samples. Note that the blue line corresponds to the theoretical counterpart
of the green one.

where U(0,1) is a uniform distribution with support [0,1] and
N (1,3) is a gaussian distribution with mean 1 and standard
deviation 3. As such, xm(δu) = xnom + δu, where xnom is a
given deterministic component. The total energy E =(Em)m∈M
of each agent at the end of charging is also affected by un-
certainty, i.e., E = (1− δe)Enom, where δe ∈ RM and its ele-
ments are extracted according to the probability 0.05N (0,1)
and Em

nom ∈ R is the nominal final energy demand of each
agent m ∈M drawn from U(10,17). The uncertainty vector is
given by δ = [δu,δe] ∈ RM(d+1). The lower bound is assumed
to be deterministic and, particularly, xi = 0 for any i ∈M .
Finally, the cost function of each vehicle m ∈ M is given
by Jm(xm,x−m) = (xm)T (A0σ(xm,x−m)+b0), where the matrix
A0 ∈ Rd×d is diagonal and σ(xm,x−m) = ∑

M
m=1 xm. Following

the work of (Fele and Margellos, 2019b) the entries {at}d
t=1 of

A0 = diag({at}d
t=1) are evaluated by rescaling a winter weekday

demand profile in the UK (NationalGrid, 2019). The vector
b0 ∈ Rd is set to zero.
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Fig. 4. Charging schedules of agents 2 (red solid line) and 4 (blue solid line)
and their respective uncertain upper bounds. The agents’ schedules and
their upper constraints coincide during the beginning and the end of the
horizon, which implies that they are charging at their boundaries in their
attempt to benefit from the price die during these time instances.
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To compute the NE of (3) we employed the algorithm of (Fele
and Margellos, 2019b) (see Algorithm 1 therein). Setting the
number of agents to M = 10, the number of timesteps to d = 12
and β = 10−5, we run the algorithm for multi-samples of dif-
ferent size, namely, 20000, 50000, 75000, 100000 and 200000
and we compare the behaviour of two different probabilities
with respect to the cardinality of the multisample, as illustrated
in Figure 3. With green we illustrate the worst case empirical
probability of violation for the polytope V̂(ΠN), while with
red we show the empirical probability V̂ (xNE) of violation
for the xNE returned by the algorithm of (Fele and Margellos,
2019a),(Fele and Margellos, 2019b). Note that the blue line is
the theoretical counterpart of the green line and corresponds to
the theoretical violation level ε(k), as defined in Theorem 6.
The empirical calculation was performed using 2000000 test
samples, different from those used in the NE seeking process.
As expected, both empirical values are less than the theoretical
bound derived by Theorem 6. It was also anticipated that for
any multi-sample we would have that V̂(ΠN) ≥ V̂ (xNE) as the
former corresponds to the collective violation of all feasible
points, including xNE . Finally, Figure 4 illustrates the charging
schedules of two of the agents and their respective uncertain
upper bounds.

5. CONCLUDING REMARKS

Considering a feasibility problem under uncertain polytopic
constraints, we provided probabilistic guarantees for the entire
feasibility set in an a posteriori fashion. The importance of
this result is better shown in the context of the EV-charging
control problem where computationally efficient robustness
certificates are obtained for the NE returned by any algorithm.
Effort is being made towards extending our results to include
feasibility problems subject to uncertain convex constraints
and in investigating the case of uncertain games where each
agent’s samples are drawn from her own private uncertainty set.
Finally, simulation results indicate that the highest probability
of violation among all the points of the polytope occurs at
(at least) one of its vertices for some problems; we aim to
investigate theoretically the class of programs for which this
indication is valid.
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