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1. INTRODUCTION

Modern and practical control systems use digital comput-
ers with zero-order holds and samplers to control plants.
Such control systems are called sampled-data control sys-
tems. Recently, the use of wired or wireless communication
networks, in which sensor data and control commands
are communicated, becomes popular in the sampled-data
control systems, because of many merits (for details see
Hespanha et al (2007), Zhang et al (2001), and references
therein). In such sampled-data control systems, sampling
intervals become time-varying. It is well-known that the
analysis and design of sampled-data systems with time-
varying sampling intervals are more difficult than those
for sampled-data systems with constant sampling intervals
(Cloosterman et al (2010), Hetel et al (2017)).

The analysis and the design of linear sampled-data systems
with time-varying sampling intervals have been widely
discussed by many researchers (for details see Hetel et al
(2017) and the references therein). For nonlinear sampled-
data systems with time-varying sampling intervals, the
emulation-like design of controllers and observers has
been given (Nesic and Teel (2004), Postoyan and Nesic
(2012a), Postoyan and Nesic (2012b)). But the design of
controllers and observers based on approximate discrete-
time models has not been actively discussed. Recently,
the design frameworks of nonlinear sampled-data control
systems with constant sampling intervals based on ap-
proximate discrete-time models (Arcak and Nesic (2004),
Nesic, Teel, and Kokotovic (1999)) have been extended
to those of nonlinear sampled-data systems with time-
varying sampling intervals (van de Wouw et al (2012)).
When state feedback controllers, which are designed based
on approximate discrete-time models using a nominal
sampling interval, globally asymptotically (GA) stabilize
approximate models, the sufficient conditions on a nominal

sampling interval and the upper and lower bounds of time-
varying sampling intervals are given for the semiglobally
practically asymptotic (SPA) stability of the exact model
(van de Wouw et al (2012)).

In this paper we consider the sampled-data strict-feedback
system with time-varying sampling intervals:

ẋc = f1(xc) + g(xc)zc, żc = f2(xc, zc, uc) (1)

with y(k) = xc(sk) where xc ∈ Rnx and zc ∈ Rnz are the
states, uc ∈ Rm is the control input given by uc(t) =
uc(sk) =: u(k) for any t ∈ [sk, sk+1) and k ∈ N0 :=
{0, 1, 2, ...}, y ∈ Rnx is the sampled observation, and
sk ≥ 0 are monotone increasing sampling times satisfying
0 = s0 < s1 < · · · < sk < sk+1 < · · ·. When sampling
intervals are constant and known for the system (1), the
design of reduced-order observers and output feedback
controllers has been discussed (Katayama (2016)). Here we
extend the results in Katayama (2016) to the same design
problems for the sampled-data system (1). Following van
de Wouw et al (2012), we first introduce a nominal
sampling interval T ∗ to construct the Euler model of the
system (1). We use Katayama (2016) to design reduced-
order observers and give sufficient conditions that the
design observers are semiglobal and practical in sampling
intervals for the exact model of the sampled-data system
(1). Then we design state feedback controllers that GA
stabilize the Euler model and we give similar sufficient
conditions for the SPA stability of the closed-loop exact
model. Finally, we combine the designed observers and
state feedback controllers to construct output feedback
controllers and give sufficient conditions for the SPA
stability of the closed-loop exact model. We also give
numerical examples to illustrate the proposed design of
reduced-order observers and output feedback controllers.

Notation: Let | · | be a norm of vectors and matrices, and
Br = {x ∈ Rn||x| ≤ r}. A function α is of class K (α ∈ K)
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if it is continuous, zero at zero and strictly increasing. It is
of class K∞ if it is of class K and unbounded. A function
β: R≥0×R≥0 → R≥0 is of class KL if for any fixed t ≥ 0,
the function β(·, t) is of class K and for each fixed s ≥ 0 the
function β(s, ·) is decreasing to zero as its argument tends
to infinity (Khalil (2002)). For simplicity of expression, we
write f(η1(·), η2(·)) = f(η1, η2)(·).

2. PRELIMINARY RESULTS

For the sampled-data system (1), we assume that time-
varying sampling intervals Tk = sk+1 − sk satisfy Tk ∈
[Tm, TM ] for any k ∈ N0 where TM and Tm are the
maximal and minimal sampling intervals, respectively and
they are design parameters that can be assigned arbitrar-
ily. Since uc(t) = u(k) for any t ∈ [sk, sk+1), the exact
(discrete-time) model of the system (1) is given by

x(k + 1) = F e
1Tk

(x, z, u)(k), z(k + 1) = F e
2Tk

(x, z, u)(k)(2)

with y(k) = x(k) where F e
1Tk

(x, z, u)(k) = x(k) +∫ sk+Tk

sk
[f1(xc)+g(xc)zc](s)ds and F e

2Tk
(x, z, u)(k) = z(k)+∫ sk+Tk

sk
f2(xc(s), zc(s), u(k))ds. Since Tk ∈ [Tm, TM ] is un-

known, the exact model (2) cannot be used for design
purposes and we must use the approximate models to
design observers and controllers. We now introduce a nom-
inal sampling interval T ∗ ∈ (Tm, TM ] and consider the
following exact and Euler models of the system (1)

x(k + 1) = F e
1T∗(x, z, u)(k), z(k + 1) = F e

2T∗(x, z, u)(k)(3)

and

x(k + 1) = F a
1T∗(x, z)(k), z(k + 1) = F a

2T∗(x, z, u)(k) (4)

with y(k) = x(k), respectively where F a
1T∗(x, z) = x +

T ∗[f1(x) + g(x)z], F a
2T∗(x, z, u) = z + T ∗f2(x, z, u), and

(F e
1T∗ , F e

2T∗) is given by (F e
1Tk

, F e
2Tk

) with sk = kT ∗

and Tk = T ∗. Let χc = [xT
c zTc ]

T
, χ = [xT zT ]

T
,

f2(χ, u) = f2(x, z, u), f(χ, u) =

[
f1(x) + g(x)z

f2(χ, u)

]
and

F i
T (χ, u) = F i

T (x, z, u) =

[
F i
1T (x, z, u)

F i
2T (x, z, u)

]
for i = e, a. Then

the system (1) is rewritten by

χ̇c = f(χc, uc), y(k) = xc(sk). (5)

The discrete-time models (2)-(4) are also rewritten, respec-
tively by

χ(k + 1) = F e
Tk
(χ, u)(k), y(k) = x(k), (6)

χ(k + 1) = F e
T∗(χ, u)(k), y(k) = x(k), (7)

χ(k + 1) = F a
T∗(χ, u)(k), y(k) = x(k). (8)

For given positive real numbers (∆x,∆z,∆u), let Ω =
B∆x

×B∆z
×B∆u

and assume
A1: 1) f1, f2, and g are locally Lipshitz and there exist
Lf2 , Lf , lg > 0 satisfying |f2(x, z, u) − f2(x̄, z̄, ū)| ≤
Lf2(|x− x̄|+ |z− z̄|+ |u− ū|), |f(χ, u)−f(χ̄, ū)| ≤ Lf (|χ−
χ̄|+ |u− ū|), and |g(x)| ≤ lg for any (x, z, u), (x̄, z̄, ū) ∈ Ω

where χ̄ = [ x̄T z̄T ]
T
.

2) f1(0) = 0, f2(0, 0, 0) = 0.

By A1, there exists T#
1 > 0 such that F e

T (x, z, u) is well-

defined for any (x, z, u) ∈ Ω and T ∈ (0, T#
1 ). It is well-

known that there exist γ̂ ∈ K and T#
2 ∈ (0, T#

1 ] satisfying
|F e

T (x, z, u) − F a
T (x, z, u)| ≤ T γ̂(T ) for any (x, z, u) ∈ Ω

and T ∈ (0, T#
2 ), i.e., F a

T (x, z, u) is one step consistent
with F e

T (x, z, u) (Nesic, Teel, and Kokotovic (1999)).

3. DESIGN OF REDUCED-ORDER OBSERVERS

Since y(k) = x(k), we use the Euler model (4) to design
discrete-time reduced-order observers that estimate z(k)
of the exact model (2). We first assume:
A2: On the compact set, ϕ(·) = gT g(·) ∈ Rnz×nz is
nonsingular and ϕ−1(·) is bounded, i.e., for given ∆x > 0,
there exists lϕ > 0 satisfying |ϕ−1(x)| ≤ lϕ for any
|x| ≤ ∆x.

Since z(k) = ϕ−1(y)gT (y){(ρy − y)/T ∗ − f1(y)}(k) =:
ΨT∗(y, ρy)(k), we can consider the system

ẑ(k + 1) = ẑ(k) + T ∗f2(y,ΨT∗(y, ρy), u)(k)

+T ∗H[ΨT∗(y, ρy)− ẑ](k)

= (I − T ∗H)ẑ(k) + T ∗ΠT∗(y, ρy, u)(k) (9)

=:OT∗(ẑ, y, ρy, u)(k)

where (ρy)(k) = y(k+1) and ΠT∗(y, ρy, u) = HΨT∗(y, ρy)+
f2(y,ΨT∗(y, ρy), u) (Katayama (2016)). Let ez = z − ẑ.
Then we have ez(k+1) = (I−T ∗H)ez(k) and we assume:

A3: Let T̂ > 0 be given and H = diag{h(1), ..., h(nz)}
where h(i) > 0 satisfies |1−T ∗h(i)| < 1 for any T ∗ ∈ (0, T̂ ].

Remark 1. For any T ∗ ∈ (0, T̂ ], there exists a positive
definite matrix PT∗ satisfying (I−T ∗H)TPT∗(I−T ∗H)−
PT∗ = −T ∗I. Then PT∗ > 0 is given by

PT∗ = diag{ 1

h(1)[2− T ∗h(1)]
, · · · , 1

h(nz)[2− T ∗h(nz)]
}

and q1 ≤ λmin(PT∗) ≤ λmax(PT∗) ≤ q2 where

q1 = 1/(2hmax), q2 = 1/(hmin[2 − T̂ hmax]), hmin =
mini=1,..,nz

h(i), hmax = maxi=1,..,nz
h(i), and λmin(PT∗)

and λmax(PT∗) are the minimal and maximal eigenvalues
of PT∗ , respectively.

Let F i
T = F i

T (x, z, u) = F i
T (χ, u), F

i
jT = F i

jT (x, z, u) =

F i
jT (χ, u) for i = e, a and j = 1, 2,Oe

T∗ = OT∗(ẑ, y, F e
1T , u),

Oa
T∗ = OT∗(ẑ, y, F a

1T∗ , u), Ψe
T∗ = ΨT∗(y, F e

1T ), and Ψa
T∗ =

ΨT∗(y, F a
1T∗). Let VT∗(z, ẑ) = eTz PT∗ez. Then

q1|ez|2 ≤ VT∗(z, ẑ) ≤ q2|ez|2, (10)

VT∗(F a
2T∗ , Oa

T∗)− VT∗(z, ẑ) = −T ∗|ez|2. (11)

Let T# = min{T#
2 , T̂}, 0 < Tm ≤ TM < T#, T ∗ = ϵTm +

(1 − ϵ)TM , and 0 ≤ ϵ < 1. Assume A1-A3. For given
positive real numbers (De, de) and (∆x,∆z,∆u), let R =

q2D
2
e , r = q1d

2
e/2, ∆̂z ≥ ∆z +

√
R/q1 = ∆z +De

√
q2/q1,

∆11 = sup
(x,z,u)∈Ω,|ẑ|≤∆̂z

max{|F e
T∗ |, |F a

T∗ |, |Ψa
T∗ |, |Oa

T∗ |},

∆12 = sup
(x,z,u)∈Ω,|ẑ|≤∆̂z,T∈(0,T#)

max{|F e
T |, |Ψe

T∗ |, |Oe
T∗ |},

∆1 =max{∆11,∆12,∆z, ∆̂z}. (12)
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Remark 2. For any |z1|, |z2|, |ẑ1|, |ẑ2| ≤ ∆1, there exists
LV > 0 satisfying

|VT∗(z1, ẑ1)− VT∗(z2, ẑ2)| ≤ LV (|z1 − z2|+ |ẑ1 − ẑ2|).(13)

Finally, let

γob = γob(T
∗, Tm, TM )

=LV [1 + (hmax + Lf2)lϕlg][γun + γ̂(T ∗)],

γun = γun(T
∗, Tm, TM )

=
eLfT

∗

T ∗ (
√

∆2
x +∆2

z +∆u)(e
LfMT − 1),

Mob =min{R− r

T ∗ ,
r

T ∗ ,
r

2q2
} (14)

where MT = max{|TM − T ∗|, |Tm − T ∗|}.
Theorem 3. Consider the exact model (2) and the reduced-
order observer (9) with A1-A3. Assume that T ∗, Tm, and
TM satisfy

γob(T
∗, Tm, TM ) ≤ Mob (15)

for given (∆x,∆z,∆u) and (De, de). Then if |ez(0)| ≤ De

and (x, z, u)(k) ∈ Ω for any k ∈ N0,

|ez(k)| ≤
√

q2
q1

exp

(
−1− ϵ

4q2
kTm

)
|ez(0)|+ de (16)

for any k ∈ N0 where ez = z− ẑ. Moreover, since (De, de)
can be chosen arbitrarily, the reduced-order observer (9)
is semiglobal and practical in Tk for the exact model (2).

To prove Theorem 3, we introduce the following result.

Lemma 4. AssumeA1-A3. Let (∆x,∆z,∆u, ∆̂z) be given.

Then for any |y| ≤ ∆x, |z| ≤ ∆z, |u| ≤ ∆u, |ẑ| ≤ ∆̂z, and
T ∈ (0, T#), we have

VT∗(F e
2T , O

e
T∗)− VT∗(z, ẑ)

TM
≤ − T ∗

TM
(|ez|2 − γob). (17)

Proof. Let ∆V = [VT∗(F e
2T , O

e
T∗) − VT∗(z, ẑ)]/TM . Then

by (11) and (13), we obtain

∆V ≤ − T ∗

TM
|ez|2 +

LV

TM
(|F e

2T − F a
2T∗ |+ |Oe

T∗ −Oa
T∗ |).

By direct calculation and A1-A3, we have

∆V ≤ − T ∗

TM
|ez|2 +

LV

TM
[1 + (hmax + Lf2)lϕlg]|F e

T − F a
T∗ |.

By the one-step consistency between F e
T∗ and F a

T∗ , we
obtain |F e

T − F a
T∗ | ≤ |F e

T − F e
T∗ | + T ∗γ̂(T ∗). Let T ∗ ≤ T

(we have the same result for T ∗ > T ). By A1 and

T# ≤ T#
2 , the solutions χc(t) of χ̇c = f(χc(t), u), χc(0) =

χ = [xT zT ]
T

satisfy |χc(t)| ≤ ∆ for any t ∈ [0, T#)

and we have |F e
T − F e

T∗ | ≤ Lf

∫ T

T∗ [|χc(s)| + |u|]ds. By
the Bellman-Gronwall’s inequality (Khalil (2002)), |F e

T −
F e
T∗ | ≤ eLfT

∗
(|χ| + |u|)(eLfMT − 1). Since (x, z, u) ∈ Ω,

|χ| ≤
√
∆2

x +∆2
z and

|F e
T − F a

T∗ | ≤ eLfT
∗
(
√
∆2

x +∆2
z +∆u)(e

LfMT − 1)

+T ∗γ̂(T ∗).

Hence we have (17).

Proof of Theorem 3. Let x and z be the states of the exact
model (2) and assume (x, z, u)(k) ∈ Ω, for any k ∈ N0. For
simplicity of notation, let T = Tk, (x, z, ez) = (x, z, ez)(k)
and (ρx, ρz) = (x, z)(k + 1).

Similar to Katayama (2016), we can show that if r ≤
VT∗(z, ẑ) ≤ R, then

VT∗(F e
2T , O

e
T∗)− VT∗(z, ẑ)

TM
≤ − T ∗

TM

|ez|2

2
(18)

and if VT∗(z, ẑ) ≤ r, then VT∗(F e
2T , O

e
T∗) ≤ R. Thus

VT∗(z, ẑ)(0) ≤ R implies VT∗(z, ẑ)(k) ≤ R for any k ∈ N0.

Since T ≤ TM and T ∗ = ϵTm + (1− ϵ)TM , T ∗/TM ≥ 1− ϵ
and we have

VT∗(ρz, ρẑ)− VT∗(z, ẑ)

T
≤ − (1− ϵ)|ez(k)|2

2

when VT∗(z, ẑ) ≥ r. Then similar to Arcak and Nesic
(2004), we can show that if VT∗(z, ẑ)(0) ≤ R, then

VT∗(z, ẑ)(k)≤max{exp
(
−1− ϵ

2q2
kTm

)
VT∗(z, ẑ)(0),

r + T ∗γob}. (19)

If q2|ez(0)|2 ≤ R, then VT∗(z, ẑ)(0) ≤ R and we obtain

|ez(k)| ≤
√

q2
q1

exp

(
−1− ϵ

4q2
kTm

)
|ez(0)|+

√
r + T ∗γob

q1
.

By (10), (14), and (15), T ∗γob ≤ r and from the definitions

of r and R, we have |ez(0)| ≤
√

R/q2 = De and (r +
T ∗γob)/q1 ≤ 2r/q1 = d2e. Hence |ez(0)| ≤ De implies (16).

Since d
dT (e

LfT /T ) = eLfT (LfT − 1)/T 2, we have Lfe ≤
eLfT /T ≤ max{eLfTm/Tm, eLfTM /TM}. Also note

eLfMT − 1 = LfMT

∞∑
i=1

(LfMT )
i−1

i!

and γ̂ ∈ K. This implies the existence of 0 < Tm < T ∗ ≤
TM satisfying γob ≤ ν for given ν > 0. Hence there exist
0 < Tm < T ∗ ≤ TM satisfying γob ≤ Mob for given
(De, de) and the reduced-order observer (9) is semiglobal
and practical in Tk ∈ [Tm, TM ] for the exact model (2).

4. DESIGN OF STATE FEEDBACK CONTROLLERS

Let state feedback controllers u(k) = uT∗(χ(k)) be de-
signed based on the Euler model (4) and assume:
B1: There exist WT∗(χ), α1, α2 ∈ K∞, α3 ∈ K, and

T#
3 > 0 satisfying α1(|χ|) ≤ WT∗(χ) ≤ α2(|χ|) and

WT∗(F a
T∗(χ, uT∗(χ))) − WT∗(χ) ≤ −T ∗α3(|χ|) for any

χ ∈ Rnx+nz and T ∗ ∈ (0, T#
3 ).

B2: For given ∆χ > 0, there exist LW , T#
4 > 0 satisfying

|WT∗(χ)−WT∗(χ̄)| ≤ LW |χ− χ̄| for any |χ|, |χ̄| ≤ ∆χ and

T ∗ ∈ (0, T#
4 ).

B3: For given ∆χ > 0, there exist Lu, T
#
5 > 0 satisfying

|uT∗(χ)| ≤ Lu|χ| for any |χ| ≤ ∆χ and T ∗ ∈ (0, T#
5 ).

Remark 5. By B1, there always exist T#
3 > 0, WT∗(χ),

α1, α2 ∈ K∞ and α3 ∈ K. Let (Dχ, dχ) be given positive
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real numbers, ∆x, ∆z > 0 satisfy ∆2
x + ∆2

z ≤ D2
χ, Lu,

T#
5 > 0 satisfy B3 with ∆χ = Dχ, and ∆u ≥ LuDχ. Let

T#
4 , LW > 0 satisfy B2 with

∆2 = sup
(x,z,u)∈Ω,T∈(0,T#

2 )

max{|F e
T (χ, u)|, |F a

T (χ, u)|, Dχ}. (20)

Let T# := min{T#
2 , ..., T#

5 }, 0 < Tm ≤ TM < T#,
r = α1(dχ)/4, and R = α2(Dχ).

By Remark 5, we can choose a nominal sampling interval
T ∗ = ϵTm + (1 − ϵ)TM for some 0 ≤ ϵ < 1. We also
obtain |χ| ≤ Dχ ≤ ∆2, |uT∗(χ)| ≤ LuDχ ≤ ∆u, and
|F e

T (χ, u)|, |F e
T∗(χ, u)|, |F a

T∗(χ, u)| ≤ ∆2 for any (x, z, u) ∈
Ω. Finally, let

γsf = γsf (T
∗, Tm, TM )

=LW [
eLfT

∗

T ∗ (1 + Lu)Dχ(e
LfMT − 1) + γ̂(T ∗)],

Msf =min{1
2
α3 ◦ α−1

2 (r),
R− r

T ∗ ,
r

T ∗ }.

Then we have the following results. Their proofs are similar
to those of Lemma 4 and Theorem 3, respectively.

Lemma 6. Let Dχ > 0 be given and assume A1, B1-B3.
Then

WT∗(F e
T (χ, uT∗(χ)))−WT∗(χ)

TM
≤ − T ∗

TM
[α3(|χ|)− γsf ]

for any |χ| ≤ Dχ and T ∈ (0, T#).

Theorem 7. Consider the closed-loop exact model

χ(k + 1) = F e
Tk
(χ(k), uT∗(χ(k))) (21)

with A1 and B1-B3. Assume that T ∗, Tm, and TM

satisfy γsf (T
∗, Tm, TM ) ≤ Msf for given (Dχ, dχ). Then

if |χ(0)| ≤ Dχ, there exists β ∈ KL satisfying |χ(k)| ≤
β(|χ(0)|, kTm) + dχ for any k ∈ N0. Moreover, since
(Dχ, dχ) can be chosen arbitrarily, the closed-loop exact
model (21) is SPA stable.

5. DESIGN OF OUTPUT FEEDBACK
CONTROLLERS

Let ẑ be the state of the reduced-order observer (9) and

χ̂ = [xT ẑT ]
T

= [ yT ẑT ]
T
. Consider the output

feedback controller

u(k) = uT∗(χ̂(k)), ẑ(k + 1) = OT∗(ẑ, y, ρy, u)(k) (22)

that is obtained by combining u = uT∗(χ) and the
reduced-order observer (9). Let ez = z − ẑ. Then χ̂ = χ−
[ 0 eTz ]

T
and the controller (22) is rewritten as

u(k) = uT∗(χ− [ 0 eTz ]
T
)(k), (23)

ez(k + 1) = z(k + 1)−OT∗(ẑ, y, ρy, u)(k).

Let µ = [χT eTz ]. Then the closed-loop systems of the
models (6)-(8) and the controller (23) are given by

µ(k + 1) = F̃ e
Tk
(µ(k)) (24)

=

[
F e
Tk
(χ, û)

F e
2Tk

(χ, û)−OT∗(ẑ, y, F e
1Tk

(χ, û), û)

]
(k),

µ(k + 1) = F̃ i
T∗(µ(k))

=

[
F i
T∗(χ, û)

F i
2T∗(χ, û)−OT∗(ẑ, y, F i

1T∗(χ, û), û)

]
(k)

for i = e, a, respectively where û = uT∗(χ̂).

Remark 8. Assume A1-A3 and B1-B3. Then by B1,

there exist T#
3 > 0, WT∗(χ), α1, α2 ∈ K∞, and α3 ∈

K. Let (D, d) be given positive real numbers, (Dχ, De)
positive real numbers such that D2

χ + D2
e ≤ D2, and

(∆x,∆z) positive real numbers such that ∆2
x +∆2

z ≤ D2
χ.

Let Lu, T#
5 > 0 satisfy B3 with ∆χ = Dχ + De,

Lu(Dχ + De) ≤ ∆u, and Ω = B∆x × B∆z × B∆u .
Then |uT∗(χ)|, |uT∗(χ̂)| ≤ ∆u for any |µ| ≤ D. Let

T#
4 , LW > 0 satisfy B2 with ∆χ = ∆2. Let T# :=

min{T̂ , T#
2 , ..., T#

5 }, 0 < Tm ≤ TM < T#, ∆̂z ≥ ∆z +
De, and T ∗ ∈ (Tm, TM ]. Let ∆1 and ∆2 be defined by
(12) and (20), respectively and ∆ = max{∆1,∆2}. Then
|F e

T (χ, u)|, |F e
T (χ, û)|, |F e

T∗(χ, u)|, |F e
T∗(χ, û)|, |F a

T∗(χ, u)|,
|F a

T∗(χ, û)| ≤ ∆ for any |µ| ≤ D and T ∈ (0, T#) where
u = uT∗(χ) and û = uT∗(χ̂).

We now replace B3 by the following slightly stronger
assumption.

C1: uT∗(χ) is continuous and uT∗(0) = 0, i.e., there exists
Lu > 0 satisfying |uT∗(χ) − uT∗(χ̄)| ≤ Lu|χ − χ̄| for any
|χ|, |χ̄| ≤ ∆.

Let c be a positive real number and UT∗(µ) = WT∗(χ) +
cVT∗(z, ẑ) as a candidate of Lyapunov functions that
guarantees the SPA stability of the closed-loop exact
model (24). Then by (10) and B1, we have α1(|χ|) +
cq1|ez|2 ≤ UT∗(µ) ≤ α2(|χ|) + cq2|ez|2 and by Katayama
(2014), there exist αU1 αU2 ∈ K∞ satisfying αU1(|µ|) ≤
α1(|χ|) + cq1|ez|2 and αU2(|µ|) ≥ α2(|χ|) + cq2|ez|2. Thus
we obtain

αU1(|µ|) ≤ UT∗(µ) ≤ αU2(|µ|). (25)

Let T = Tk, u = uT∗(χ), û = uT∗(χ̂), and ∆U =

[UT∗(F̃ e
T (µ)) − UT∗(µ)]/TM . Then ∆U = ∆W + c∆V

where ∆W = [WT∗(F e
T (χ, û)) − WT∗(χ)]/TM , ∆V =

[VT∗(F e
2T (x, z, û), OT∗(ẑ, y, F e

1T (x, z, û), û)−VT∗(z, ẑ)]/TM .
By Lemma 4, ∆V ≤ −(T ∗/TM )(|ez|2−γob) and by Lemma
6, we have

∆W ≤ WT∗(F e
T (χ, u))−WT∗(χ)

TM

+
|WT∗(F e

T (χ, û))−WT∗(F e
T (χ, u))|

TM

≤− T ∗

TM
[α3(|χ|)− γsf ]

+
LW

TM
|F e

T (χ, û)− F e
T (χ, u)|.

Since |F e
T (χ, û) − F e

T (χ, u)| ≤ Lf

∫ T

0
[|χ̃c(s) − χc(s)| +

|û − u|]ds, we use the Bellman-Gronwall’s inequality to
have |χ̃c(t) − χc(t)| ≤ |û − u|(eLf t − 1) and |F e

T (χ, û) −
F e
T (χ, u)| ≤ T ∗|û− u|(eLfTM − 1)/Tm. By C1 we have
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∆W ≤− T ∗

TM
α3(|χ|) +

T ∗

TM
[γsf +Θ(Tm, TM )|ez|],

Θ(Tm, TM ) =LWLu
eLfTM − 1

Tm
.

Let ε be a sufficiently small positive real number and

c = 1 +
Θ(Tm, TM )

c̃
, c̃ =

ε

Θ(Tm, TM )
. (26)

Then we have

∆U ≤− T ∗

TM
[|ez|2 + α3(|χ|)] +

T ∗

TM
(γsf + cγob)

+
T ∗

TM
Θ(Tm, TM )|ez|

(
1− |ez|

c̃

)
.

If |ez| < c̃, then

Θ(Tm, TM )|ez|
(
1− |ez|

c̃

)
≤ Θ(Tm, TM )|ez| ≤ ε

and if |ez| ≥ c̃, then Θ(Tm, TM )|ez|
(
1− |ez|

c̃

)
≤ 0. Hence

we have

∆U ≤ − T ∗

TM
[|ez|2 + α3(|χ|)] +

T ∗

TM
γof

where γof (T
∗, Tm, TM ) = γsf + cγob + ε. By Katayama

(2014), there exists αU3 ∈ K satisfying αU3(|µ|) ≤ |ez|2 +
α3(|χ|) and we obtain

∆U ≤ − T ∗

TM
αU3(|µ|) +

T ∗

TM
γof (T

∗, Tm, TM ). (27)

For given positive real numbers (D, d), let r = αU1(d)/4,
R = αU2(D), and

Mof = min{1
2
αU3 ◦ α−1

U2(r),
R− r

T ∗ ,
r

T ∗ }. (28)

Then we have the following result. Its proof is similar to
the proof of Theorem 3.

Theorem 9. Consider the closed-loop exact model (24)
with A1-A3, B1, B2, and C1. For given positive real
numbers (D, d), assume that T ∗, Tm, and TM satisfy
γof (T

∗, Tm, TM ) ≤ Mof . Then if |µ(0)| ≤ D, there exists
β ∈ KL satisfying |µ(k)| ≤ β(|µ(0)|, kTm) + d for any k ∈
N0. Furthermore, since (D, d) can be chosen arbitrarily,
the closed-loop exact model (24) is SPA stable.

6. A NUMERICAL EXAMPLE

Example 1. Consider

ẋc = zc, żc = −xc + 0.01zc(1− x2
c) (29)

with y(k) = xc(sk). The system (29) satisfies A1 and

A2. Let T̂ = 1 and H = 0.5. Then A3 is satisfied and
a reduced-order observer is given by

ẑ(k + 1) = (1− T ∗H)ẑ(k) + T ∗[ΨT∗ − y

+0.01ΨT∗(1− y2)](k)(30)

where ΨT∗ = (ρy − y)/T ∗. Let (xc, zc)(0) = (0.4, 0.4)
and ẑ(0) = 0. Then we have |xc(t)|, |zc(t)| ≤ 0.8 for any
t ∈ [0, 30] and we obtain Lf2 = 1.0128 and Lf = 1.749. By

0 5 10 15 20 25 30
time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

|e
(k

)|

Fig. 1. Time response of |e(k)| for Tk = 0.1

direct calculation, we also have γ̂(T ) = 1.1314(exp(LfT )−
LfT − 1)/T and γ̂(0.1) = 0.1836.

First we assume Tk = 0.1 (s). Then from the simulation
result (Fig 1), the offset de = de(0.1) in (16) is less than
0.05 and there is a gap between 0.05 and de(0.1) for t ≥ 5.
Let TM = 0.1 (s), T ∗ = (TM + Tm)/2, and consider
three cases Tm = 0.09, 0.08, and 0.07 (s). Then we have
(Tm, γun) = {(0.09, 0.1235), (0.08, 0.2596), (0.07, 0.4105)}.
We use the values of γun and γ̂(0.1), and |0.05−de(0.1)| to
expect that (16) with de = 0.05 is satisfied for (TM , Tm) =
(0.1, 0.09) and it is not satisfied for (TM , Tm) = (0.1, 0.07).
In fact, Figs 2 and 3 show the time responses of |ez(k)|
for Tm = 0.09 and Tm = 0.07 (s), respectively where the
black, red, and blue lines correspond to different sequences
of sampling intervals. As we see Figs 2 and 3, we have a
desired result.
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Fig. 2. Time response of |ez(k)| for Tk ∈ [0.09, 0.1]
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Fig. 3. Time response of |ez(k)| for Tk ∈ [0.07, 0.1]

Example 2. Consider

ẋc = x3
c − xc + zc, żc = uc, y(k) = xc(sk) (31)

where uc(t) = u(k) for any t ∈ [sk, sk+1). The system (31)

satisfies A1 and A2. Let T̂ = 1 and T ∗ ∈ (0, T̂ ) a nominal
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sampling interval. Then the Euler model of the system (31)
is given by

x(k + 1) = rT∗(k), z(k + 1) = z(k) + T ∗u(k), (32)

and y(k) = x(k) where rT∗ = rT∗(x, z) = x+T ∗(x3−x+z).

Let H = 0.8. Then A3 is satisfied for any T ∗ ∈ (0, T̂ ) and
the reduced-order observer is given by

ẑ(k + 1) = (1− T ∗H)ẑ(k) + T ∗(ΨT∗ + u)(k) (33)

where ΨT∗ = (ρy−y)/T ∗−y3+y. Consider the subsystem
x(k+1) = rT∗(x, z)(k) where z is a virtual input. Then the
state feedback controller that GA stabilizes this subsystem
is given by z = κT∗(x) = −x3 and we have rκT∗(x) =
rT∗(x, κT∗(x)) = (1 − T ∗)x. Let W1T∗(x) = x2. Then we
have W1T∗(rκT∗) − W1T∗(x) = −T ∗x2 − T ∗(1 − T ∗)x2 ≤
−T ∗x2 for any T ∗ ∈ (0, T̂ ). All conditions of Theorem
3 in Nesic and Teel (2006) are satisfied and there exist
(uT∗(χ),WT∗(χ)) satisfying B1-B3 for the Euler model
(32). Moreover, uT∗(χ) is given by

uT∗(χ) =
∆κT∗

T ∗ +
∆ϱ

T ∗ ξ −
1

2
ϱ(|rT∗ |)ξ (34)

where ∆κT∗ = κT∗(rT∗)− κT∗(x), ∆ϱ = ϱ(|rT∗ |)− ϱ(|x|),
ξ = [x − κT∗(x)]/ϱ(|x|), ϱ(s) = 1/[2ω(s)(1 + s)], and

ω(s) = 1 + 2s[1 + T̂ (3s2 + s+ 1)]. We can also show that
the state feedback controller (34) satisfies C1. Then the
output feedback controller is given by

u(k) = uT∗(χ̂(k)), (35)

ẑ(k + 1) = (1− T ∗H)ẑ(k) + T ∗(ΨT∗ + u)(k)

where χ̂ = [ y ẑ ]
T
.

Let (xc, zc)(0) = (1.5, 0). First we assume Tk = T ∗,
i.e., Tk is constant. Then numerical simulations show
that the SPA stability of the closed-loop exact model is
guaranteed for any T ∗ ∈ (0, 0.169] (s). Next we assume
Tk ∈ [Tm, TM ] for any k ∈ N0. Let Tm = 0.1 and
T ∗ = (Tm + TM )/2. From numerical simulations, we
have TM = 0.127 (s), i.e., the SPA stability of the
closed-loop system is guaranteed for any Tk ∈ [0.1, 0.127]
(s). Figure 4 shows the state trajectories (x, z) of the
closed-loop system where the black, blue, and red lines
express the state trajectories for the sampling interval
sequences (T0, T1, T2, · · ·) = (0.1245, 0.1034, 0.1247, · · ·),
(T0, T1, T2, · · ·) = (0.1116, 0.1050, 0.1244, · · ·), and
(T0, T1, T2, · · ·) = (0.1228, 0.1093, 0.1211, · · ·), respectively.
As we see Fig 4, the designed output feedback controller
(35) achieves the SPA stability of the closed-loop system.

7. CONCLUSION

In this paper we have considered the design of semiglobal
and practical reduced-order observers and SPA stabiliz-
ing output feedback controllers for the exact model of
sampled-data strict-feedback systems with time-varying
sampling intervals. We have given the sufficient conditions
that the reduced-order observers and controllers designed
based on the Euler model achieve the desired control
performance for the exact model.
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Fig. 4. State trajectories (x, z) of the closed-loop system

REFERENCES
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