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Abstract: In this paper, a Linear Matrix Inequality approach is presented for synthesizing
controllers that robustly stabilize a plant against Bicoprime Factor uncertainty. Following the
development of the general case, non-normalized results, the usefulness of normalized Bicoprime
Factorizations is studied in this context and shown to be beneficial in deducing the existence of
a robustly stabilizing controller for given robust stability margin. Finally, a numerical example
is provided to demonstrate the practical applicability of the developed methodology.
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1. INTRODUCTION

Bicoprime factorizations (BCFs) of the plant are rooted
in the Polynomial Matrix Descriptions (PMDs) studied
by Rosenbrock (1970) in the mid 20th century. As a stable
factorization of the plant, they were first introduced by
Vidyasagar (2011), but were minimally explored. Though
they received some attention in the late 80’s (Desoer and
Gündeş, 1988; Gündeş and Desoer, 1990), their study was
quickly abandoned in favour of coprime factorizations of
which they are a generalization.

Recent work (Tsiakkas and Lanzon, 2017, 2015) has shown
that it is possible to capture and generalize earlier coprime
factor results into a more complete BCF theory. Several
BCF results were presented therein mostly pertaining to
internal stability, state space parametrization of BCFs
and robustness analysis. Robust control synthesis against
BCf uncertainty was presented by Tsiakkas and Lanzon
(2019) where it was shown that the use of BCFs can incur
computational benefits in the synthesis of robustly stabi-
lizing controllers. Results were also extended to the time
varying case by Yu (2019). The notion of normalization
was adapted to the BCF case by Tsiakkas and Lanzon
(2018) closely resembling (though not coinciding with)
normalized coprime factorizations of the plant as defined
by Vidyasagar (1988).

Just like the classical case of left and right coprime factor-
izations (LCFs and RCFs respectively), every plant in R
admits a BCF over RH∞. The ordered quad {N,M,L,K}
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is said to be bicoprime (BC) in RH∞ if {L,M} is left
coprime (LC) in RH∞, {N,M} is right coprime (RC) in
RH∞ and K ∈ RH∞. Furthermore, it is a BCF of P ∈ R
over RH∞ if P = NM−1L+K.

The uncertainty structure induced by BCFs is appealing as
it captures a wide range of modelling errors (Lanzon and
Papageorgiou, 2009). It was shown in Tsiakkas and Lanzon
(2017) that the left and right coprime factor uncertainty
structures are in fact special structured cases of their BCF
counterpart. Furthermore, the BCF uncertainty closely re-
sembles the four-block structure commonly studied by the
robust control community and known to be appropriate
for many practical situations. It is demonstrated herein
by way of example that in certain cases BCF uncertainty
is superior to the simpler coprime factor uncertainty.

Coprime factor theory has played an important role robust
control synthesis. Specifically, imposing the normalization
property on the coprime factors of the plant can lead to
two main benefits. First is the fact that the optimal robust
stability margin can be directly computed without the
need for iteratively solving Algebraic Riccati Equations
(AREs) while the second is that the induced robust
stability margin matches that of the standard four block
problem (McFarlane and Glover, 1990).

The H∞ robust control synthesis methodology developed
by Doyle et al. (1989) requires the solution of two sign-
indefinite AREs while under various technical assump-
tions. These assumptions were relaxed by Gahinet and
Apkarian (1994) by reformulating the H∞ optimal control
problem in a Linear Matrix Inequality (LMI) framework.

This paper exploits the above-mentioned LMI formulation
to develop stabilizing controllers that are robust with re-
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spect to the BCF uncertainty structure. These results are
then specialized to the case of normalized BCFs (NBCFs)
as defined by Tsiakkas and Lanzon (2018); it is shown that
using a NBCF of the plant leads to simplifications in the
synthesis a robustly stabilizing controller as is the case for
coprime factors. A numerical example is provided at the
end of the paper comparing the robust performance of the
proposed BCF based controller with its classical, coprime
factor based, counter part.

2. PRELIMINARIES

2.1 Linear Algebra

Let A ∈ Rm×n. Then KerA denotes the kernel (or null
space) of A while Im(A) denotes its image (or range).
The largest singular value of A is given by σ(A). The
pseudo-inverse of A is given by A†. If A is square (i.e.
A ∈ Rn×n), Λ(A) represents its spectrum while λ(A) and
ρ(A) denote its smallest eigenvalue and spectral radius
respectively. Furthermore, A is said to be positive definite
(resp. semi-definite), denoted A > 0 (resp. A ≥ 0) if it is
Hermitian and all its eigenvalues are strictly positive (resp.
non-negative).

The following shorthand notation is introduced for com-
pactness. Let A ∈ Rn×n and X ∈ Rn×n. Then L(A,X)
will be used to denote

L(A,X) = AX +XA∗.

2.2 Systems Theory

The set of all real, rational, proper transfer matrices is
denoted R. The subset of R containing all stable transfer
matrices is given by RH∞.

Let H ∈ R and ∆ ∈ R, then the lower and upper linear
fractional transformations (LFTs) of H with respect to
∆ are given by Fl(H,∆) and Fu(H,∆) respectively. See
(Zhou et al., 1996, Chapter 10) for further details.

Let P ∈ R, then P =

[
A B

C D

]
is shorthand for P =

C(sI −A)−1B +D.

Left and right coprime factorizations (L/RCFs) are invalu-
able tools in control theory with uses ranging from distance
measures (Lanzon and Papageorgiou, 2009) to control
synthesis (Vidyasagar and Kimura, 1986; Georgiou and
Smith, 1990; McFarlane and Glover, 1992; Vinnicombe,
1993). A pair {L,M} is said to be LC over RH∞ if
L,M ∈ RH∞ and there exist X,Y ∈ RH∞ such that
MX +LY = I. Furthermore, the pair is a LCF of a plant
P ∈ R if it is LC in RH∞, M is square with detM(∞) 6= 0
and P = M−1L. Similarly, the pair {N,M} is RC over
RH∞ if N,M ∈ RH∞ and there exist X,Y ∈ RH∞ such
that XM + Y N = I. A RCF is defined dually to a LCF
with the pair being a RCF of a plant P ∈ R if it is RC in
RH∞, M is square with detM(∞) 6= 0 and P = NM−1.

2.3 BCF Fundamentals

BCFs first appeared in literature in (Vidyasagar, 2011)
where their existence was acknowledged with no significant

results given. In the original definition, BCFs of a plant
were presented as a quad of objects in RH∞; this definition
follows.

Definition 1. (Vidyasagar (2011)). The ordered quad
{N,M,L,K} is bicoprime (BC) in RH∞ if {L,M} is
LC in RH∞, {N,M} is RC in RH∞ and K ∈ RH∞.
Furthermore, the quad is a BCF of a plant P ∈ R over
RH∞ if it is BC in RH∞, M is square, detM(∞) 6= 0
and P = NM−1L+K.

Formulae for computing L/RCFs of a system using state
space data were first given by Nett et al. (1984). The
following theorem presents a similar result for constructing
a BCF of a plant.

Theorem 1. (Tsiakkas and Lanzon (2017) Theorem 9). Let
P ∈ Rp×q have a stabilizable and detectable state space

realization P =

[
A B

C D

]
. Furthermore, suppose that Q ∈

Rn×r and R ∈ Rr×n are such that A + QR is Hurwitz.
Finally, let DN ∈ Rp×r and DL ∈ Rr×q be arbitrarily
chosen matrices and define[

M −L
N K

]
=

 A+QR Q B +QDL

R I DL

C +DNR DN D +DNDL

 . (1)

Then {N,M,L,K} is a BCF of P .

The BCF parametrization presented in Theorem 1 with
the restrictions DN = 0 and DL = 0 will henceforth be
referred to as a QR-BCF parameterization, as it is purely
parameterized by the matrices Q and R.

The BCF uncertainty structure was first proposed by
Tsiakkas and Lanzon (2015). Following coprime factor
convention, BCF uncertainty is defined by additive pertur-
bations on the BC factors. With the resulting perturbed
plant given by

P∆ = (N+∆N )(M+∆M )−1(L+∆L)+(K+∆K) (2)

where {N,M,L,K} is a BCF of P and ∆N , ∆M , ∆L,
∆K ∈ RH∞. Similarly to L/RCF uncertainty where
a perturbed plant is admissible only if coprimeness of
the factors is preserved (Glover and McFarlane, 1989,
Remark 4.4), the condition that bicoprimeness is preserved
under the perturbations is imposed herein. That is {N +
∆N ,M + ∆M , L+ ∆L,K + ∆K} is BC in RH∞.

A block diagram representation of the BCF uncertainty
structure given by (2) can be found in (Tsiakkas and Lan-
zon, 2017) where it can be observed that this generalizes
many of the uncertainty structures studied in the past, for
example by Lanzon and Papageorgiou (2009).

A generalized plant and uncertainty matrix for this uncer-
tainty structure can be defined as

Π =

 M−1 0 M−1L

0 0 I

NM−1 I P

 and (3)

∆ =

[
−∆M ∆L

∆N ∆K

]
. (4)

It is straightforward to confirm that using the above Π and
∆ yields P∆ = Fu(Π,∆).
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Before developing a robust control synthesis result, a state
space realization of the BCF generalized plant is needed.

Let P ∈ R have a stabilizable and detectable state

space realization P =

[
A B
C D

]
. Combining the QR-BCF

parametrisation in (1) with the generalized plant Π in (3),
the BCF generalized plant can be expressed in state space
form as

Π =

 A B1 B2

C1 D11 D12

C2 D21 D22

 =


A Q 0 B

−R I 0 0

0 0 0 I

C 0 I D

 . (5)

2.4 LMI Synthesis

We end the preliminaries section with a robust control
synthesis result. The following theorem was developed by
Gahinet and Apkarian (1994) and provides a LMI condi-
tions for the existence of a robustly stabilizing controller
for a given robust stability margin. When used in combi-
nation with a LMI solver, this could be used as a stepping
stone to synthesize an optimal (in terms of H∞ norm)
controller.

Theorem 2. (Gahinet and Apkarian (1994) Theorem 4.3).
Let Π ∈ R(p1+p2)×(q1+q2) have a minimal state space
realization

Π =

 A B1 B2

C1 D11 D12

C2 D21 D22

 .
Define

B̂2 = B2D
†
12, Â = A− B̂2C1, B̂1 = B1 − B̂2D11,

Ĉ1 = (I −D12D
†
12)C1, D̂11 = (I −D12D

†
12)D11 (6)

and

C̃2 = D†21C2, Ã = A−B1C̃2, C̃1 = C1 −D11C̃2,

B̃1 = B1(I −D†21D21), D̃11 = D11(I −D†21D21). (7)

Furthermore, let W12 and W21 be such that ImW12 =

Ker(I −D†12D12)B∗2 and ImW21 = Ker(I −D21D
†
21)C2.

Then there exists a stabilizing controller C∞ ∈ Rq2×p2

such that Fl(Π, C∞) < γ if and only if

(i) γ > max(σ̄(D̂11), σ̄(D̃11)),

(ii) ∃S > 0, T > 0 : λ(ST ) ≥ 1,

W ∗12


L(Â, S)− γB̂2B̂

∗
2

+

[
Ĉ1S

B̂∗1

]∗ [
γI −D̂11

−D̂∗11 γI

]−1 [
Ĉ1S

B̂∗1

]W12 < 0,

(8)

W ∗21


L(Ã∗, T )− γC̃∗2 C̃2

+

[
B̃∗1T

C̃1

]∗ [
γI −D̃11

−D̃∗11 γI

]−1 [
B̃∗1T

C̃1

]W21 < 0.

(9)

The above theorem only gives a test for the existence
of a (possibly suboptimal) controller achieving a specific
robust stability margin but no method of constructing
it. However, this controller can be constructed from the
matrices S and T satisfying (8) and (9) by following

the procedure outlined in (Gahinet and Apkarian, 1994,
Section 7).

3. BCF LMI SYNTHESIS

A robust control synthesis theorem based on the two-ARE
solution of Doyle et al. (1989) was given by Tsiakkas and
Lanzon (2019) for the BCF generalized plant given by
(5). In this section we adapt the results of Theorem 2 to
produce an LMI based alternative. First, in Subsection 3.1,
the general case is considered (i.e. no restrictions are
imposed on the QR-BCF used) while in Subsection 3.2
we study the case where the normalization property is
imposed on the factorization.

3.1 General Case

We begin by directly applying Theorem 2 to the BCF
generalized plant given by (5).

Theorem 3. Let P ∈ Rp×q have the stabilizable and

detectable state space realization P =

[
A B
C D

]
with

A ∈ Rn×n. Furthermore suppose that Q ∈ Rn×r and
R ∈ Rr×n are such that A + QR is Hurwitz. Then
there exists a stabilizing controller C∞ ∈ Rq×p such that
‖Fl(Π, C∞)‖∞ < γ if and only if γ > 1 and there exists a
pair of matrices S > 0 and T > 0 such that

a) L(A+ εQR, S) + γεSR∗RS

+ γ (εQQ∗ −BB∗) < 0, (10)

b) L((A+ εQR)∗, T ) + γεTQQ∗T

+ γ (εR∗R− C∗C) < 0, (11)

c) λ(ST ) ≥ 1 (12)

where ε = (γ2 − 1)−1.

Proof. By direct substitution, the definitions of (6) and
(7) take the form

B̂2 = [0 B] , Â = A, B̂1 = [Q 0] ,

Ĉ1 =

[
−R
0

]
, D̂11 =

[
I 0
0 0

]
, C̃2 =

[
0
C

]
, Ã = A,

C̃1 =

[
−R
0

]
, B̃1 = [Q 0] , D̃11 =

[
I 0
0 0

]
.

We can now make the following simplifying observations

Â = Ã = A, B̂1 = B̃1 = B1 = [Q 0] ,

Ĉ1 = C̃1 = C1 =

[
−R
0

]
, D̂11 = D̂11 = D11 =

[
I 0
0 0

]
.

Now let W12 and W21 denote bases for the null spaces

of (I − D†12D12)B∗2 and (I − D21D
†
21)C2 respectively. It

can easily be confirmed that (I − D†12D12)B∗2 = 0 and

(I − D21D
†
21)C2 = 0 which implies that W12 = I and

W21 = I.

From condition (i) of Theorem 2 we have that a stabilizing

controller exists only if γ > max(σ̄(D̂11), σ̄(D̃11)). In this

case, σ̄(D̂11) = σ̄(D̃11) = 1 and therefore γ must satisfy
γ > 1. Following through with the conditions of the LMI
synthesis theorem, there exists a stabilizing controller with
‖Fl(Π, C∞)‖∞ < γ if and only if γ > 1 and there exists
a pair of positive definite matrices S > 0 and T > 0
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satisfying (8) and (9). Using some simple linear algebra
manipulations, we obtain[

γI −D̃∗11

−D̃11 γI

]−1

=

 γεI 0 −εI 0

0 1
γ I 0 0

−εI 0 γεI 0

0 0 0 1
γ I

 .
Then substituting for each variable, (8) is transformed to

L(A,S)− γBB∗ + γεSR∗RS

+ εQRS + εS(QR)∗ + γεQQ∗ < 0,

which can be further simplified to

L(A+ εQR, S) + γεSR∗RS + γ(εQQ∗ −BB∗) < 0.

In a similar manner, we can show that (9) reduces to

L(A+ εQR, S) + γεTQQ∗T + γ (εR∗R− C∗C) < 0

which concludes the proof. 2

Remark 4. Using standard techniques such as the Schur
complement method of (Laub, 2005, Theorem 10.33) it
can be shown that conditions (10) and (11) of the above
theorem can be equivalently expressed as

(a1)

[L(A,S)− γBB∗ −SR∗ Q
−RS −γI I
Q∗ I −γI

]
< 0, (13)

(b1)

[L(A∗, T )− γC∗C TQ −R∗
Q∗T −γI I
−R I −γI

]
< 0. (14)

This can be proven by noting that (8) holds if and only ifL(Â, S)− γB̂2B̂
∗
2 SĈ∗1 B̂1

Ĉ1S −γI D̂11

B̂∗1 D̂∗11 −γI

 < 0

which gives (13) upon substituting for the various param-
eters. The second LMI given by (14) can be obtained from
(9) in a similar manner. ♦

3.2 Application to the NBCF Case

The result presented by Theorem 3 in conjunction with
standard LMI tools is sufficient for synthesizing robustly
stable BCF controllers. In this section however, we will
examine the application of this procedure in some special
cases, namely, when restricting the selection of Q and
R. Specifically, we will utilise the normalization property
as defined by (Tsiakkas and Lanzon, 2018, Definition 3)
to obtain some computational benefits. This provides
a significant advantage in the robust control synthesis
procedure which parallels the results obtained in the
classical case of normalized coprime factor synthesis as
demonstrated by Glover and McFarlane (1989). Namely,
one no longer needs to solve (10) and (11) but instead
closed form solutions can be obtained. Then the problem
of robust control synthesis reduces to a simple scalar
inequality that can be solved easily even with a simple
line search algorithm. It must be noted that imposing the
normalization property on the BC factors of the plant
restricts the robustness potential of the closed loop system;
in a manner similar to the coprime factor case examined
by Engelken et al. (2011).

Suppose that Q and R are chosen according to the condi-
tions laid out by (Tsiakkas and Lanzon, 2018, Theorem 2),
satisfying Q + XR∗ = 0 and R + Q∗Y = 0 where X ≥ 0
and Y ≥ 0 are the stabilising solutions to the AREs

L(A,X)−XR∗RX +BB∗ = 0 and (15)

L(A∗, Y )− Y QQ∗Y + C∗C = 0. (16)

Then the induced QR-BCf is normalized in the sense of
(Tsiakkas and Lanzon, 2018, Definition 3).

It is useful to note that the above can be transformed to

L(A+QR,X) +QQ∗ +BB∗ = 0 and (17)

L((A+QR)∗, Y ) +R∗R+ C∗C = 0. (18)

The above constraints can now be used to deduce the
existence of a robustly stabilizing controller as in the
following theorem.

Theorem 5. Let P ∈ Rp×q have the stabilizable and

detectable state space realization P =

[
A B
C D

]
with A ∈

Rn×n. Furthermore suppose that Q ∈ Rn×r and R ∈ Rr×n
are such that the induced QR-BCF is normalized. Finally,
let X̃ ≥ 0 and Ỹ ≥ 0 be the solutions to the Lyapunov
equations

L(A+QR, X̃) +QQ∗ + δI = 0 and (19)

L((A+QR)∗, Ỹ ) +R∗R+ δI = 0 (20)

for some δ ∈ R+.

Then there exists a stabilizing controller C∞ ∈ Rq×p such
that ‖Fl(Π, C∞)‖∞ < γ if and only if

a) γ > 1,

b) (1 + ε)ρ(XỸ ) < 1, (21)

c) (1 + ε)ρ(Y X̃) < 1, (22)

d) ρ
{

(γε)2(I−(1+ε)X̃Y )−1X̃Ỹ (I−(1+ε)XỸ )−1
}
≤ 1,

(23)

where X > 0 and Y > 0 are the solutions to (15) and (16)
respectively and ε = (γ2 − 1)−1.

Proof. First note that since A + QR is Hurwitz and(
A+QR,

[
Q
√
δI
])

and

([
R√
δI

]
, A+QR

)
are control-

lable and observable respectively for any non-zero δ, it
follows from (Zhou et al., 1996, Lemma 3.18) that X̃ > 0

and Ỹ > 0 hence X̃−1 and Ỹ −1 exist.

Using the Schur complement method, (13) yields[
L(A+QR,S)− γ(BB∗ +QQ∗) γQ− SR∗

γQ∗ −RS −(γε)−1I

]
< 0.

Now let S = (γεỸ )−1 − γX which when using (17) and
Q+XR∗ = 0 yields

(γε)−1

[
L(A+QR, Ỹ −1) −Ỹ −1R∗

−Ỹ −1 −I

]
− γ

[
L(A+QR,X) + (BB∗ +QQ∗) −(Q+XR∗)

−(Q+XR∗)∗ 0

]
= (γε)−1

[
L(A+QR, Ỹ −1) −Ỹ −1R∗

−RỸ −1 −I

]
< 0

⇔
[
L((A+QR)∗, Ỹ ) −R∗

−R −I

]
< 0

⇔ L((A+QR)∗, Ỹ ) +R∗R = −δI < 0.

Hence (10) is guaranteed given the above selection of S.

In a similar manner, with T = (γεX̃)−1−γY and (18), we
have that (11) is satisfied.
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The above assignments for S and T do not guarantee that
they will be positive definite as required by Theorem 3.
Hence additional conditions must be imposed; these can
be derived as follows.

S > 0⇔ (γεỸ )−1 − γX > 0

⇔ I − γ2εỸ
1
2XỸ

1
2 > 0

⇔ 1− (1 + ε)ρ(Ỹ
1
2XỸ

1
2 ) > 0

⇔ (1 + ε)ρ(XỸ ) < 1.

Similarly, it can be shown that T > 0 if and only if (7)
holds.

Finally, (23) follows by simply substituting S = (γεỸ )−1−
γX and T = (γεX̃)−1 − γY into (12).

ST = ((γεỸ )−1 − γX)((γεX̃)−1 − γY )

= (γε)−2(I − (1 + ε)XỸ )(X̃Ỹ )−1(I − (1 + ε)X̃Y ).

Then λ(ST ) ≥ 1 if and only if

ρ
{

(ST )−1
}
≤ 1

⇔ ρ
{

(γε)2(I−(1+ε)X̃Y )−1X̃Ỹ (I−(1+ε)XỸ )−1
}
≤ 1

which concludes the proof. 2

The above theorem provides a controller existence check
based on a set of three scalar inequalities over the domain
(1,∞). Since a solution is guaranteed to exist due to
the stabilizability and detectability of the plant, iterative
methods such as the bisection algorithm, can be used to
obtain the the smallest achievable γ.

Remark 6. Note that as δ → 0 in Theorem 5, X̃ and
Ỹ tend to the controllability and observability Gramians
of [M∗ N∗]

∗
and [M −L] respectively. As a result, (21)

and (22) can be expressed using the Hankel norm as

ρ(XỸ ) = ‖[M −L]‖2
H

and ρ(Y X̃) =
∥∥[M∗ N∗]

∗∥∥2

H
(see

(Zhou et al., 1996, Theorem 8.1) for a definition of the
Hankel norm). It can be shown that this gives a lower
bound on the achievable robust stability margin when
using a NBCF of the plant. The proof for this fact relies
on the following.

Let X̃(δ) be the solution to (19) for a given value of δ. For
some positive δ

L(A+QR, X̃(0) + (X̃(δ)− X̃(0))) +QQ∗ + δI = 0

⇒ L(A+QR, X̃(δ)− X̃(0)) + δI = 0

⇒ X̃(δ) > X̃(0) ∀δ > 0.

We know that X̃(δ) > X̃(0) and not X̃(δ) ≥ X̃(0)
since A + QR is Hurwitz and δI > 0 (Zhou et al., 1996,
Lemma 3.18). ♦

4. NUMERICAL EXAMPLE

In this section we present a numerical example and com-
pare with results obtained using classical coprime factor
theory. For this example we consider the robust stabiliza-
tion of a flexible booster rocket studied by Enns (1991).
The dynamics of the system under consideration can be
modelled as

P =



−0.003 −0.218 0 0 0 0 0 4 0
0.5 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 −0.04 −4.5 0 0 1
0 0 0 0 4 0 0 0 0
0 0 0 0 0 1 0 0 0

0 2.5 0.02 0.8 0 0 0 0 0.1
0 0 0 0 0.5 0.004 1.125 0.1 0


,

mapping the thrust vectoring control input to the pitch
rate measurements.

A normalized BCF of the plant was constructed using the
algorithm developed by Tsiakkas and Lanzon (2018).Then,
exploiting the results of Theorem 5 with δ = 10−6, a lower
bound for the robust stability margin was obtained as
3.242. The solutions to (13) and (14) were then constructed
as demonstrated in the theorem proof. Finally, the asso-
ciated controller was constructed as outlined in (Gahinet
and Apkarian, 1994, Section 7), with the resulting robust
stability margin given by γBCF = 3.246.

In addition to the above BCF based controller, a second
controller was synthesized using classical coprime factor
theory; specifically, using a normalized LCF (NLCF) of
the plant resulting in a robust stability margin of γNCF =
2.640.

Three simulations were executed, the first considering the
nominal plant and the other two the plant BC and LC
factors were perturbed by an uncertainty of magnitude
‖∆‖∞ = 0.3. The simulation results are shown in Figures
1 through 3. For these simulations, the designed controllers
were tasked with stabilizing the system to the origin,
starting from non-zero initial conditions. In both the
nominal and uncertain cases, the initial output vector of
the plant was set to [0.3 −0.1]

∗
. Figures 1 and 2 show the

nominal and perturbed responses of the system. It can
be seen that both controllers successfully and robustly
stabilize the system. Figure 3 shows the performance
degradation associated with each controller between the
nominal and perturbed cases. This is quantified simply by
the norm of the difference of the output in the nominal
and perturbed plants.

0 5 10 15 20 25 30
−0.2

0

0.2

BCF
NLCF

Fig. 1. Nominal performance of the synthesized controllers.

Although Figures 1 and 2 indicate that both controllers
robustly stabilize the plant with respect to both BCF and
NLCF uncertainty, Figure 3 demonstrates how, in this
scenario, the robust performance of the BCF based con-
troller is superior to that of its classical counterpart. It can
be observed that the BCF controller successfully counters
the perturbations at steady state without deviations from
the nominal case while the NLCF controller only does so

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7494



0 10 20 30
−0.2

0

0.2
BCF

NLCF

(a) BCF uncertainty.
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Fig. 2. Robust performance of the synthesized controllers.

10 20 30

0

0.02

0.04

(a) BCF uncertainty.

10 20 30
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0.02

0.04
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(b) NLCF uncertainty.

Fig. 3. Performance degradation of BCF ( ) and NLCF
( ) based controllers in the presence of BC and LC
factor perturbations.

successfully in the case of LC factor perturbations. This
seems to indicate that a BCF based controller is more
robust to ill-selected uncertainty models.

5. CONCLUSION

In this paper, a LMI based robust control synthesis result
is presented using BCF theory. The developed method-
ology is obtained by adapting the work of Gahinet and
Apkarian (1994) to the BCF generalized plant as proposed
by Tsiakkas and Lanzon (2017). These results are then
further specialized to the case of normalized BCFs defined
by Tsiakkas and Lanzon (2018) and shown to yield inter-
esting results. Finally, a numerical example is presented
to demonstrate the practical applicability of the developed
results.
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