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Abstract: This paper studies the application of economic model predictive control (MPC)
to snake robot locomotion. The proposed MPC algorithm integrates the gait pattern creation
into the closed loop by maximizing the forward snake velocity. We consider both purely planar
locomotion as well as obstacle-aided locomotion. A compliant obstacle-snake contact model
is introduced, rendering the interaction dynamics considered in the optimal control problem
smooth. We illustrate the efficacy of the scheme by numerical simulations. The emerging gait
patterns are undulatory and can make simultaneous use of anisotropic ground friction and
obstacles.
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1. INTRODUCTION

Research on snake robots is inspired by the agile locomo-
tion of biological snakes in a vast range of environments,
including cluttered, irregular and constrained spaces as
well as under water. Instead of merely avoiding obstacles,
snakes incorporate them into their movement by pushing
off of well-chosen contact points. Snake robots generally
consist of several rigid links connected by powered joints,
giving them similar kinematic freedom as biological snakes.
Such robots have a broad variety of applications ranging
from hazardous search and rescue tasks to sub-sea main-
tenance with challenging access. A major difficulty in the
implementation of snake robots lies in the coordination
of the many degrees of freedom to form a gait pattern,
which takes advantage of the environment. An overview
over previous work on modeling, control and application
of snake robots is given in Liljebäck et al. (2012) and
Pettersen (2017).

The snake robot coming in contact with and detaching
from obstacles introduces discontinuities into the system
dynamics, which must be considered when modeling. Prin-
cipal integration methods for non-smooth systems are the
smoothing method, event-driven method and timestepping
method (Leine and Nijmeijer, 2004). Transeth et al. (2008)
apply timestepping to a snake robot model to accurately
simulate the effect of contact forces between links and
obstacles as well as ground forces. In Liljebäck et al.
(2010, 2011), the hybrid character of the system is used
to formulate jump and flow maps triggered at the discrete
events of opening or closing contacts.

Existing control architectures for terrestrial snake robots
can roughly be divided into three principal approaches:
following predefined sine-based waves to create undu-

latory motion, model-based approaches for gait genera-
tion, and central pattern generators (CPG) (Ijspeert and
Crespi, 2007). Several control schemes have been intro-
duced specifically for obstacle-aided locomotion. As simple
sine-based gaits are too stiff to move through an unstruc-
tured array of obstacles, Liljebäck et al. (2011) add a
jam resolution scheme. Liljebäck et al. (2014) take contact
force measurements into account, “bending” the reference
shape such that contact forces face in the desired direction.
Travers et al. (2018) combine the sine-based approach
with CPG. Predefined waveforms travel down the snake,
adapting the waveform locally based on measured joint-
torque. The approach is shown to work in real-time in a
three-dimensional, cluttered environment without a priori
knowledge of the terrain. All these approaches are purely
kinematic, omitting the dynamics in the gait pattern cre-
ation. Furthermore, obstacles are only taken into account
once they have come into contact with the snake. Herein
lies an advantage of model predictive control (MPC),
which can explicitly consider upcoming obstacles while
planning optimal state and input trajectories.

MPC is an optimization-based control method, which re-
peatedly solves a finite-horizon optimal control problem
and applies the first part of the optimal input sequence.
While standard MPC aims to stabilize a set point by min-
imizing a positive definite cost function, economic MPC
offers a more general framework permitting the minimiza-
tion of a general cost (Grüne and Pannek, 2017). So far,
little research has been done on the application of MPC
to snake robots. In Marafioti et al. (2014), a scalar curve
parameter of a predefined gait is controlled via MPC to
achieve path following on a planar surface. As the param-
eters of the sinusoidal gait are chosen offline, this approach
is not suited to control a snake surrounded by unstructured
obstacles. Nonhoff et al. (2019) propose an economic MPC
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scheme for a simplified snake model on a planar surface.
Recursive feasibility and performance guarantees such as
a minimum velocity are derived. In simulations, the eco-
nomic MPC scheme is shown to outperform a controller
following a sinusoidal reference trajectory.

The work at hand develops an economic MPC control
approach for snake robot locomotion in the presence of
obstacles. We do not make use of a predefined gait pattern,
but rely on the MPC controlling the joint angle acceler-
ations to create the gait in the closed loop. An existing
snake model derived from first principles is employed.
We introduce a smooth obstacle contact model in order
to remove discontinuities from the system dynamics. By
considering obstacles in the model, and using a tailored
MPC formulation, the emerging gait can exploit these
obstacles. A simulation study demonstrates the efficacy
of the presented scheme.

This paper is structured as follows: In Section 2, we in-
troduce the employed mathematical model of the snake
robot including the compliant contact model. In Section 3
the MPC problem is formulated. Section 4 shows numer-
ical simulation results, followed by concluding remarks in
Section 5.

2. MODELING

MPC requires the repeated solution of an optimal control
problem. In hybrid systems, it is difficult to find opti-
mal control sequences, as both the combinatorics of the
discrete events and continuous dynamics must be consid-
ered. This affects the optimization of the snake model as
well. Particularly challenging is the fact that we do not
know the sequence of contacts between links and obsta-
cles a priori. For this reason, we opt to create a smooth
model which captures the relevant properties of snake
locomotion, thereby enabling the use of gradient-based
optimization. We assume that an accurate representation
of the impulsive dynamics is not central to obstacle-aided
locomotion.

2.1 Snake model

The snake robot model, briefly presented in the following,
is derived in Liljebäck et al. (2012). The two-dimensional
snake model consists of Nl identical rigid links, each with
the length 2l, mass m and moment of inertia J . The
width of the links is neglected. The external contact and
friction forces are assumed to act on the center of each
link. This is admissible due to the length of a link being
small compared to the snake length. An illustration of
the snake robot with the main kinematic and kinetic
symbols is given in Figure 1. In the following sections, the
optimization of the snake robot is carried out on an input-
transformed system. In order to transform the system,
the generalized coordinates are split into actuated and
unactuated coordinates, qa and qu. The actuated degrees
of freedom consist of the relative angles between the links
φ = [φ1, . . . , φNl−1]T, whereas the unactuated consist of
the angle of the head link θNl

and the position of the center
of mass px and py

qa = φ ∈ RNl−1, qu = [θNl
, px, py]T ∈ R3.

x

y

θ1

φ1
2`

(px, py)

Obstacle j

Link i

ni,j

ti,j

fC,Nl

fR,Nl

Link Nl(Xi, Yi)

Fig. 1. Schematic representation of the snake robot.

The complete dynamics of the snake robot are given by

M11q̈a +M12q̈u +W1 +G1

[
fR + fC

]
= τ (1a)

M21q̈a +M22q̈u +W2 +G2

[
fR + fC

]
= 03×1, (1b)

where fR = [fTR,x, f
T
R,y]T ∈ R2Nl denotes the ground

friction force in the global reference frame acting on each
link, fC = [fTC,x, f

T
C,y]T ∈ R2Nl the contact force, and

u ∈ RNl−1 the torque input. For brevity, we refer to
Liljebäck et al. (2012) for the definition of the matrices.
Applying the input transformation

τ = (M11 −M12M
−1
22 M21)u+W1 +G1

[
fR + fC

]
−M12M

−1
22 (W2 +G2

[
fR + fC

]
) (2)

leads to the transformed system

q̈a = u (3a)

q̈u = −M−1
22 (W2 +G2

[
fR + fC

]
)−M−1

22 M21u. (3b)

The complete state of the system is given by

x = [qTa , q
T
u , v

T
a , v

T
u ]T ∈ R2Nl+2, (4)

with va = q̇a and vu = q̇u. The position of the center of
mass of the individual links in x- and y-direction is denoted
by X = [X1, ..., XNl

]T ∈ RNl and Y = [Y1, ..., YNl
]T ∈

RNl , the angle spanned between each link and the x-axis
by θ = [θ1, ..., θNl

]T ∈ RNl .

In this work, a viscous model is used for the ground
friction force fR due to its computational simplicity. We
apply both isotropic and anisotropic ground friction in this
work, only the latter permitting the snake to move forward
without obstacles. The ground friction constants ct and cn
define the friction in the respective normal and tangential
link direction. The viscous friction model is described in
Liljebäck et al. (2012). While not considered in this paper
for the sake of a simpler presentation, the MPC scheme has
been shown to work with a smoothed Coulomb friction law
too, which represents a more accurate modeling approach.

2.2 Compliant contact model

Aside from the assumption of contact forces acting on the
center of the links, we assume that obstacle forces act only
in the normal direction of the respective link and that
the contacts between links and obstacles are frictionless.
Obstacles are considered to be circular and stationary. In a
compliant model, the contact force is a continuous function
of the distance between the bodies. The forces between all
Nl links and the No obstacles are considered to act at all
times in order to receive a smooth model, but they do
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Fig. 2. Influence of the normal and tangential obstacle-link
distance ni,j and ti,j on the contact force fc,i,j .

vary strongly in magnitude. The magnitude and sign of
the compliant contact force between link i and obstacle j
are described by

fc,i,j =
arctan(ani,j)

(bti,j/l)c + 1
·
[ d

(eni,j)g + 1
+ exp(h− 4k|ni,j |)

]
,

(5)
where ti,j and ni,j are the distance between link i and
obstacle j in the normal- and tangential direction, respec-
tively, and a, b, c, d, e, f , g, h, k > 0 are constant param-
eters. This model allows for an intuitive adaptation of the
size and stiffness of the obstacles. Making the obstacles
very stiff increases the physical accuracy of the model,
resembling more closely the non-smooth characteristics of
a hard contact. However, this leads to stiffer ODEs. The
compliant contact model can be adapted to match require-
ments on computation time and accuracy. In the following
simulations we use a = 50, b = 1, c = 50, d = 40, e = 5,
g = 16, h = 8.5 and k = 40, which approximates obstacles
with a radius r = 0.2 m. Figure 2 shows how the contact
forces depend on ti,j and ni,j . Due to a cost term associ-
ated with the contact forces in the optimization problem
below, it is important for the convergence of the gradient-
based optimizer that the contact force in the normal link
direction slopes towards the boundary of the obstacle. For
this reason, the exponential term is introduced in (5). The
forces acting on each link are transformed to the global
reference frame by

fC =



−sinθ1 0
. . .

0 −sinθNl

cosθ1 0
. . .

0 cosθNl





No∑
j=1

fc,1,j

...
No∑
j=1

fc,Nl,j


. (6)

The simplifications in the presented contact modeling
approach allow for behavior, which cannot occur in the
real system. Most notably, the absence of a contact force
component in tangential link direction allows link elements
to pierce obstacles. Only once the link reaches the center of
the obstacle does the normal contact force increase steeply,
as depicted in Figure 3a. Aside from being unrealistic,
this behavior leads to bad convergence of the optimizer,
as small changes in the input strongly affect the result.
Such behavior can be reduced by introducing a cost on the
contact forces. A related effect occurs when a joint passes
an obstacle as illustrated in Figure 3b. At this particular
position, nearly no contact force is acting on the two links.

fC,i

fC,i

(a) Piercing of an obstacle at
two time instances.

fC,i

fC,i+1

(b) Joint near obstacle.

Fig. 3. Specific problems with compliant contact.

When a cost on the obstacle forces or torques is considered,
any movement forward or back is discouraged, which can
lead to the snake being “stuck”. A possible remedy for this
problem lies in a smoother force formulation, as described
in the following section.

3. ECONOMIC MPC SCHEME FOR
OBSTACLE-AIDED SNAKE ROBOT LOCOMOTION

As a model-based control method, the presented scheme
requires a model of the environment surrounding the snake
and knowledge of the current state. In a real implementa-
tion, this requires state observers and perception. A review
of obstacle perception in snake robots is presented by
Sanfilippo et al. (2017). The MPC problem for the discrete-
time system, which is solved at each time step t, is given
by

min
u(t)

N−1∑
k=0

`(x(k|t), u(k|t),O) + Vf(x(N |t)) (7a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t),O) (7b)

x(0|t) = x(t) (7c)

u(k|t) ∈ U for k = 0, ..., N − 1 (7d)

x(k|t) ∈ X for k = 0, ..., N, (7e)

thus optimizing the open-loop trajectory over the predic-
tion horizon N . Hereby, x(t) denotes the system state
given in (4). The function f denotes the discrete-time
dynamics of the system including interaction with the
set of obstacles O = {O1, ...,ONo} ∈ R3No defining the
position and radius of each obstacle, thus f is a discretized
version of (3). In this formulation, the input u represents
the joint angle acceleration. The predicted time series at
time t are denoted as u(t) = {u(0|t), ..., u(N − 1|t)} and
x(t) = {x(0|t), ..., x(N |t)}. The sets U and X represent
state and input constraints, ` : X × U × R3Nl → R an
arbitrary stage cost and Vf : X → R a terminal cost. At
each time t, the first element of the optimal open-loop
input sequence is applied to the system, i.e., u(t) = u(0|t).
Our overall aim is to maximize the velocity of the snake in
the x-axis direction. This aim is implemented by a proper
choice of the stage cost function and a terminal cost on the
advancement of the snake over the prediction horizon N .
The choice of measure for this advancement is discussed
in the following section.

The snake robot has mechanical restrictions, which are
incorporated through constraints. In particular the joint
angle is limited by design, hence,

X = {x(t) ∈ R2Nl+2|φi(t) ∈ [−φmax, φmax], i = 1, ..., Nl−1}.
(8)
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(a) t = 0 s (b) t = 5.2 s (c) t = 10.3 s (d) t = 15.5 s

Fig. 4. Open-loop trajectory with T = 15.5, N = 105 maximizing the position of the head link Nl with ct = 1, cn = 2.

We introduce box constraints on the input u(t), represent-
ing a purely kinematical limit of the joint angle accelera-
tion

U = {u(t) ∈ RNl−1|ui(t) ∈ [−umax, umax], i = 1, ..., Nl−1}.
(9)

Ideally, the mechanical torque constraints of the joints
are taken into account directly by considering the con-
straint −τmax ≤ τ ≤ τmax. Due to the complexity of (2),
this greatly increases the difficulty of the optimization
problem. We were not able to achieve convergence of
the optimization problem under consideration of this con-
straint. Completely omitting the torque limits of the snake
robot may, however, lead to undesirable results. In specific
configurations, the high torques can lead to links passing
through compliant obstacles, thereby generating very large
contact forces. As a way of preventing this unrealistic
mechanism, we incorporated into the cost soft constraints
on either the contact forces or on the joint reaction torques,
given by

`f(x, u,O) =

No∑
j=1

Nl∑
i=1

f̂2c,i,j , (10)

`t(x, u,O) =

Nl∑
i=1

(
(M11 −M12M

−1
22 M21)u+W1 +G1f̂C

−M12M
−1
22 (W2 +G2f̂C)

)2
, (11)

respectively. In the aforementioned soft constraints, the

force formulation f̂c,i,j is a conservative approximation to
the contact force fc,i,j used in the system dynamics (3).
This decreases the computational effort and can prevent
the snake from getting “stuck” as described in the previous

section and depicted in Figure 3b. f̂c,i,j is computed
analogous to fc,i,j via (5), but employs an alternative set
of parameters. In the following simulations, we use â = 50,

b̂ = 0.7, ĉ = 10, d̂ = 40, ê = 5, ĝ = 16, ĥ = 8.5 and k̂ = 40.

Another mechanical restriction is that two joints cannot
overlap. We do not model link-link-contact, but can con-
servatively prevent such contact by constraining the head-
ing angle of each link via −π2 ≤ θi ≤ π

2 for i = 1, ..., Nl.
While this constraint limits the possible gait patterns, it is
viable as it assumes that links at no point face away from
the targeted direction during efficient forward locomotion.
As this requirement only serves as a guidance trying to
avoid a “bunching up” of the snake, it can be replaced by
a soft constraint introduced into the cost by the term

`θ(x, u) =

Nl∑
i=1

(
max(0, |θi| −

π

2
)
)2
. (12)

Having introduced hard constraints only on the joint
angles φ, and the input being u = φ̈, recursive feasibility
of the MPC scheme can be verified straightforwardly.

4. SIMULATION STUDY

In this section the efficacy of the proposed MPC scheme is
demonstrated through numerical simulations. The MPC
algorithm was implemented using the optimization tool
CasADi (Andersson et al., 2018). Hereby, the NLP solver
IPOPT is used, running with the linear solver MUMPS.
The optimization problem is discretized via the multiple-
shooting method. The time integration of the continuous
time dynamics of the system is carried out with the
classical Runge-Kutta method. At each sampling time,
the previous solution is taken to warm start the solver.
The simulated snake robot consists of Nl = 12 equal
links with a mass of m = 1 kg, link length 2l = 0.28
m and moment of inertia J = 0.016 kg m2. The snake is
initialized such that it is in an equilibrium state with the
obstacle contact forces. The constraint sets are given by
φmax = 0.45π and umax = 0.15. The parameters appearing
in the following cost functionals are tuned towards the
desired performance.

4.1 Planar Locomotion

Snakes can move on planar surfaces, if they exhibit
anisotropic friction behavior between the links and the
ground surface. Although the main advantage of snake
robots over wheeled and legged robots is their mobility in
rough terrain, the robot also needs to be able to traverse
planar surfaces. Moreover, the planar case serves as a
starting point to the locomotion problem and represents
the special case O = {} in the problem formulation.

At first, we regard the open-loop behavior of the snake, i.e.,
the solution of the optimization problem posed in (7a). It
is typical for economic MPC without terminal constraints
to show the so called turnpike behavior. This means that
open-loop trajectories spend most of the finite prediction
horizon in a neighborhood of the periodic or steady-state
infinite-horizon optimal operating behavior. Towards the
end of the open-loop prediction, a leaving arc deviates
from this optimal operating behavior. The number of time
steps consumed by the leaving arc is independent of the
prediction horizon (Angeli and Müller, 2019).

For the case of the snake robot on a planar surface, the
optimal infinite-horizon operating behavior is a periodic
orbit. An example of an open-loop trajectory with N =
105, T = 15.5 s, ct = 1, cn = 2, and considering
minimization of the following cost functional in (7a)

N−1∑
k=0

10`θ(x(k|t), u(k|t))− 6XNl
(N |t), (13)

is shown in Figure 4. After a transient period, the snake
enters a periodic orbit resembling an undulation pattern.
At the end of the prediction, the trajectory leaves the
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(a) Center of mass. (b) Sinusoidal terminal cost.

Fig. 5. Snake state at the end of prediction horizon with
different terminal costs.

periodic orbit. The occurring leaving arc is largely influ-
enced by the terminal cost Vf(x(N |t)). In the example
shown in Figure 4, the terminal cost is the position of
the head link along the x-axis. The snake achieves a short-
term advantage by fully stretching out. Alternatively, the
terminal cost could be chosen as the position of the center
of mass px. Under these conditions, the final state of the
open-loop trajectory is of the shape shown in Figure 5a,
where the snake takes on a U-shape. Out of the possible
terminal costs, we consider maximizing the head link po-
sition to be most desirable, as the leaving arc is limited
to fully stretching out and it does not rely on additional
constraints to prevent undesired terminal states. Overall,
the final state of the open loop is not beneficial to the
advancement beyond the prediction horizon. Ideally, we
aim to avoid the influence of the leaving arc in the closed
loop, which requires a sufficiently long prediction horizon.

Applying MPC with cost functional (13) to the nominal
snake model (3) results in the closed-loop system reaching
and remaining on a periodic orbit after a short transition
period. Figure 6 shows the velocity of the head joint angle
over time to form a triangle wave in the closed loop, clearly
differing from the sinusoidal velocity commonly associated
with lateral undulation. A similar velocity pattern was
observed in Nonhoff et al. (2019). The MPC scheme
adapts the gait pattern according to the ground friction
conditions. For the friction coefficients ct = 1 and cn = 2,
the scheme achieves an average velocity of v̄ = 0.068 m/s
with a period length of P = 2.45 s, while ct = 1 and
cn = 20 leads to v̄ = 0.32 m/s with P = 1.87 s.

It is known from literature that sinusoidal joint inputs
create adequate locomotion (Liljebäck et al., 2012). In
an attempt to reduce the leaving arc, we introduce an
additional terminal cost which should approximate the
infinite horizon cost by penalizing deviations from the
closest sinusoidal reference joint angles and velocities in
the final state. We define the terminal costs Vθ and Vv,θ as

Vθ(x(t), t) = min
θ0
||θ(N |t)− θref(θ0)||

Vv,θ(x(t), t) = min
θ0
||vθ(N |t)− vθref (θ0)||,

where θref is dependent on the amplitudes w1, w2, the
scalar optimization variable θ0 represents the overall phase
shift, and θδ the desired phase shift between the joints.

θref = w1

 sin(1θδ + θ0)
...

sin(Nlθδ + θ0)

 , vφ,ref = w2

 cos(1θδ + θ0)
...

cos(Nlθδ + θ0)

 .
The cost functional in (7a) is then given as

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

timesteps

φ̇
H
e
a
d

Fig. 6. Angular velocity of joint Nl − 1 (head joint).

min
θ0

N−1∑
k=0

10`θ(x(k|t), u(k|t))− 6XNl
(N |t)

+ 10||θ(N |t)− θref(θ0)||+ 10||vθ(N |t)− vθref (θ0)||.
We set φδ = 0.4, w1 = 0.4 and w2 = 0.6. The final state
of the open-loop prediction is depicted in Figure 5b. This
approach allows to adapt the proposed MPC scheme to
computational restrictions, following more closely the pre-
defined sinusoidal reference trajectory for small prediction
horizons or allowing more flexibility for longer prediction
horizons.

4.2 Obstacle-Aided Locomotion

As the MPC scheme is able to create useful gaits in the
closed loop in the planar case, we proceed by including
obstacles in the dynamics. Obstacle-snake interaction is
modeled by the compliant contact force with the param-
eters listed in Section 2.2. At first, we assume isotropic
ground friction with ct = cn = 20, such that the snake
must fully rely on obstacles to move forward. We set
N = 55, T = 7.5 s and employ in (7a) the composed
cost functional

N−1∑
k=0

3000`θ(x(k|t), (k|t)) + 0.002`t(x(k|t), (k|t),O)

− 100XNl
(N |t),

thus penalizing high, unrealistic joint torques via the soft
constraint cost given in (11). Figure 7 shows snapshots
of the resulting MPC closed-loop behavior of the snake.
The created gait resembles lateral undulation and makes
efficient use of the obstacles in the intended fashion.
Figure 8 shows the behavior with the cost functional

N−1∑
k=0

3000`θ(x(k|t), (k|t)) + 0.0004`f(x(k|t), u(k|t),O)

− 100XNl
(N |t),

which penalizes high contact forces instead of joint
torques. This case results in slightly different motion.
Specifically, Figures 7-8 show that applying a torque cost
favors serpentine motion, while the force cost promotes a
push- and pull behavior. The choice between these two
approaches can thus be made depending on the desired
behavior. Numerically, the simpler force cost has shown
to be more robust, in particular when many obstacles are
present. The cost on joint torques can, on the other hand,
more closely approximate a constraint on the torque, if
this is a limiting factor.

While the above simulation illustrated the case with
isotropic ground friction, it is realistic that locomotion
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(a) t = 2.7 s (b) t = 5.4 s (c) t = 8.2 s (d) t = 10.9 s

Fig. 7. Closed-loop behavior with T = 7.5 s, N = 55, using cost on joint torque, isotropic friction.

(a) t = 2.7 s (b) t = 9.5 s (c) t = 16.4 s (d) t = 23.9 s

Fig. 8. Closed-loop behavior with T = 7.5 s, N = 55, using cost on contact force, isotropic friction.

(a) t = 8.2 s (b) t = 13.6 s (c) t = 19.1 s (d) t = 24.5 s

Fig. 9. Closed-loop behavior with T = 7.5 s, N = 55, using cost on contact force, anisotropic friction.

is generated both by anisotropic ground friction and by
obstacles. Figure 9 shows the closed loop result of a sim-
ulation under these conditions with the same controller
configuration as in the previous case. We prescribe an
arbitrary unstructured array of obstacles and the friction
coefficients cn = 20 and ct = 7. The emerging gait pattern
clearly makes use of both locomotion methods, passing by
obstacles in a fluent manner.

The computation of each optimal input in the presented
simulations takes between 5 and 200 seconds on a desktop
computer running C code on a virtual machine. Clearly,
this by far exceeds the simulation step time, thus render-
ing a real-time use of this implementation impossible. It
should be noted that no effort was made specifically to
reduce computation time, the the runtimes of this experi-
mental implementation are only noted for completeness.

4.3 MPC of a hybrid snake model

In the previous simulations, the optimization model em-
ployed in the model predictive control formulation (7a)
is chosen to be identical to the controlled snake model.
It is of interest to assess whether the compliant contact
model is able to approximate the hybrid dynamics of the
system sufficiently well and, in turn, whether MPC based
on the smooth optimization model is able to produce useful
control inputs for the hybrid model. As a proof of concept,
a closed-loop simulation of a hybrid model controlled by
the MPC scheme based on the compliant contact model
is carried out. The hybrid model used in the following
simulations is based on Liljebäck et al. (2010). It uses the
same snake kinematics as the model shown in Figure 1, and
the same generalized coordinates q = [qTa , q

T
u ]T. The main

difference is that in the hybrid model, impacts between
links and obstacles are assumed to be inelastic, whereas
they are fully elastic in the compliant contact model.

Unlike the compliant contact model, the hybrid model
shows no distance effects, as the links are only subject to
the obstacle force once contact is established. The ground
friction in the two models are identical; in the following
we assume anisotropic viscous ground friction with the
friction coefficients cn = 20 and ct = 10. The simulation
step times are set to 5 × 10−5 s. At every time step,
possible impacts or detachments are tested for. Depending
on the detected event, the respective jump map or flow
map is triggered. The flow map, describing the continuous
dynamics and integrated using a Runge-Kutta method, is
given by

M11q̈a +M12q̈u +W1 +G1fR = τ + C̄T
1 λ (14a)

M21q̈a +M22q̈u +W2 +G2fR = C̄T
2 λ, (14b)

where the matrices C̄1 and C̄2 give the normal link
direction for those links which are in contact with an
obstacle at a given time. For brevity, we refer to Liljebäck
et al. (2010) for the definition of the matrices. The vector of
Lagrange multipliers λ ∈ R2Nl gives the magnitude of the
constraint forces. The constraint condition on acceleration
level is given by

˙̄Cq̇ + C̄q̈ ≥ 0, λ ≥ 0, λT( ˙̄Cq̇ + C̄q̈) = 0. (15)

The MPC scheme computes a kinematic input containing
the joint angle accelerations. In order to apply these to
the hybrid model, an input transformation is carried out,
corresponding to the one applied to the compliant contact
model in (2).

τ = (M11 −M12M
−1
22 M21)u+W1 +G1fR

−M12M
−1
22 (W2 +G2fR − C̄T

2 λ)− C̄T
1 λ. (16)

The dynamics of the system can now be rewritten as

q̈a = u (17a)

q̈u = −M−1
22

(
W2 +G2fR − C̄T

2 λ
)
−M−1

22 M21q̈a. (17b)

Into the constraint condition (15) we insert
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(a) t = 3 s (b) t = 9 s (c) t = 15 s

(d) t = 21 s (e) t = 27 s (f) t = 24.5 s

Fig. 10. Hybrid Plant, closed-loop behavior with T = 7.5 s, N = 55, using cost on contact force, anisotropic friction.
Green links are in contact with an obstacle. The red asterisk depicts the snake’s center of mass.

˙̄Cq̇+C̄q̈ = C̄M−1
[
−W−GfR+B

(
(M11−M12M

−1
22 M21)u

+W1 +G1fR −M12M
−1
22 (W2 +G2fR)

)]
+ ˙̄Cq̇

+ C̄M−1
[
C̄T +B

(
− C̄T

1 +M12M
−1
22 C̄

T
2

)]
λ.

The resulting linear complementarity problem (LCP) is
solved via the Lemke algorithm (see Liljebäck et al.
(2010)). Whenever a contact is closed, the jump map is
called. Thereby, we assume that the generalized coordi-
nates before and after impact are identical, i.e. q+ = q−,
and that the joint angle velocities are not affected by
impact, i.e. q̇+a = q̇−a . Introducing the vector of impulsive
forces as Λ ∈ R2Nl , the discontinuous dynamics are

q̇+u = q̇−u + [MT
12,M

T
22]−TC̄TΛ. (18)

The complementary conditions, again resulting in an LCP,
are given by

C̄q̇+ ≥ 0, Λ ≥ 0, ΛTC̄q̇+ = 0, (19)

with
C̄q̇+ = C̄q̇− + C̄2[MT

12,M
T
22]−TC̄TΛ. (20)

Figure 10 shows snapshots of the hybrid snake model re-
sulting from MPC closed-loop control. A similar behavior
as in the simulations of Sections 4.1 and 4.2 shown in Fig-
ure 9, where MPC was applied to the nominal compliant
snake model, can be observed. We conclude that under
the given conditions, the chosen compliant contact model
is a valid choice in order to generate, by means of MPC,
control inputs for a realistic hybrid snake model moving
in obstacle-cluttered environments.

5. CONCLUSION

This work presented an economic MPC scheme for snake
robots, which offers a holistic control approach combining
gait creation and actuation in the closed loop. A simulation
study was performed, demonstrating the ability of the
scheme to consider both ground friction and obstacles
in the gait creation. Due to the predictive nature of an
MPC controller, obstacles are considered before having
come into contact with the snake. The robustness of the
scheme with respect to model uncertainties remains to be
studied in detail. In order to implement the controller
on a real system, future work on an efficient numerical
implementation and on the perception of the environment
is required.
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Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., and Gravdahl, J. (2012).
Snake Robots: Modelling, Mechatronics, and Control. Advances
in Industrial Control. Springer, London.
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