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Abstract: This paper presents a novel single-ended fault identification algorithm for meshed
High Voltage Direct Current grids. This algorithm can be used in the context of fully-selective
fault-clearing strategies. Once a fault is suspected, using a parametric model describing the
voltage and current evolution just after the fault occurrence, a maximum-likelihood estimate of
the fault distance and impedance is evaluated. The presence of the fault is then confirmed
depending on the size of the confidence region of the obtained estimate. The approach is
evaluated on a simulated three-node meshed grid. The current and voltage need to be observed
during less than 0.2 ms to get an accurate estimate of the fault characteristics and to identify
consistently the faulty line.

Keywords: Power transmission, HVDC transmission lines, Parameter estimation, Fault
identification, Maximum likelihood estimators

1. INTRODUCTION

Multi-Terminal high-voltage Direct Current (MTDC)
grids will provide better interconnection over large dis-
tances between renewable energy sources and consumption
area (Pierri et al., 2017). Among the barriers still to over-
come for the development of High-Voltage Direct-Current
(HVDC) meshed grids, the protection of the lines is seen as
one of the most challenging (Van Hertem and Ghandhari,
2010).
The main tasks of a protection strategy include fault
detection, faulty component identification, tripping of the
breakers, and power restoring (WP4 PROMOTIoN, 2018).
Selective fault clearing strategies consist in identifying
the faulty line so as to trigger only the breakers of the
faulty line. This minimizes the impact of the fault on the
grid (Abedrabbo et al., 2017). Protection algorithms must
detect and identify the fault fast enough, typically in less
than a millisecond, to cope with the breaking capabilities
of Direct Current Circuit Breaker (DCCB), which makes
the use of communication between distant protection de-
vices not suitable. Hence, a selective protection scheme
requires single-ended algorithms ensuring selectivity, i.e.,
able to discriminate between internal faults, occurring on
the protected line and external faults, occurring elsewhere
in the grid.

? This work was carried out at the SuperGrid Institute, an institute
for the energetic transition (ITE). It is supported by the French
government under the frame of “Investissements d’avenir” program
with grant reference number ANE-ITE-002-01.

A faulty behavior is generally associated with high
variation rates in both current and voltage. Various
measurements-based methods using thresholds on volt-
age derivatives (Sneath and Rajapakse, 2016), or current
derivatives (Azad et al., 2015), or both , have been pro-
posed. They all benefit from costly inductances placed
at the end of each line, between the relay and the bus-
bar, see Figure 6. However, when considering overhead
transmission lines such inductances could be omitted.
Model-based methods try to benefit from a more accurate
description of the evolution of current and voltage when a
fault appears on a line. In the context of AC transmission,
(Banerjee et al., 2014) used a linearized power flow dynam-
ics model of the system both before and after the fault.
A quickest change detection approach is then applied to
detect as fast as possible a change in the probability distri-
bution of the phase angles. Still in AC, but considering the
transient behavior, multiple traveling wave arrival times
are considered in (Guzman-Casillas et al., 2018) to spot the
reflection patterns between the observation point and the
fault. Several wave arrival times (about a dozen) need to be
acquired, which limits the speed of the method. A multiple
behavioral model-based approach has been developed in
(Ali Al Hage et al., 2015). Universal line models are derived
for a finite set of possible fault cases. These models are
combined in a bank of Kalman filters used to perform
the fault identification. Measurements from the relay are
then compared to the predictions obtained from the filters.
The best predicting filter provides an estimate of the fault
characteristics. This technique requires considering many
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filters so as to be able to identify faults with a large variety
of characteristics.
Model-based algorithms are hence considered for fault
detection and identification. Nevertheless, finding a good
trade-off between quick detection and identification and
accurate (therefore complex) estimation of the fault char-
acteristics is still challenging.
This paper introduces a novel single-ended protection
algorithm able to detect and identify faults occurring on
transmission lines. Each relay embeds a parametric model
of the evolution of the current and voltage in case of a fault,
depending on a set of physical fault parameters. When a
fault is suspected, an iterative maximum-likelihood (ML)
estimate of the fault parameters is evaluated from the
data available at the relay. The estimated fault parameters
and their confidence intervals are exploited to determine
whether or not one has to consider that a fault actually
occurred on the protected line. Section 2 describes the
problem formulation and the proposed approach. The
modeling of the fault behavior is detailed in Section 3.
Simulation results are presented in Section 4.

2. PROBLEM FORMULATION AND PROPOSED
APPROACH

An MTDC grid is described by a graph G = (V, E), where
E is a set of edges, representing the lines connecting pairs
of nodes represented by the vertices in V. The nodes may
consist of converter stations or other equipments such as
sensors, relays, etc. Consider some vertex q ∈ V connected
to nq lines. Within the node represented by q, each line
is assumed to be monitored by some fault identification
device (FID) in charge of determining whether the line
under protection is faulty. Due to detection and identifica-
tion delay constraints, the FID hosted by different stations
do not have the possibility to exchange information.
Consider a fault occurring at some time instant tf on
a given line e = (q, q′) ∈ E of length dqq′ connecting
stations q and q′. The distances between the fault and
the stations q and q′ are df,q and df,q′ = dqq′ − df,q.
The fault is assumed to be characterized by its pole-to-
ground or pole-to-pole impedance Zf depending on the
type of fault, considered constant during the time interval
of interest in the order of a millisecond. The vector of
parameters describing a fault is thus p = (e, df,q, Zf, tf)

T.
During the parameter estimation process the line e is fixed.
Furthermore df,q and tf are linked through the detection
time of the first traveling wave at station q, td,q = tf+

df,q
cw

,

which can be measured. cw is the propagation speed of the
traveling waves, determined by the line parameters (Allan
Greenwood, 1991). Thus the vector of the fault parameters
can be reduced to p = (df,q, Zf)

T.
Assume that the FID of vertex q monitoring line e ac-
quires at a frequency f voltage and current measurements
(vq,e (t) , iq,e (t)) at the end of e connected to q. Using, e.g.,
an under-voltage criterion (Kong et al., 2014), the FID is
able to determine whether the grid behaves normally or
not.
Once an abnormal behavior has been detected, the FID
has to determine whether or not the fault occurred in
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Fig. 1. Overview of the proposed fault identification ap-
proach.

the monitored line. The proposed approach, see Figure 1,
considers a parametric model of the evolution of voltage
and current at node q when a fault occurs. An ML estimate
of the vector of fault parameters p is evaluated from the
voltage and current measurements (vq,e (t) , iq,e (t)). The
model depends on the characteristics of the grid (supposed
known) and on p. For a given value of p, the output at time
t of the model is denoted as

(
vm
q,e (t,p) , i

m
q,e (t,p)

)
. The

model combines a knowledge-based model derived from
physical principles and a behavioral model used to account
for additional effects such as soil resistivity.
Consider that the fault actually occurred on the line e with
parameters p∗. Assuming that the voltage and current
measurements noise sample are zero-mean Gaussian and
uncorrelated, the ML estimate p̂ of p∗ leads to the
minimization of the following cost function by the FID
(Walter and Pronzato, 1997)

c(n)(p) = f (n)(p)T
(
Σ̃(n)

)−1

f (n)(p), (1)

where

f (n) (p) =
[
(v (t1)− vm (p, t1)) , . . . , (v (tn)− vm (p, tn))

(i (t1)− im (p, t1)) , . . . , (i (tn)− im (p, tn))
]T

, (2)

and Σ̃(n) is a diagonal matrix containing the measurement
noise variances for the voltage and current sensors. The
number of measurement points n is increased each time
∆n new measurements are available.
For each p̂, an approximate confidence region R(α)(p̂) is
evaluated. To determine whether the estimate is consistent
with the hypothesis that the monitored line is faulty,
two tests are considered. First, a validity test determines
whether p̂ is included in some domain of interest. Second,
an accuracy test determines whether the area of the 95%
confidence region of the estimated parameters R(α)(p̂)
goes under some threshold tr95. This confidence region is
computed based on the Fisher information matrix (Walter
and Pronzato, 1997). If both tests are satisfied, the fault
is deemed to affect line e. When it is unable to conclude,
the FID waits for the availability of ∆n additional mea-
surements to update p̂ and R(α)(p̂). Thus the estimation
algorithm uses all the available measurements at each time
by increasing regularly the size of the cost function (2).
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Once enough measurements 1 have been made available
without allowing the FID to conclude, the fault is deemed
to be located elsewhere in the grid, or to be non-existent.

3. DC FAULT ANALYTIC MODELING

This section presents the model introduced to describe the
evolution of the current and voltage measured at the end of
a line affected by a fault. The considered model combines
a knowledge based model described in Section 3.1, and a
behavioral model described in Section 3.2, see Figure 2.

Physical
model

Behavioral
model

Line parameters

Station parameters

Grid topology

Soil resistivity

Fault
parameters p ym,0(t,p) ym,g(t,p, ρ)

ρ

Fig. 2. Two-layer combined physical and behavioral model

3.1 Physical model

The transient behavior of current and voltage measured
at a given point of a line e connecting stations q and
q′ can be modeled using traveling waves (Sohn et al.,
2016). The telegraph equations (Allan Greenwood, 1991)
allow one to represent the propagation and attenuation
of the voltage and current waves as they travel along the
line. The reflections and transmissions of those waves may
be described by a Bewley lattice diagram, see Figure 3
for the case of a three station network, as presented in
Figure 6, connecting stations q, q′, and q′′. The station q′′

is represented on both sides of the diagram.

FaultStation q Station q′ Station q′′Station q′′
df,q df,q′dq′′q dq′q′′

Vq,1
Vq′,1

tf

td,q

td,q′
time

Fig. 3. Example of a Bewley lattice diagram.

The evolution of the current and voltage at station q has
to account for several traveling waves (see Figure 3):
– due to the first incident wave from the fault to station q;
this wave is reflected by station q and by the fault (plain
blue lines),
1 The first traveling wave contains enough information to obtain a
consistent estimate of the fault parameters. The largest time interval
between the fault inception of the first wave and the arrival time
of a second wave is used as maximum measurement window, i.e.,
τmax = dqq′/cw ∼ 1ms for a 300 km long line.

– due to the first incident wave from the fault to station q′,
reflected by station q′, and transmitted by the fault
(dashed red lines),
– due to the transmission of the incident waves to other
lines of the grid or which have been transmitted several
times by the fault (dashed blue and green lines).
Expressions for these different waves can be explicitly
derived in the Laplace domain, assuming that p is known.
A resistive fault is considered and an RLC equivalent is
used for the converter stations (Leterme and Van Hertem,
2014). Furthermore, a loss-less approximation proved to
have sufficient accuracy when modeling the propagation of
the waves along the line. This, however, neglects the effects
of the soil resistivity. Considering these assumptions, it
is possible to analytically compute the inverse Laplace
transform of the expressions for the different waves. One
then obtains time-domain expressions, not detailed here
due to lack of space, which depend explicitly on p as well
as the physical parameters of the grid.

3.2 Modeling the impact of the soil resistivity

To simplify analysis, one represents the soil resistivity by a
known constant parameter ρ along the return path of the
line e. To account for soil resistivity effects, the physical
model of Section 3.1 is supplemented with a behavioral
model, to get a combined model, Figure 2.
Consider the output ym,0(p, t) = (vm,0(t,p)T , im,0(t,p)T )T

of the model in Section 3.1, representing the voltage and
current at a given point of the monitored line e. Pre-
liminary simulations have shown that the soil resistivity
impacts the model output ym,0 (p, t) as a low-pass filter,
see also Figure 4. Consequently, we choose to describe
the output ym,g = (vm,g(t,p)T , im,g(t,p)T )T of the model
accounting for the effects of the soil resistivity as

ym,g(tk,p, ρ) =
z−nd(b0 + · · ·+ bnb

z−nb)

1− a1z−1 − · · · − ana
z−na︸ ︷︷ ︸

=G(z−1,θ)

ym,0 (tk,p) ,

(3)
where nd models the input-output delay and θ =

(a1, . . . , ana , b0, . . . , bnb
, nd)

T . The same filter is used for
the voltage and for the current. An offline estimation of
nd and of the coefficients ai and bi may then be performed
considering the measurements y(t) =

(
v (t)

T
, i (t)

T
)T

for a vector of known fault parameters p using, e.g.,
the Electro-Magnetic Transient (EMT) software EMTP-
RV (Mahseredjian et al., 2007), taken a K time instants
t1, . . . , tK after the occurrence of a fault. For a given value
of p and of ρ, a least-squares (Ljung, 1987) estimate θ̂ of
θ is computed, i.e.,

θ̂ = argmin
θ

K∑
k=1

‖y(tk)− ym,g(tk,p, ρ,θ)‖22 . (4)

First traveling wave Figure 4 represents an example of
the evolutions of voltage and current at a station for the
first traveling wave generated by a fault. The considered
grid for the simulations is detailed in Section 4. The
estimation of the parameters of the soil resistivity filters
has been performed considering only the first traveling
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wave for both current and voltage. One observes that
the outputs of the combined model accounting for the
soil resistivity (ρ > 0) are much closer to the outputs
provided by EMTP-RV than the outputs of the physical
model neglecting the soil resistivity (ρ = 0). For the
considered behavioral model G

(
z−1

)
, considering na = 1,

nb = 0 provides the best compromise between accuracy
and evaluation complexity.
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Fig. 4. Comparison of the voltage (left) and current (right)
transient models, neglecting or accounting for the soil
resistivity with the output of an EMT simulation
software; the simulated fault is located 50 km away
from the station and has a resistance of 20Ω; the soil
resistivity is ρ = 100Ωm.

The coefficients of the transfer function G that models the
effect of soil resistivity clearly depend on the value of ρ.
Additional simulations have also evidenced the impact of
the components of the fault parameter vector p, among
which the distance to the fault df is the most important.
In order to get a behavioral model of the impact of the
soil resistivity that is valid whatever the fault location,
one explicitly accounts for df in the parameters ai and
bi of the model. Figure 5 describes the evolution of the
coefficients a1 and b0 as estimated for different values of
the fault distance df considering ρ = 100Ωm. Second order
polynomial models in 1/df are considered to model the
evolution of a1 and b0 with df, while nd is taken as the floor
of a second order polynomial in df, nm

d (df). The parameters
of those polynomials have again been adjusted by least
squares estimation. The evolution of am

1 , bm
0 , and nm

d with
df is also provided in Figure 5, showing an excellent match
with the estimated values of a1, b0, and nd.
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Fig. 5. Evolution of the estimated parameters a1, b0 (left)
and nd (right) as a function of df (crosses), compared
to their modeled evolution am

1 (df) and bm
0 (df) (left)

and nm
d (right) (dashed and dotted lines)

Other traveling waves To account for the effect of soil
resistivity for other traveling waves, one assumes that the
distance d in the parameters am

1 (d) and bm
0 (d) of the model

(3) has to represent the sum of the traveled distance.

For instance, the first traveling wave, once it has been
reflected by the station and at the fault location, when
it reaches again the station, has traveled three times the
fault distance (see Figure 3). The combined model output
ym,g is obtained by filtering the physical model output ym,0

with a filter G which parameters are am
1 (3df), bm

0 (3df), and
nd (3df).

4. SIMULATION RESULTS AND DISCUSSION

Measurements in case of faults are provided by EMTP-
RV and the FID is implemented in Matlab. The test
grid is first introduced and an illustrative example of
the algorithm is detailed in Section 4.1. More extensive
simulations are then carried out in Section 4.2.

4.1 Illustrative example

Consider a meshed grid with identical single-conductor
overhead lines and 3 MMC stations, see Figure 6. This
reduced grid can be seen as an elementary brick for larger
meshed grids since. Indeed, the presence of additional
stations further than 300 km from the fault would not
influence the transient during the first ms. FID in relays
Rij and Rji monitor line Lij of length dij , 1 6 i <
j 6 3. The current and voltage sensors used in the EMT
simulations have an accuracy class of 1%, a bandwidth of
300 kHz, a sampling frequency of 1MHz, and a resolution
of 16 bits. Conversion stations have a rated power of
1GW. The additional parameters have been taken from
(WP4 PROMOTIoN, 2018). The estimation algorithm
is initialized at pinit = (Rinit, dinit) = (1 Ω, 6 km). The
number of data points added after each iteration is fixed
at ∆n = 10. The maximum measurement window that can
be used to determine whether the line is faulty is set to
d/cw for a relay monitoring a line of length d where waves
propagate at a speed cw.

L 13
𝑑13 = 200km

R13MMC 1

𝑖13

R12

R 21

R 23

R 32

R 31
MMC 3

MMC 2

𝑣3

𝑣1 𝑖12

𝑖31

𝑖32

𝑖21

𝑖23𝑣2

F
𝑑f

L 23
𝑑23 = 150km

L 12
𝑑12 = 100km

Fig. 6. Test grid where an asymmetrical monopole (WP4
PROMOTIoN, 2018) with single conductor configu-
ration and earth return is considered

One considers a pole-to-ground fault occurring at tf = 0
in line L13 of the grid in Figure 6 at a distance d∗f = 80 km
from station 3 with an impedance of R∗

f = 40 Ω. Once an
abnormal behavior is detected at relay R31, the identifica-
tion algorithm is started. Its behavior can be analyzed by
plotting the contour of the cost function to be minimized
at each iteration as well as the trajectory of the estimate
(df, Rf) of the fault parameter vector, see Figure 7. The
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95% confidence ellipse of the estimated parameter vec-
tor is also displayed at iterations 5 and 9. After each
iteration, when new data points are taken into account,
the argument of the minimum gets closer to (d∗f , R

∗
f ) and

the cost contours concentrate around (d∗f , R
∗
f ). The esti-

mate (d̂f, R̂f) also gets closer to (d∗f , R
∗
f ) and the size of

the confidence ellipsoid reduces. The estimation algorithm
stops and correctly identifies the fault on the line after 9
iterations, requiring only measurements obtained in a time
window of 96µs. The estimated parameters are d̂f = 68 km
and R̂f = 55Ω when the algorithm stops.
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Fig. 7. Fault at d∗f = 80 km from station 3 with an
impedance of R∗

f = 40Ω: evolution of the contour
plot of the cost function and estimated parameters at
iterations 5 and 9.

The voltage and current measurements simulated by the
EMT software and the output the combined model of
Section 3.2 for d̂f = 60 km and R̂f = 54Ω are represented
in Figure 8. One sees that the observation of the first wave
is enough for an accurate fault identification.
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Fig. 8. Simulated current (left) and voltage (right) mea-
surements compared to the combined model outputs
for d̂f = 55 km and R̂f = 68Ω.

There is no guarantee that the optimization problem
defined in (1) is convex. Different initial points may
hence lead to different local optima. This is studied
by comparing the evolution of the estimated param-
eters when using different initial points. Five differ-
ent initializations have been considered, pinit(Ω, km) =
{(1, 6), (1, d13), (100, 0.5d13), (200, 6), (200, d13)}, where
d13 = 200 km. The results on Figure 9 show all the different
initialization lead to identical estimates in about 100µs,
corresponding to tens iterations. Thus, the resulting choice
of pinit = (1Ω, 6 km) only speeds up the convergence when
faults are close with low impedance. This is beneficial as
such faults are the most severe and require particular fast
identification. In practice, multiple parallel initialization
could be considered to increase the robustness of the algo-
rithm.
The behavior of the identification algorithm at the other
relays is analyzed by plotting the evolution of the confi-
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Fig. 9. Evolution of the estimated parameters for different
initial points on a typical observation window of
200µs.

dence region area at the 6 relays, Figure 10. The threshold
for the accuracy test is set to tr95 = 10. Even if the fault
is rapidly identified at relays R31 and R13, the evolution
of the accuracy criterion is plotted until the maximum
measurement window is reached to facilitate comparison
with the evolution of the criterion at the other relays. Since
the fault is close to station 3, it is first detected at relays
R31 and R32. The accuracy test is satisfied at relay R31

after 12 iterations and the fault is identified in line L13, as
shown previously. At relay R32 the area of the confidence
region never goes below the threshold, indicating that the
fault is not in line L23. At t = 0.5ms the fault is detected
at the other end of L13. At relay R13, the fault is again
correctly identified after few iterations whereas at relay
R12, the accuracy test is never satisfied. The fault finally
reaches the third station at t = 0.8ms where, as expected,
neither R21 nor R23 identify the fault to be on their
respective protected line. This illustrates that the method
is able to identify internal faults using very few measure-
ments while rejecting faults occurring on neighboring lines.
More extensive simulations regarding the selectivity of the
proposed method with respect to external faults can be
found in (Verrax et al., 2020). Moreover, Figure 10 shows
there is some freedom in the selection of the threshold
used. A threshold 10 times larger or smaller would not have
changed the identification results at the different relays but
only the identification speed at relays R13 and R31.
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relays

4.2 Extensive simulations

To test the behavior of the algorithm on a broader range
of fault cases, more extensive simulations were carried out
considering 54 different single fault scenarios with param-
eters (Rf, df) affecting the line between Stations 1 and 3,
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with the resistance Rf ∈ {0, 15, 35, 60, 90, 160}Ω and the
distance df ∈ {5, 15, 35, 90, 110, 120, 150, 160, 180} km. The
fault distance df is taken with respect to station 3 and the
performance of the algorithm embedded within the relay
R31 is studied. We compare the ability of the algorithm
to correctly identify faults as internal to the protected
line in two different configurations. First when the model
is only composed of the physical part that neglects the
soil resistivity (see Section 3.1) and second the model is
extended with the behavioral part (see Section 3.2) that
represents more faithfully the effects of the soil resistivity.
In Figure 11, the light blue area corresponds to faults
correctly identified using either the physical or extended
model. The dark green area corresponds to fault cases for
which the algorithm fails to identify the fault when using
only the physical model but succeeds when considering
the extended model. Thus, the extended model extend the
domain of applicability of the algorithm to high impedance
faults as well as faults occurring farther from the relay,
hence covering the total length of the protected line.
The amount of data required to perform the fault identi-
fication (considering only cases for which the algorithm
successfully identifies the fault) using the two different
models is compared in Figure 12. One can see that taking
into account the soil resistivity effects in the model largely
decreases the amount of data required for fault identifica-
tion. This is notably because performing consistent fault
parameters estimation without taking into account the soil
resistivity effects require the observation of more waves
(at least two). In particular the objective of being able to
identify at each step faults in less than 1ms can only be
met when using the extended model.
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Fig. 11. Region of fault parameters that leads to a correct
identification depending on the model used. The green
area corresponds to the additional fault cases detected
using the extended model whereas the light blue area
corresponds to the fault cases identified using either
model.

5. CONCLUSION

This paper presents a novel single-ended algorithm for
fault identification for meshed HVDC grids. A parametric
model consisting of a physical part and a behavioral part is
used to describe the voltage and current evolution just af-
ter the occurrence of a fault. Then, a maximum-likelihood
estimate of the fault parameters is performed and updated
each time new measurements are available. The confidence
region associated to the parameter estimate is used to

Fig. 12. Comparison of the length of the observed mea-
surement window required for successful identification
depending on the model used (ρ = 0 in red and
ρ = 100 in green). Here the maximum measurement
window has been set to 3ms to facilitate the compar-
ison between the two model performances.

decide if the fault affects the protected line or if more
measurements are needed. The approach is evaluated on
a simulated three-node meshed grid. On the vast majority
of fault cases the current and voltage must be observed
during less than 0.2ms to get an accurate estimate of the
fault characteristics and to identify consistently the faulty
line. To further improve the robustness and the precision
of the proposed approach, one can run several estimation
algorithms with different initialization within the same
relay and rely on a voting system among the provided
estimates.
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