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Abstract: This paper proposes new procedures for calculation of the Caputo derivative
of model-free measured signals. The evaluation of the non-integer derivative is realized by
integrating a set of ordinary differential equations and convolution. The derivative of order
ν (0 < ν < 2) is seen as an output of a linear-time-varying system driven by a time-
dependent known signal. Two procedures are proposed depending on the variation range of
the non-integer differentiation order. The proposed formulations facilitate the estimation of the
fractional derivatives when they are associated to dynamical systems represented by integer-
order differential equations. The efficiency of the developed numerical procedures are validated
and compared to exact fractional derivatives for different values of ν. It is shown that PIµDν

controllers can be easily realized by system augmentation and convolution. The advantages, the
straightforwardness and the main features of the proposed design are given.
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1. INTRODUCTION

Fractional calculus is recognized as a branch of mathemat-
ical analysis that exposes various possibilities of defining
the powers of the differentiation operator. The generaliza-
tion of the derivative notion consists of letting the power
of the derivative take a real or a complex value. Exten-
sive results and definitions were exposed in Zwillinger
(2014) and the reader can find a good introduction to
the subject in Annaby and Mansour (2012), Oustaloup
(2014), Oustaloup (1995), Sabatier et al. (2007), Samko
et al. (1987). The author is also referred to the references
Farges et al. (2010), Trigeassou et al. (2011), Sabatier et al.
(2007), Sabatier et al. (2015), Li et al. (2010), Ibrir (2017),
Ibrir and Bettayeb (2015) for some results on control of
fractional-order linear systems of commensurate type.

The ν-derivative of a given signal has a local property
when the derivative of order ν is a positive integer number.
Actually, when the order ν takes non-integer values, the
ν-derivative of a signal becomes dependent on the signal
past values; which means that, the non-integer derivative
has a memory or it has simply a non-local property. In
fact, many real systems are better modeled with fractional
differential equations like systems with long-term “mem-
ory” and systems exhibiting chaotic behaviors. Referring
to the literature, it was found that fractional-order systems
are suitable for characterization of the anomalous behavior
of dynamical systems and more representative of complex
dynamics that are slower or faster than exponential func-
tions. In those cases, the solutions are best represented

? This work is supported by the Solid-State Lighting (SSL) grant,
referenced EE002381.

by Mittag-Leffler functions. Moreover, the utilization of
fractional-order derivatives and integrals in closed-loop
control systems has shown outstanding performances, see
e.g., Luo and Chen (2009), Sabatier et al. (2015), Duma
(2012).

There are numerous attempts to realise and implement
fractional-order differentiators. The design of limited-
bandwidth fractional-order differentiators has been inves-
tigated in Serrier et al. (2007). In Liu et al. (2017) and
Wei et al. (2019), the authors propose fractional-order
differentiator to estimate the Riemann–Liouville fractional
derivatives of the system output in discrete noisy environ-
ment. Fractional-order differentiation through polynomial
integration has been proposed in Liu et al. (2015). In Tolba
et al. (2019) the authors present an implementation of the
Grünwald-Letnikov differentiator on Field-Programmable
Gate Arrays (FPGAs). Roughly speaking, the methods
to evaluate fractional-order signals are basically classified
into three main groups. The first group gathers computa-
tional methods based on the analytic definitions of the
different types of fractional derivatives. These methods
necessitate the well knowledge of the explicit forms of the
signal and its derivatives which are often difficult to obtain
except for some types of signals that are of polynomial
shape, see for example Samadi et al. (2004). In the second
group, we find all types of fractional-derivative approx-
imations by rational functions or transfer functions de-
scribing frequency-domain realizations of the operator Dν

in continuous time, see e.g., Oustaloup (1983), Oustaloup
(1995), Oustaloup (2014). Numerical methods based on
approximation of the fractional-derivative operators by
discrete transfer functions constitute the third group of
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methods; however, these techniques are essentially based
upon finite series approximation which makes the deriva-
tive very sensible to the signal frequencies. Moreover, if the
series has a large number of coefficients, more processing
time is required to implement the procedures in real time.

In this paper, new computational procedures for estima-
tion of the Caputo fractional-order derivatives are pro-
posed. The proposed methods consist of transforming the
fractional order operator into the solution of a set of
ordinary differential equations followed by a convolution
operation. The overall design is seen as an output of
a Linear-Time-Varying (LTV) system that can be easily
integrated/solved in real time. The speed of convergence
of to the exact fractional derivative is controlled by a
positive design parameter. The new proposed methods
facilitate the implementation of PIµDν controllers for
systems described by ordinary differential equations where
the dynamics of the controller is simply seen as an aug-
mented subsystem to the system to be controlled. More
importantly, the proposed design is not alerted to the
size or the frequency of the signal to be differentiated.
In contrast to the differentiators proposed in Wei et al.
(2019), and Liu et al. (2017), the signals are not required
to be dependent on the dynamics of well-known dynamical
systems which makes the proposed design classified as a
model-free technique.

Throughout this paper, we note by � and �≥0, the set of
real numbers and the set of positive real numbers, respec-
tively. The notation ẋ(t) stands for the time-derivative of
the function x(t), that is dx/dt. The notation C n(�) refers
to the set of continuous functions being n-times continu-
ously differentiable on �. For given integrable functions

f(t) and g(t), the notation f(t) ? g(t) =
∫ t

0
f(τ)g(t− τ)dτ

denotes the convolution of f and g. The notation f [k]
stands for the discrete signal which is available only at
regular instants.

2. LTV SYSTEM APPROACH TO THE
CALCULATION OF THE CAPUTO

FRACTIONAL-ORDER DERIVATIVE

2.1 Preliminaries

Let f(t) ∈ C n(�) be a time-dependent signal where ν is
a non-integer number and let a ∈ �. Define n = ceil(ν) as
a natural number verifying n − 1 ≤ ν < n. The Caputo
fractional derivative of f(t) of order ν is defined for t > a
as

C
aD

ν
t f(t) =

1

Γ(n− ν)

∫ t

a

(t− τ)n−ν−1 d
n

dτn
f(τ) dτ, (1)

where Γ(z) is the Gamma function defined as

Γ(z) =

∫ +∞

0

e−xxz−1 dx. (2)

Notice that the Riemann-Liouville fractional derivative of
f(t) ∈ C n(�) is defined for t > a by:

RL
a D

ν
t f(t) =

1

Γ(n− ν)

dn

dtn

∫ t

a

(t− τ)n−ν−1f(τ) dτ. (3)

Referring to Samko et al. (1987), the fractional integral of
a function f(t) ∈ C (�) is defined by:

Iµf(t) =
1

Γ(µ)

∫ t

0

(t− τ)µ−1f(τ)dτ, t > 0 (4)

where µ ∈ �>0 stands for the fractional-integration or-
der. In fact, the evaluation of the integral necessitates
the knowledge of the function f(t) which is not always
available as an explicit function of time. Additionally, even
the function f(t) is known, the convolution term that
involves the fractional derivatives (i.e., the Caputo and
the Riemann Liouville) are not always easy to find except
for some functions like polynomial functions. When the
function f(t) is given numerically as a set of values in
�, the formulas (1) and (3) shall be discretized to have
an estimate of the fractional derivatives. The objective of
this section is to provide the Caputo derivatives through
the solution of an ordinary differential equations when the
function or the signal f(t) ∈ � is measured in continuous
or discrete manners. More importantly, it is assumed that
the model that generates f(t) is not necessarily known.

2.2 The first procedure: case 0 < ν < 1

In this part of the paper, the numerical procedure is lim-
ited to the calculation of the Caputo fractional derivatives
in the particular case where 0 < ν < 1. Notice that the
Caputo derivative is exactly the convolution of the signal

g(t) = tn−ν−1

Γ(n−ν) and the first derivative of f(t); ν ∈ �>0.

Having the exact first derivative of f(t) for all t > 0 renders
the evaluation of the Caputo fractional derivative a simple
convolution operation of two time-dependent functions.
Based on this fact, and using some preliminary results
given in Ibrir (2003), the procedure is divided into two
steps: the first step consists of evaluating the exact time
derivative of f(t) and in the second step, the convolution

function g(t) ? df
dt (t) is calculated over the time interval

(a, t].

Theorem 1. Let f(t) ∈ C 2(�≥0) be a continuously mea-
sured signal. Define x1(t) and x2(t) as the trajectories of
the following ordinary differential equations:

ẋ1(t) = x2(t),

ẋ2(t) = −β2 t2
(
x1(t)− tan−1(f(t)

)
− 2β t x2(t),

β > 0, x2(0) = 0,

y =
t−ν

Γ(1− ν)
? ((1 + f2(t))x2(t)), t > a,

y(s) = 0 for s ≤ a.

(5)

Then, for sufficiently large value of a > 0,

lim
t→+∞

C
aD

ν
t f(t) = lim

t→+∞
y(t), 0 < ν < 1. (6)

Proof. Let z(t) = x1(t) for all time. To prove the result of
Theorem 1, it is sufficient to prove that z(t) will converge
to the signal u(t) = tan−1(f(t)). The z variable verifies
the following differential equation:

z̈ + 2β tż + t2β2(z − u) = 0, ∀t > 0, z(0) = z0, ż(0) = 0.
(7)

For all t ≥ 0, the solution of (7) is explicitly given by:
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z(t) =

(
1

2
e
− 1

2 t
(
β t−2

√
β
)

+
1

2
e
− 1

2 t
(
β t+2

√
β
))
z0

+
1

2
β

3
2

(
e2 t
√
β

∫ t

0

s2u (s) e
s
2

(
β s−2

√
β
)
ds

−
∫ t

0

s2u (s) e
s
2

(
β s+2

√
β
)
ds

)
e
− t2
(
β t+2

√
β
)
.

(8)

In Eq. (8), the term involving z0 vanishes to zero when
time tends to infinity; therefore, the behavior of z(t) at
infinity is only dependent on the remaining terms, i.e.,

lim
t→+∞

z(t) =

lim
t→+∞

1

2
β3/2

(
e2 t
√
β

∫ t

0

s2u (s) e
s
2

(
β s−2

√
β
)
ds

−
∫ t

0

s2u (s) e
s
2

(
β s+2

√
β
)

ds

)
e
− t2
(
β t+2

√
β
)
.

(9)

Define

V1(t) =

∫ t

0

s2u (s) e
s
2

(
β s−2

√
β
)

ds,

V2(t) =

∫ t

0

s2u (s) e
s
2

(
β s+2

√
β
)

ds.

(10)

Using integration by parts, we have

V1(t) =

(
tβ

3
2 + β

)
e
− t2
(
−β t+2

√
β
)
u (t)

β
5
2

− u (0)

β
3
2

−
∫ t

0

(
sβ

3
2 + β

)
e
− s2
(
−β s+2

√
β
)
u̇ (s)

β
5
2

ds,

(11)

and

V2(t) =

(
tβ

3
2 − β

)
e
t
2

(
β t+2

√
β
)
u (t)

β
5
2

+
u (0)

β
3
2

−
∫ t

0

(
sβ

3
2 − β

)
e
s
2

(
β s+2

√
β
)
u̇ (s)

β
5
2

ds.

(12)

This gives,

lim
t→+∞

z(t) =

lim
t→+∞

1

2
β

3
2

(
V1(t)e2

√
βt − V2(t)

)
e
− t2
(
β t+2

√
β
)

= lim
t→+∞

u(t)

+ lim
t→+∞

[(
−1

2
e−

1
2 β t

2+t
√
β − 1

2
e
− 1

2 t
(
β t+2

√
β
))

u (0)

− 1

2
e−

1
2 β t

2+t
√
β

∫ t

0

(√
βs+ 1

)
e
s
2

(
β s−2

√
β
)
u̇ (s) ds

+
1

2
e
− t2
(
β t+2

√
β
) ∫ t

0

(√
βs− 1

)
e
s
2

(
β s+2

√
β
)
u̇ (s) ds

]
.

(13)

This implies that

lim
t→+∞

z(t) = lim
t→+∞

[
u(t)

− 1

2
e−

1
2 β t

2+t
√
β

∫ t

0

(√
βs+ 1

)
e
s
2

(
β s−2

√
β
)
u̇ (s) ds

+
1

2
e
− t2
(
β t+2

√
β
) ∫ t

0

(√
βs− 1

)
e
s
2

(
β s+2

√
β
)
u̇ (s) ds

]
.

(14)

Let

V3(t) =

∫ t

0

(√
βs+ 1

)
e
s
2

(
β s−2

√
β
)
u̇ (s) ds,

V4(t) =

∫ t

0

(√
βs− 1

)
e
s
2

(
β s+2

√
β
)
u̇ (s) ds.

(15)

Using integration by parts then, V3(t) takes the form (16)
(see the top of the next page) where “i” is the pure complex
number verifying i2 = −1. Similarly, integrating V4(t) by
parts gives (17), see the top of the next page, where

erf(s) =
2√
π

∫ s

0

e−t
2

dt, −i erf(i s) =
2√
π

∫ s

0

et
2

dt.

(18)

According to (16) and (17), one can write

lim
t→+∞

z(t) = lim
t→+∞

u(t)

− 1

2
lim

t→+∞
e−

1
2 β t

2+t
√
βV3(t)

+
1

2
lim

t→+∞
e
− t2
(
β t+2

√
β
)
V4(t).

(19)

Since u(t) and u̇(t) are bounded for all time t ≥ 0 with

limt→+∞ e−t
2 ∫ t

0
eτ

2

dτ = 0 and

limt→+∞ e−t
2 ∫ t

0

∫ t
0
eτ

2

dτ = 0 then,

− 1

2
lim

t→+∞
e−

1
2 β t

2+t
√
βV3(t)

+
1

2
lim

t→+∞
e
− t2
(
β t+2

√
β
)
V4(t) = 0.

(20)

Consequently,

lim
t→+∞

z(t) = lim
t→+∞

u(t), lim
t→+∞

x2(t) = lim
t→+∞

u̇(t). (21)

As a result: limt→+∞ ḟ(t) = limt→+∞ u̇(t)(1 + f2(t)). For
a and β sufficiently large, the system output y(t) will
converge to the exact fractional-order derivative of f(t).
Remark that the transient of the differentiator is fast when
β is large enough. This means that the rate of convergence
is dependent on the free parameter β. This ends the proof.

Remark that system (5) is able to produce the first
derivative of tan−1(f) whatever the nature of f ; i.e.,
being bounded or not bounded. Hence, the fractional-
order derivative of order ν can be always estimated once
f ∈ C 2(�≥0). The coefficient β in system (5) regulates
the transient behavior of the fractional-order derivative
estimates. Obviously, fast transient behaviors are seen
when β is large.

2.3 The second procedure: case 1 < ν < 2

When the non-integer differentiation order increases, the
fractional derivatives will be dependent on the higher-
order derivatives of the signal f(t). In this subsection, the
second algorithm deals with the case of ν between one and
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V3(t) =

(
−i e− 1

2 erf
(
i
2

√
2
)
π
√

2−
√
π
)
u̇ (0)

√
π
√
β

+

(
−ie−1

2 π
√

2 erf
(
i
2

√
2
(√
βt− 1

))
+
√
πe

1
2 t
(
tβ−2
√
β
))

u̇ (t)

√
π
√
β

+

∫ t

0

(
i
√
πe−

1
2

√
2 erf

(
i

2

√
2
(√

βs− 1
))
− e

s
2

(
β s−2

√
β
))

ü(s) ds

√
β

·

(16)

V4(t) =

(
−i e−

1
2 erf

(
i
2

√
2
)
π
√

2−
√
π
)
u̇ (0)

√
π
√
β

+

(
i e−

1
2π
√

2 erf
(
i
2

√
2
(√
βt+ 1

))
+
√
πe

1
2 t
(
tβ+2
√
β
))

u̇ (t)

√
π
√
β

−

∫ t

0

(
i
√
πe−

1
2

√
2 erf

(
i

2

√
2
(√

βs+ 1
))

+ e
1
2 s
(
β s+2

√
β
))

ü (s) ds

√
β

·

(17)

two where the signal to be differentiated is required to be
differentiable up to the order three.

Theorem 2. Let f(t) ∈ C 3(�≥0) be a continuously mea-
sured signal. Define x1(t), x2(t), and x3(t) as the trajecto-
ries of the following ordinary differential equations for all
time t ≥ 0:

ẋ1(t) = x2(t),

ẋ2(t) = x3(t),

ẋ3(t) = −β3 t3
(
x1(t)− tan−1(f(t)

)
− 3β2 t2 x2(t)− 3β t x3(t), β > 0,

y =
t1−ν

Γ(2− ν)
?

[
(1 + f2(t))

[
x3(t) + 2f(t)x2

2(t)
]]
,

t > a,
(22)

with y(s) = 0 for s ≤ a, x2(0) = x3(0) = 0. Then, for
sufficiently large value of a > 0, we have

lim
t→+∞

C
aD

ν
t f(t) = lim

t→+∞
y(t), 1 < ν < 2. (23)

Proof. The proof is omitted for space limitation.

3. DISCRETE-TIME IMPLEMENTATION AND
ROBUSTNESS AGAINST ADDITIVE NOISE

3.1 Numerical discretization

The dynamics of systems (5) and (22) are sets of or-
dinary differential equations that can be solved by any
numerical method like the Runge-Kutta, Dormand-Prince,
Adams-Bashforth, or the predictor-corrector numerical
procedures. However, the outputs of these systems can be
approximated by the discrete convolution formulae that
provides an integration error of order h; where h is the time
sampling period. For 0 < ν < 1 and a = 0, the discrete
output of the fractional derivative is approximated by:

y[k] = y(k h) = h

k−1∑
j=1

φ[j] ϕ[k − j], y[0] = 0. (24)

where

φ[j] =
t−νj

Γ(1− ν)
, ϕ[j] =

(
1 + f2[j]

)
x2[j], tj = j h.

(25)

Similarly, for 1 < ν < 2 and a = 0, the output of the
fractional differentiator is estimated as

y[k] = y(k h) = h

k−1∑
j=1

ψ[j] ϑ[k − j], y[0] = 0,

ψ[j] =
t1−νj

Γ(2− ν)
, ϑ[j] =

(
(1 + f2[j])

(
x3[j] + 2f [j]x2

2[j]
))
.

(26)

Actually, the global error of approximation will be depen-
dent on the numerical procedure used to integrate systems
(5) and (22) and the error of integration of their outputs.

The developed algorithms can serve as potential candidate
methods to realize PIµDν control laws by integrating
ordinary differential equations and then evaluating in-
stantaneous convolutions. To clarify this claim, assume
that a linear SISO system having a dynamics of the form
Ẋ = AX + Bw; Y = CX is stabilizable by a feedback
controller w = k Y + kdD

νY ; where 0 < ν < 1. Then, the
closed-loop system is realized as follows:

Ẋ(t) = AX(t) +Bw(t),

ẋ(t) = G(t)x(t) +H(t) tan−1(Y (t)),

w(t) = k Y (t) +Kd

[
t−ν

Γ(1− ν)
? ((1 + Y 2(t))x2(t))

]
,

(27)

where

x(t) =

(
x1(t)
x2(t)

)
, G(t) =

(
0 1

−β2t2 −2β t

)
,

H(t) =

(
0

β2t2

)
.

(28)

3.2 Robustness

When the signal to be differentiated is corrupted by noise,
it is quite recommended to saturate the time “t” when the
first states of (5) and (22) enter in a small neighborhood
of the input u = tan−1(f). In case of noisy measurement,
the exact asymptotic tracking of the systems’ input is
not recommended. Additionally, the value of the free
parameter β > 0 must be selected to avoid signal error
amplification. Since the signal tan−1(f) is bounded for
all time, the choice of a reasonable value of β is quite
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sufficient to estimate the fractional-order derivatives with
bounded errors. The parameter β can be also tuned
automatically to achieve this objective. The procedure of
tuning the parameter β is not considered herein due to
space limitation.

4. NUMERICAL SIMULATIONS

To illustrate the efficacy of the proposed algorithm, we
have compared the exact fractional-order derivative of
the sine wave with its counterpart given by numerical
integration of the system of equations (5). By taking
ν = 1

2 , a = 0, and f(t) = sin(t), we have

C
aD

ν
t f(t) =

√
2Fc

(√
2
√
t

π

)
cos(t)

+
√

2Fs

(√
2
√
t

π

)
sin(t),

(29)

where Fc(τ) and Fs(τ) are respectively the Fresnel cosine
integral and the Fresnel sine integral defined by:

Fc(τ) =

∫ τ

0

cos

(
πt2

2

)
dt,

Fs(τ) =

∫ τ

0

sin

(
πt2

2

)
dt.

(30)

The system of equations (5) is integrated by the Dormand-
Prince algorithm of order five with a uniform sampling
period ∆t = 10−3 (sec), β = 30, a = 0. The system
output of system (5) is approximated by the discrete
convolution formulae and compared to the exact derivative
(29), see Fig. 1. Actually, the value of the convolution term,
provided by the system output y, could be improved by
minimizing the sampling period ∆t or by selecting another
numerical scheme of signal integration.

Now, we shall assess the quality of estimation of the
fractional derivative for ν = 3

2 and select the signal f(t)

as 1
10 t sin(t). The exact fractional derivative of f is

C
0 D

3
2
t f(t)

=
1

10
√
π

[
−
√

2π

(
t sin(t)− 3

2
cos(t)

)
Fc

(√
2t

π

)

+
√

2π

(
cos (t) t+

3

2
sin (t)

)
Fs

(√
2t

π

)
+
√
t

]
·

(31)

The result of Theorem 2 is used to evaluate the instanta-
neous value of the fractional derivative as shown in Fig.
2 where β = 20, a = 0. System (22) is integrated by
the Dormand-Prince method of order five with a sampling
period ∆t = 10−3 (sec). It is noticed that even a = 0, the
quality of the estimates of the fractional derivatives are
quite good.

The second differentiator is tested again for a noisy un-
bounded signal f(t) = 1

10 t sin(t) + n(t) where n(t) is a
white noise, see Fig. 3. For a = 0, ∆t = 1 ms, the
fractional derivative of order 3

2 is represented in Fig. 4. In
this simulation, β = 3 while the time “t” in system (22) is
saturated at 5 (sec). Notice that the output of system (22)
is able to reproduce the exact derivative with a bounded
error.
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Fig. 1. The fractional derivatives of a bounded function,
ν = 1

2 and f(t) = sin(t)
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Fig. 2. The fractional derivatives of unbounded function,
ν = 3

2 , f(t) = 1
10 t sin(t)
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Fig. 3. The noisy signal
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Fig. 4. The fractional derivatives of noisy unbounded
function, ν = 3

2 , f(t) = 1
10 t sin(t) + n(t)

5. CONCLUSIONS

The Caputo derivative of a measured signal is transformed
into a simple convolution of a time-dependent function
with the solutions of a set of ordinary differential equa-
tions. This formulation favorites the realization of non-
integer-order derivatives when combined with other sys-
tem dynamics. The LTV-system approach to the calcula-
tion of the fractional derivatives is not dependent on the
signal frequency and its form (bounded or not bounded).
Moreover, the rate of convergence to the true derivatives
is easily tunable by increasing or decreasing the value of a
design parameter.
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