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Abstract: New Linear-Matrix-Inequality (LMI) conditions are proposed for H∞ analysis and
synthesis of uncertain fractional-order systems where the non-integer order of differentiation
belongs to the set ]0 2[. The developed conditions are extended LMI conditions involving
additional LMI variables needed for numerical calculation of the feedback gains. The stability
conditions are embedded with the necessary H∞ LMI conditions leading to new formulation
of the bounded-real-lemma result. The stabilizability conditions with H∞ performance are
subsequently derived and tested with static-pseudo-state feedbacks and static-output feedbacks
as well.
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1. INTRODUCTION

Stability and stabilizability of fractional-order systems
constitute one of the major concerns for scientists and
engineers alike. In the past decades, great efforts have
been devoted to the analysis and synthesis of fractional-
order models of different types, see e.g., Manabe (1960),
Oustaloup (1983), Oustaloup (1995); Matignon (1996);
Farges et al. (2010); Trigeassou et al. (2011); Oustaloup
(2014); Sabatier et al. (2007). Additionally, the use of
convex-optimization tools in characterization, analysis,
and synthesis of non-integer models has tremendously con-
tributed to the development of straightforward numerical
methods that enhance the theory and the practice related
to this special class of dynamical systems, see e.g., Farges
et al. (2010) and the references therein.

Robust stability and stabilizability of dynamical systems
subject to unknown parameters and external-input uncer-
tainties have received a great deal of interest by control
theorists and practitioners, see e.g., Zhang et al. (2013),
Lan et al. (2012), Lan and Zhou (2013), Lan and Zhou
(2011), Ibrir and Bettayeb (2015), Ibrir (2017). The H∞
analysis method is one of those methods that provides
a good characterization of the H∞ norms of transfer
functions relating some inputs or disturbances to some
specific outputs. By minimizing these norms, we utterly
aim to measure and improve the system robustness against
eventual undesirable external inputs. As a matter of fact,
even the H∞ analysis and synthesis methods are well
developed for integer-order dynamical models, there are
some difficulties in its generalization to fractional-order
systems of commensurate and non-commensurate type.
Preliminary results on this subject could be traced in the
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references Mose et al. (2008), Fadiga et al. (2011), Farges
et al. (2013), Shen and Lam (2014).

A nice introduction to H∞ analysis and synthesis of
fractional-order systems of uncertain commensurate type
are provided in Mose et al. (2008), Fadiga et al. (2011),
Farges et al. (2013), Shen and Lam (2014). The list is not
exhaustive, and the reader may find other contributions
that concern other classes of systems. To the best of our
knowledge, the H∞ analysis and synthesis of uncertain
fractional-order systems with stability requirement has
been discussed for all possible values of the non-integer
differentiation orders. In this note, new extended LMI
conditions are proposed for H∞ analysis and synthesis of
fractional-order systems. The developed LMI conditions,
are subsequently exploited for the design of numerically
tractable conditions for controller design with H∞ perfor-
mance. The stabilizability results are presented with both
static pseudo-state feedbacks and static-output feedbacks
as well. The presented results are seen as a generalization
of the bounded-real-lemma result when uncertainties are
randomly distributed in the state and the output matri-
ces. Thanks to the extended nature of the proposed LMI
conditions, the simultaneous check of stability along with
the estimation of the H∞ bound are made possible with
decoupled-variable conditions and hence, more flexibility is
introduced in the design of H∞ controllers for this specific
class of fractional-order systems.

2. PRELIMINARY RESULTS

Throughout this paper, we note by �, �>0, and � the
set of real numbers, the set of positive real numbers, and
the set of complex numbers, respectively. In all the paper
statements, the parameter “r” is denoting the complex
r = ej(1−α)π2 where α is a non-integer positive real.
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The notation A > 0, with A being a Hermitian matrix
(respectively, A < 0), means that the matrix A is positive
definite (respectively, negative definite). P ? denotes the
conjugate transpose of the complex matrix P . The star
entry in a matrix stands for the element induced by the
corresponding conjugate transpose. The notation Her(P )
denotes the sum P + P ?. A′ is the matrix transpose of A.
The L2 norm of a square integrable function ϕ(t) over the

interval [0 t], noted ‖ϕ‖L2 , is defined as
∫ t

0
ϕ2(s)ds. ‖G‖∞

denotes the H∞ norm of the transfer function G(s). The
spec(A) denotes the set of the eigenvalues of the matrix
A. We note by I and 0 the identity matrix of appropriate
dimension and the null matrix of appropriate dimension,
respectively. <(Z) stands for the real part of the complex
matrix/number while =(Z) denotes the imaginary part of
the complex matrix/number. The notation X̄ stands for
the conjugate of the complex X. Recall that a Hermitian
matrix Q > 0 iff the following holds true:(

<(Q) =(Q)
−=(Q) <(Q)

)
> 0. (1)

2.1 Problem statement

Consider the fractional-order system represented by the
pseudo-state formulation:

RL
a D

α
t x = A(θ)x+B1 u+B2ξ,

y = C(θ)x+D ξ,
(2)

where x = x(t) is the pseudo-state vector, u = u(t) ∈ �m
is the control input, ξ = ξ(t) ∈ �q is an external bounded
input that may not be measured, and y = y(t) ∈ �p is
the system measured output. The operator RL

a D
α
t stands

for the Riemann-Liouville fractional differentiation with
respect to time. Recall that the fractional integral of
a continuously differentiable function f(t) is defined by
Samko et al. (1987):

Iαf(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, t > a (3)

where, α ∈ �>0 denotes the fractional-integration order,
and

Γ(α) =

∫ +∞

0

e−xxα−1 dx. (4)

The order α Riemann-Liouville fractional derivative of a
function f(t), with α ∈ �>0, is consequently defined by:

RL
a D

α
t f(t) =

dm̄

dtm̄
(
Im̄−αf(t)

)
=

1

Γ(m̄− α)

(
d

dt

)m̄ ∫ t

a

(t− τ)m̄−α−1f(τ) dτ ; t > a.

(5)

where m̄ is the smallest integer verifying “m̄−1 ≤ α < m̄.”
Similarly, the Caputo-fractional derivative of order α is
defined as

C
aD

α
t f(t) =

1

Γ(m̄− α)

∫ t

a

(t− τ)m̄−α−1

(
d

dt

)m̄
f(τ) dτ.

(6)
In the sequel and for simplicity of notation, the Riemann-
Liouville fractional derivative operator is simply noted
Dα. The real-valued matrices A(θ) ∈ �n×n, B1 ∈ �n×m,
B2 ∈ �n×q, C(θ) ∈ �p×n, and D ∈ �p×q are dependent
on a vector of parameters θ that is assumed to be constant

and bounded. Additionally, it is assumed that A(θ) ∈ A ,
C(θ) ∈ C where A and C are polytopes of �n×n and
�n×p defined as follows:

A =
{
A(θ) ∈ �n×n : A(θ) =

N∑
i=1

τiAi,

τi ≥ 0,∀i ∈ {1, · · · , N},
N∑
i=1

τi = 1
}
,

C =
{
C(θ) ∈ �p×n : C(θ) =

M∑
i=1

σj Cj ,

σj ≥ 0,∀i ∈ {1, · · · ,M},
M∑
j=1

σj = 1
}
.

(7)

It is important to mention that the initial condition
x(t0) is not sufficient to evaluate the future state of the
system. Therefore, the vector x = x(t) does not strictly
represent the true state of the system. As a consequence,
the nomenclature of a pseudo-state is utilized.

2.2 H∞ norm of uncertain commensurate fractional-order
systems

For u = 0, the transfer function of the system from the
input ξ to the output y is given by G(s) = C(θ)(sαI −
A(θ))−1B2 +D and the H∞ norm of G(jω) is defined as

‖G(jω)‖∞ = sup
ω∈�

σ̄(G(jω)), (8)

where σ̄(G(jω)) denotes the largest singular value of
G(jω) at the frequency ω. In time domain,

‖G‖∞ = sup
ξ(t) 6=0

‖y(t)‖L2

‖ξ(t)‖L2

· (9)

In case where the system is not presenting any uncertainty,
a linear-matrix-inequality approach to the determination
of an upper bound of the H∞ norm is discussed in Mose
et al. (2008). This result is known as the bounded real
lemma for fractional-order systems. Based on this result,
a generalization of this Lemma for uncertain systems is
summarized in the following result.

Lemma 1. The L2-gain of the fractional-order system (2)
is bounded by γ for u = 0, that is, ‖G‖∞ < γ if there
exists a Hermitian matrix P = P ? ∈ �, such that the set
of the following LMIs hold:

Υi,j =

Her(rPAi) PB2 r̄C ′j
? −γI D′

? ? −γI

 < 0, ∀i,∀j,

1 ≤ i ≤ N, 1 ≤ j ≤M.

(10)

Proof. The proof of this Lemma is straightforward by

showing
∑N
i=1

∑M
j=1 τiσjΥi,j < 0, and therefore, the result

provided in Mose et al. (2008) becomes fulfilled. This ends
the proof. �

As a matter of fact, the bounded real Lemma, provided
in Mose et al. (2008), characterises only the upper bound
of the H∞ norm of the transfer function and it does not
guarantee the system stability in the general case. Con-
sequently, the stabilizability synthesis using the result of
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Lemma 1 may not be possible for certain stable fractional-
order systems. Recall that depending on the value of the
fractional-differentiation order “α”, several stability theo-
rems have been stated, see the results in Matignon (1996)
for 0 < α < 1 and Sabatier et al. (2010) for 1 < α < 2.
We would rather recall these results for sake of clarity.

Theorem 2. Moze et al. (2005) Let A ∈ �n×n be a real
matrix. Then, the fractional-order system:

Dαx(t) = Ax(t), 1 < α < 2, (11)

is asymptotically stable, that is, | arg(spec(A))| > απ2 if
and only if there exists a symmetric and positive definite
matrix P verifying[

(AP + PA′) sin(ψ) (AP − PA′) cos(ψ)
? (AP + PA′) sin(ψ)

]
< 0 (12)

where ψ = (1− α
2 )π.

According to this result, it can be inferred that the pseudo-
state system: Dαx = Ax; (1 ≤ α < 2) is asymptotically
stable iff there exists a real matrix P > 0 such that

rPA′ + r̄AP < 0, r = ej(1−α)π2 . (13)

Condition (13) is equivalent to condition (12). This can
be easily proved using (1). In Farges et al. (2010), it
is shown that the stability of commensurate fractional-
order systems of the form: Dαx = Ax; 0 < α < 1,
is dependent on the solution of the following convex
optimization problem:

X = X? ∈ �, X > 0, A(rX + r̄X̄) + (rX + r̄X̄)′A′ < 0.
(14)

Note that the matrix rX + r̄X̄ is always real and it is not
necessarily positive definite. Based on these results, the
H∞ synthesis with stability requirements can be general-
ized for uncertain polytopic fractional-order systems. We
summarize the second result of this paper in the following
statement.

Theorem 3. The fractional-order system (2) is stable for
u = 0, ξ = 0 and the norm of the transfer function, from
the input ξ to the output y, is less than γ for u = 0 and
non-null ξ if the following hold true:

• For 0 < α < 1: ∃ X > 0; X ∈ �n×n and ∃P = P ? ∈
�n×n such thatHer(rPAi) PB2 r̄C ′j

? −γI D′

? ? −γI

 < 0, ∀i,∀j,

1 ≤ i ≤ N, 1 ≤ j ≤M.

X > 0, Ai(rX + r̄X̄) + (rX + r̄X̄)′A′i < 0,

1 ≤ i ≤ N.

(15)

• For 1 ≤ α < 2: ∃Q = Q′ ∈ �n×n and ∃P = P ? ∈
�n×n such that:Her(rPAi) PB2 r̄C ′j

? −γI D′

? ? −γI

 < 0, ∀i,∀j,

1 ≤ i ≤ N, 1 ≤ j ≤M.

Q > 0, rQA′i + r̄AiQ < 0, 1 ≤ i ≤ N.

(16)

The LMIs (15) and (16) could be restrictive in the general
case because the matrices P and Q should be found

to satisfy all the conditions for the different convex-hull
matrices Ai; 1 ≤ i ≤ N , Cj ; 1 ≤ j ≤ M . The objective
of this paper is three folds. The first is to set new LMI
conditions that are less restrictive and the second one is
to decouple the state matrix A(θ) from the matrices P and
Q so as we can design state feedbacks with real gains. The
last fold is to gather the stability conditions with the H∞
LMI conditions in one unified condition. Since the system
is uncertain, it is not possible to evaluate explicitly the
true value of ‖G‖∞; therefore, it is always desirable to
know the minimum value of the upper bound of ‖G‖∞
and hence, an estimate of the true value may be found.
For instance, we start by giving the sufficient conditions
for the open-loop system stability with H∞ performance.

Theorem 4. Consider the commensurate fractional-order
system (2) with u = 0 and α ∈ [1 2[. Let G(s) be the
transfer function from the input ξ o the output y. The
system is stable with ‖G‖∞ < γ if there exist a set of
n × n symmetric and positive-definite matrices P1, · · · ,
PN , a complex hermitian matrix � ∈ �n×n and a real
matrix � ∈ �n×n such that the optimization problem (17)
(see next page) has a solution for some γ > 0.

Proof. When conditions (17) are all satisfied then,∑N
i=1

∑M
j=1 τiσjWi,j < 0. This immediately implies that

the matrix: rA(θ)�+ r̄�?A′(θ) r

N∑
i=1

τi Pi − r̄�? +A(θ)�

? −�− �′


(18)

is negative definite. Consequently,

( I A(θ) ) rA(θ)�+ r̄�?A′(θ) r

N∑
i=1

τi Pi − r̄�? +A(θ)�

? −�− �′


(

I
A′(θ)

)
< 0.

(19)

The last inequality is nothing but

Her
(
rPτ A

′(θ)
)
< 0; Pτ =

N∑
i=1

τi Pi, (20)

which translates the stability condition of the fractional-
order system for 1 ≤ α < 2. The second part of the proof
consists in showing that ‖G‖∞ < γ. Starting from the fact
that Wi,j < 0; ∀i,∀j. Then,

N∑
i=1

M∑
j=1

τiσj

 I 0 0
0 0 0
0 I 0
0 0 I


′

Wi,j

 I 0 0
0 0 0
0 I 0
0 0 I


=

N∑
i=1

M∑
j=1

τiσj

Her(rAi�) B2 r̄�C ′j
? −γI D′

? ? −γI


=

Her(rA(θ)�) B2 r̄�C ′(θ)
? −γI D′

? ? −γI

 < 0.

(21)

The last inequality is a direct consequence of the result of
the bounded real Lemma for fractional-order systems that
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min
P1,··· ,PN ,�,�

γ

subject to: Wi,j =

 rAi�+ r̄�?A′i rPi − r̄�? +Ai� B2 r̄�C ′j
? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.
(17)

has been largely discussed in Mose et al. (2008). This ends
the proof. �

The result given by Theorem 4 is seen as an alternative to
the result of the bounded real Lemma discussed Mose et al.
(2008). In case where the non-integer differentiation order
α belongs to the set ]0 1[, a similar result is formulated in
the following statement.

Theorem 5. Consider the commensurate fractional-order
system (2) with u = 0 and α ∈]0 1[ and define G(s)
as the transfer function from the input ξ o the output
y. The system is stable with ‖G‖∞ < γ if there exist a
set of positive definite hermitian matrices X1, · · · , XN ,
a complex hermitian matrix � ∈ �n×n and a real matrix
� ∈ �n×n such that the optimization problem (22) (see
next page) has a solution for some γ > 0.

Proof. Assume that the set of LMIs (22) are fulfilled.
Then, for all possible values of i, the matrix:(

rAi�+ r̄�?A′i (rXi + r̄X̄i)
′ − r̄�? +Ai�

? −�− �′
)

(23)

is negative definite. As a consequence,

( I A(θ) )
N∑
i=1

τi

(
rAi�+ r̄�?A′i (rXi + r̄X̄i)

′ − r̄�? +Ai�
? −�− �′

)
(

I
A′(θ)

)
= A(θ)(rXτ + r̄X̄τ ) + (rXτ + r̄X̄τ )′A′(θ) < 0.

(24)

where Xτ =
∑N
i=1 τiXi. The fulfillment of inequality (24)

implies the stability of the system for u = 0. By following
the same proof outline of Theorem 5, one can conclude
that the H∞ norm of G(s) is less than γ when the set of
conditions (22) are met simultaneously. This is the end of
the proof. �

3. STABILIZABILITY WITH H∞ ANALYSIS

3.1 Stabilization with static pseudo-state feedbacks

In the general case, the fractional-order system may not
be stable. In this case, a pseudo-state feedback is needed
to not only stabilize the system but to ensure certain
robustness against additive disturbances. The previously
developed conditions are utilized to set stabilizing con-
trollers with the best H∞ performance index. The design
is summarized in the following statement.

Theorem 6. Consider the fractional-order model given by
(2) where α may take non-integer values in the set ]0 2[
and G(s) being the transfer function from the input ξ to
the output y. Then, for 0 < α < 1, the closed-loop system
is stable under the feedback u = Y �−1x for ξ = 0 and

‖G‖∞ < γ for ξ 6= 0 if the optimization problem (25) (see
next page) is solvable for some hermitian positive definite
matrices Xi ∈ �n×n; 1 ≤ i ≤ N and two real matrices
� ∈ �n×n and Y ∈ �m×n. Furthermore, for 1 < α < 2,
the fractional-order system (2) is stabilizable by the same
feedback u = Y �−1x with ‖G‖∞ < γ for non-null ξ if the
convex optimization problem (26) is solvable for a set of
real positive-definite matrices Pi ∈ �n×n; 1 ≤ i ≤ N , and
real matrices Y ∈ �m×n and � ∈ �n×n.

Proof. The proof becomes straightforward by replacing
in the LMI conditions (17) and (22) the state matrix A(θ)
by the closed-loop matrix and the complex matrix � by �.
This ends the proof. �

3.2 Stabilization with static output feedbacks

The static-output-feedback problem is generally stated
as a non-convex optimization problem where numerically
tractable solutions to this problem are often related to suf-
ficient conditions that raise different types of conservatism.
More precisely, the static-output stabilization problem is
often formulated as bilinear matrix inequalities due to the
coupling nature of matrix variables. Elegant and straight-
forward solutions to the static-output-feedback problems
have been proposed for both continuous-time and discrete-
time-integer-order linear systems, see e.g., Boyd et al.
(1994), Boyd and Vandenberghe (2004), Ebihara et al.
(2015), Dong and Yang (2013), Prempain and Postleth-
waite (2001), Crusius and Trofino (1999), Ghaoui et al.
(1997) and the references therein. The static-output feed-
back problem continuous to be a challenging issue when
other additional requirement are imposed. In this part of
the paper, the H∞ control of uncertain fractional-order
systems is investigated with simple static feedbacks. The
complete design is clarified in the following statement.

Theorem 7. Consider the fractional-order model given by
(2) where α belongs to ]0 2[ and G(s) being the transfer
function defined from the input ξ to the output y. Then,
for 0 < α < 1, the closed-loop system is stable under the
output feedback u = YN−1y for ξ = 0 with guaranteed
bound ‖G‖∞ < γ for ξ 6= 0 if the optimization problem
(27) is solvable for some hermitian positive definite ma-
trices Xi ∈ �n×n; 1 ≤ i ≤ N and three real matrices
� ∈ �n×n, Y ∈ �m×p and N ∈ �p×p. Furthermore, for
1 < α < 2, the fractional-order system (2) is stabilizable
by the same feedback u = YN−1y with ‖G‖∞ < γ for
non-null ξ if the convex optimization problem (28) (see
next page) is solvable for a set of real positive-definite
matrices Pi ∈ �n×n; 1 ≤ i ≤ N , and arbitrary real
matrices Y ∈ �m×p, � ∈ �n×n and N ∈ �p×p.

Proof. The outline of the proof of this Theorem is similar
to the proof of Theorem 6 after imposing the equality
constraint C� = NC. This ends the proof. �
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min
X1,··· ,XN ,�,�

γ

subject to:

 rAi�+ r̄�?A′i (rXi + r̄X̄i)
′ − r̄�? +Ai� B2 r̄�C ′j

? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.
(22)

min
X1,··· ,XN ,�,Y

γ

subject to:

Her(rAi�+ rB1Y ) (rXi + r̄X̄i)
′ − r̄�′ +Ai�+B1Y B2 r̄�C ′j

? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.

(25)

min
P1,··· ,PN ,�,Y

γ

subject to:

Her(rAi�+ rB1Y ) rPi − r̄�′ +Ai�+B1Y B2 r̄�C ′j
? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.
(26)

min
X1,··· ,XN ,�,Y

γ

subject to: C� = NC,Her(rAi�+ rB1Y C) (rXi + r̄X̄i)
′ − r̄�′ +Ai�+B1Y C B2 r̄�C ′j

? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.

(27)

min
P1,··· ,PN ,�,Y

γ

subject to: C� = NC,Her(rAi�+ rB1Y C) rPi − r̄�′ +Ai�+B1Y C B2 r̄�C ′j
? −�− �′ 0 0
? ? −γI D′

? ? ? −γI

 < 0, 1 ≤ i ≤ N, 1 ≤ j ≤M.

(28)

3.3 Illustrative example

Consider the uncertain fractional-order system:

D1.15x =

(−1 0 1
0 2 1
0 1 θ1

)
x+

(
0
1
1

)
u+

(
1
0
0

)
ξ,

y =

(
1 1 0
−1 0 θ2

)
x+

(
1
1

)
ξ, x(0) 6= 0.

(29)

where θ1 and θ2 are constant uncertain parameters having
the following bounds: −3.18 ≤ θ1 ≤ −3 and 1 ≤ θ2 ≤ 1.2.
The objective here is to illustrate the design given by the
statement of Theorem 7 to set up a static-output feedback
that stabilizes the unstable fractional-order system (29)
with a minimum H∞ bound γ. The LMIs (28) are found
feasible for the domains of variation of the parameters θ1

and θ2 where

P1 = P2 =

(
1253/2857 −317/3401 −148/491
−317/3401 1218/1619 438/637
−148/491 438/637 1956/1043

)
,

� =

(
1150/3169 0 0

? 1150/3169 0
? ? 1150/3169

)
,

N =

(
1150/3169 0

0 1150/3169

)
,

Y = (−2103/1675 −1297/1001 ) , γ = 1646/501.

(30)

The linear matrix inequalities subject to equality con-
straints continue to be fulfilled with α = 1.25 and wider
ranges of variations of the uncertain parameters θ1 and θ2;
that are: −4.18 ≤ θ1 ≤ −3 and 1 ≤ θ2 ≤ 1.3. However, the
minimum value of γ verifying (28) has increased which is
not surprising because the H∞ norm of the system transfer
function may increase with the non-integer differentiation
order. Of course, there is a limitation for the feasibility of
the LMIs when the parameter variations are notably high.
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4. CONCLUSION

For different values of the non-integer differentiation or-
der, new LMI conditions for H∞ control and analysis of
uncertain fractional-order systems of commensurate type
are developed. The newly developed conditions permit the
estimation of the upper bound of the system H∞ norm
when uncertainties are distributed in the state and the
output matrices. The extended nature of the proposed LMI
conditions permit latterly to shape numerically tractable
conditions for stabilizability by means of static state and
output feedbacks.
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