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Abstract: Given the complexity and isolation of the blast furnace (BF), field engineers generally
operate the system upon their former experience and the operating manual. Harsh environment
and equipment shortage have made the testing of silicon content a prevailing method for the
detection of temperature within BF. As the silicon content is a comprehensive performance of
internal thermal state, knowing the exact value in advance can be very helpful for operators to
keep the furnace temperature at a reasonable extent. Thus, an improved gated recurrent unit
recurrent neural network (GRU-RNN) is proposed to predict the silicon content of hot metal,
indicating a competitive performance at 92.4% hit rate among several deep learning methods.
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1. INTRODUCTION

Iron making process is essentially a nonlinear and dynamic
process due to the complexity of heat and mass transfer,
chemical reactions, and phase change. Take extreme condi-
tions in the sealed BF (Fig. 1) as an example, it is difficult
to control the system stably and safely, resulting in an
extra waste of fuel and energy. As the BF accounts for
70% of energy consumption during the whole production
chain, little improvement in temperature control strategy
can save huge money and make great contributions to
environmental protection. It is widely accepted that the
percentage of silicon content in hot metal can represent
the comprehensive thermal state due to the shortage of
detection and analysis methods for temperature within
the BF by Chen and Gao (2019); Li et al. (2017b); Jiang
et al. (2020). There are three kinds of materials including
silica, carbon, and oxygen that participate in the silicon
reduction reactions. As Peacey and Davenport (2016) has
written, the chemical concept of silica reduction reactions
are illustrated in Eq. 1.

SiO2 + C = SiO(g) + CO

SiO(g) + [C] = [Si] + CO

SiO2 + C + [C] = [Si] + 2CO

(1)
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Fig. 1. The schematic structure of blast furnace.
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The heat, mass and momentum transferring in BF are
strongly influenced by deeply correlated external factors
such as air temperature, pressure differential and O2 en-
richment. With materials descending in BF, the reduction
of silica starts from the belly and ends with the tuyere
level, reaching the maximum of silicon content. After that,
partial silicon is oxidized again at the metal-slag interface.
With those being said, the silicon content is an integrated
expression of the thermal status inside the BF, leading to
a variety of mechanism and data-driven prediction models.
The pruning algorithms in Nurkkala et al. (2011); Xie and
Zhou (2020) were based on feedforward neural networks,
as a start, have been used to find the relevant inputs, time
lags and network connectivity. Besides, some other intel-
ligent algorithms like evolutionary algorithms, principal
component analysis, and fuzzy neural network have also
been applied to silicon content modeling by Zhou et al.
(2020a,b); Zhou et al. (2017a); Yin et al. (2020). Even
though much attention has been drawn to deep learning
amongst all machine learning methods with the help of
TensorFlow, seldom have they been utilized to solve the
exiting problems in the process industry.

In recent years, LeCun et al. (2015); Ma et al. (2015);
Le (2013) have propelled deep learning structures such as
deep belief network, deep neural network and recurrent
neural network to the forefront of automatic speech recog-
nition, natural language processing, and man-machine
games. In 2017, the world No.1 ranked Go player Jie Ke is
defeated by AlphaGo, a program that is developed upon
deep neural network and tree search algorithms under
TensorFlow framework proposed by Silver et al. (2016).
TensorFlow, an open source project, serves as math li-
brary for data-flow computation across a variety of tasks.
With no doubts, the application of deep neural networks
under the TensorFlow framework has great potential in
estimation of silicon content in hot metal.

2. METHODOLOGY

The proposed model to learn the mapping rules between
input and output arguments is based on deep neural
network, more accurately, the modified recurrent neural
network used by Guo et al. (2020); Liu et al. (2019);
Alemany et al. (2019). The deep learning method consists
of input layer, output layer, and hidden layer that is
modified by disposition gated recurrent unit (dGRU).
Before applying the dGRU-RNN to learn the physical
characteristics of BF, it is necessary to determine the input
variables as well as their time lags by a feature selection
approach. In this paper, we depend on mutual information
(MI) to prepare the input arguments of proposed deep
learning method.

2.1 MI Feature Selection

In the field of machine learning, it is widely accepted
that algorithms can only approach the upper bound of
performance determined by feature selection and data
characteristics. Therefore, it is of vital importance to select
proper input arguments before modeling the industrial
process by machine learning methods. To reduce the
dimensionality and complexity of modeling process, a
feature selection approach based on MI is used to select

typical input variables of dGRU-RNN. The MI, used by
Cakir et al. (2019); Cai and Verdú (2019), calculates the
degree of nonlinear relationship between variables based
on entropy, which is a measurement of uncertainty for the
random variables. The entropy H(X) of a single random
variable X is defined as:

H(X) = −
∑
x∈X

p(x) log p(x) (2)

where X belongs to X and p(x) is the probability density
function.

Based on the uni-variable entropy in Eq. 2, we can get
the conditional entropy H(Y |X) of two random variables
(X,Y ) in Eq. 3.

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

(3)

where p(x, y) is the joint probability distribution function.

Thus, the definition of MI is illustrated in Eq. 4, where the
I(X;Y ) represents the uncertainty reduction of random
variable X under given Y .

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)

p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)− (−
∑
x,y

p(x, y) log p(x|y))

= H(X)−H(X|Y )
(4)

On the whole, when MI equals to zero, two variables have
no connection at all, corresponding that when MI is equal
to one, they totally depend on each other.

2.2 Improved GRU-RNN

With numerous variations, the hidden layers are efficient
and powerful due to distributed representations and com-
positionality. The RNN plays a significant role in the time
series analysis as the hidden layer nodes form a directional
cycle. By adding internal memory units, RNN is able to
store history information and process sequence inputs. De-
tailed graphical and mathematical explanations are listed
in Fig. 2 and Eq. 5.

ht = φ(Wxh · xt +Whh · ht−1 + b) (5)

where ht is the hidden state at this moment, ht−1 is the
hidden state at last moment, xt is the input variables
at this moment, b is the threshold, φ is the activation
function, Wxh is the weight of input variables, and Whh is
the weight of hidden state. The sharing of Wxh and Whh

enables RNN to deal with arbitrary length of time series.
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Fig. 2. The schematic structure of RNN.

When ignoring the nonlinear part in Eq. 5, the equation
can be simplified as Eq. 6. The eigenvalue of Whh

t can
easily lead to zero or infinity, leading to the obscurity of
the information contained in h0.

ht = Whh · ht−1 = Whh
t · h0 (6)

In order to avoid the gradient vanishing and explosion, re-
searchers develop leaky units whose linear self-connections
weight is manual setting. Furthermore, the weight in gated
RNNs is able to update under the supervision of gates in
each computational step. There are two major kinds of
gates in RNN, one is long-short term memory (LSTM)
like Li et al. (2019), and the other is gated recurrent unit
(GRU) like Yan et al. (2019). The GRU depends on reset
gate and update gate to control the magnitude of data
that flow by. Different from conventional GRU, the dGRU
uses disposition gate to replace the reset and update gates,
which is explained in Fig. 3 and Eq. 7.

ht-1

htdt

ht

xt

~

σ tanh

1-

Fig. 3. The internal structure of modified dGRU.

ht = (1− dt) ◦ ht−1 + dt ◦ h̃t
h̃t = tanh(Wxt + dtUht−1)

dt = σ(Wdxt + Udht−1)

(7)

where xt is the input vector, ht is the output of hidden
layer, dt is the disposition gate. Besides, the σ represents
the sigmoid activation function.

3. EXPERIMENTS

3.1 Feature Selection

To verify the effectiveness of proposed algorithm, we
apply it to estimate the silicon content of hot metal in
ironmaking process. The datasets sampled from multiple

Table 1. Process variables in the BF

Designation Variable Unit

x1 Top blast pressure kPa
x2 Gas permeability m3/min· kPa
x3 Coal rate t/h
x4 O2 enrichment ratio vol%
x5 Top blast temperature ◦C
x6 Total pressure differential kPa
x7 Hot air pressure kPa
x8 Hot air temperature ◦C
x9 Hot air volume rate m3/min
x10 Cool air humidity vol%
x11 Former silicon content wt%
y Silicon content wt%

sources are regularized to the same time scale according to
the chemical test of silicon content. Therefore, we obtained
12 variables with 1000 samples, as illustrated in Table 1.
The results of MI calculation between operation variables
and silicon content are shown in Fig. 4. It is easy to notice
that x11 is most related to y, while other decision variables,
including x1, x3, and x5, cannot be ignored. Thus, the
input variables of dGRU-RNN chosen by feature selection
is [x1, x3, x5, x11].

It is reasonable that the former silicon content has the
greatest influence as the ironmaking is a continuous pro-
cess with large inertia. In view of the silica reduction
procedures, other parameters can be analyzed by chemical
principle such as kinetic equation Eq. 8 and Arrhenius
equation Eq. 9. It is easy to notice that the reactant
concentration cA and reaction rate constant k are the
two critical factors that influence chemical reaction rate
in Eq. 8. From Eq. 9, the temperature characterized by
top blast temperature and top blast pressure has a great
influence on the reaction rate constant. Besides, silicon
content in the pig iron, illustrated by Zhou et al. (2017b),
mostly comes from the coal and coke rather than the iron
ore.

r = kcnA (8)

lnk = lnA− Ea

RT
(9)

Furthermore, the time lags need to be specified due to the
high relation between former and current silicon content.
The partial autocorrelation function (PACF) is able to es-
timate the optimal order in time series regression analysis
by measuring the relationship of time series at t and t−k.
From Fig. 5, it is easy to find that the value of PACF has a
significant decrease within 2 lags. As a result, the time lag
of silicon content is set as 2, i.e., the input vector includes
previous silicon content two steps backwards.

3.2 Simulation Results

1000 continuous samples are obtained from the BF, of
which 80% are set as training data and 20% are test
data. The prediction results from different methods are
exhibited in Fig. 6. Obviously, dGRU-RNN has the most
competitive performance among these RNN variants, not
only in loss function, but also in accuracy. In industrial
process, the accuracy in prediction of silicon content is
defined by hit rate (HR) Li et al. (2017a), representing
the percentage of predicted value whose absolute difference
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Fig. 4. MI relation between input and output arguments.

Fig. 5. Correlation of silicon content series.

with real data is less than one. Eq. 10 provide a detailed
mathematical definition for HR.

Hi =

{
1, |e(i)| ≤ 0.1

0, others

HR =
1

n
(

n∑
i=1

Hi) · 100%

(10)

Fig. 6. Prediction results of RNN variants.

Table 2. Comparison among RNN variants

Model
Loss function

HR/%
train test

RNN 1.01 1.46 75.1
LSTM-RNN 0.54 0.73 82.1
GRU-RNN 0.42 0.58 87.2

dGRU-RNN 0.22 0.31 92.4

From Table 2, the deep dGRU-RNN model shows great
advantages at both loss function and HR in prediction
of silicon content. The 92.4% HR of dGRU-RNN has a
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Fig. 7. The loss function of RNN variants during testing
process.

huge advantage over the other three RNNs. Besides, the
training loss of standard RNN is 1.01, much higher than
0.22 of dGRU-RNN. The Fig. 7 provides a detailed change
trend of the final test loss, in which the dGRU-RNN
can reach 0.31, much lower than 1.46 of deep RNN after
200 epochs, showing an obtuse fluctuation of prediction
error. In consideration of the complex environment of
manufacturing process, 90% HR is high enough to help
the field engineers to control the temperature of pig iron
in advance. The high accuracy and stability of dGRU-
RNN algorithm indicates great potential in prediction of
BF internal temperature.

4. CONCLUSIONS

Previous studies have promoted the superiority of gated
RNN in prediction of time series. When combined with
proper input process variables, as well as typical time lags,
the deep dGRU-RNN algorithm can learn the physics of
ironmaking process well and give out proper suggestions to
help engineers operate the BF, indicating a bright future
in online silicon content prediction. However, the proposed
deep learning framework solely pertains to silicon content
in hot metal without concerning other iron quality indexes
such as temperature and sulfur content, which deserves
further investigations.
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