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Abstract: This paper develops a novel off-policy game Q-learning algorithm to solve the
anti-interference control problem for discrete-time linear multi-player systems using only data
without requiring system matrices to be known. The primary contribution of this paper lies in
that the Q-learning strategy employed in the proposed algorithm is implemented in an off-policy
policy iteration approach other than on-policy learning due to the well-known advantages of off-
policy Q-learning over on-policy Q-learning. All of the players work hard together for the goal
of minimizing their common performance index meanwhile defeating the disturbance that tries
to maximize the specific performance index, and finally they reach the Nash equilibrium of the
game resulting in satisfying disturbance attenuation condition. In order to find the solution to
the Nash equilibrium, the anti-interference control problem is first transformed into an optimal
control problem. Then an off-policy Q-learning algorithm is proposed in the framework of typical
adaptive dynamic programming (ADP) and game architecture, such that control policies of all
players can be learned using only measured data. Comparative simulation results are provided
to verify the effectiveness of the proposed method.
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1. INTRODUCTION

Since the external disturbance is inevitable for systems,
then anti-interference has to be considered when control-
ling systems. However, the truth of more complex and
large-scale systems with multiple subsystems and multi-
ple controllers in practical engineering applications makes
anti-interference control of multi-player systems valuable
and more complicated. Increasing attention of researchers
to anti-interference control for multi-player or multi-agent
systems has been paid Jiao et al. (2016); Lv and Ren
(2018); Wang et al. (2018b,a). As a traditional and prac-
tical control method to eliminate interference, H∞ control
can not only keep the system stable but also guaran-
tee the interference attenuation bounded Van de Schaft
(1992); Isidori (1994). With the game theory, the H∞ anti-
interference control problem can be transformed into a
zero-sum game problem Al-Tamimi et al. (2007); Kiumarsi
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of China under Grants 61673280, 61673100, the Open Project of Key
Field Alliance of Liaoning Province under Grant 2019-KF-03-06 and
the Project of Liaoning Shihua University under Grant 2018XJJ-005.

et al. (2017). Therefore, H∞ control method is used to
solve the anti-interference problem in this paper.

Most of researchers are concerned about model-based H∞
controller design using zero-sum game Jiang and Jiang
(2012); Vamvoudakis and Lewis (2010). The limitation of
these methods is that the dynamics of systems should be
accurately known a priori, so they cannot directly work
for systems with inaccurate or even completely unknown
models. Adaptive dynamic programming (ADP) combined
with reinforcement learning (RL), which can deal with
controller design or decision-making problems in an un-
certain or unknown environment, could be an effective
method to solve H∞ control for systems with unknown
system dynamics. Al-Tamimi et al. (2007) focused on the
design of the model-free Q-learning algorithm for the zero-
sum game of linear discrete-time (DT) systems without
knowing the system dynamics. Kiumarsi et al. (2017) pre-
sented a model-free solution to the H∞ control of linear
DT systems through off-policy RL method. Modares et al.
(2015) used the off-policy RL approach to solve the H∞
tracking control problem for nonlinear continuous-time
(CT) systems. Luo et al. (2015) presented a novel off-
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policy learning method to learn the optimal controller
of H∞ control problem for nonlinear CT distributed pa-
rameter systems. In the other hand, the existing reports
on multi-player games Li et al. (2017); Liu et al. (2014);
Vamvoudakis and Lewis (2011) usually ignore the negative
effects caused by disturbances on performance of systems.
This is our motivation to design a novel data-driven anti-
interference algorithm for multi-player systems.

Most relevant results are H∞ control for multi-agent and
multi-player systems Lv and Ren (2018); Jiao et al. (2016).
In Jiao et al. (2016) agents have their individual dynamics,
and the anti-interference problem has been investigated
for continuous-time multi-player systems where all players
share the common system state in Lv and Ren (2018). Like
Lv and Ren (2018), the data-driven H∞ controller design
will be taken into account for multi-player systems with
unknown system dynamics in this paper, while the differ-
ence of nature of discrete-time sampling from continues-
time processes makes it more complicated to solve H∞
control problem from the discrete-time system perspective,
and multiple players and completely unknown dynamics
of players increase this difficulty. Moreover, given the ad-
vantages of off-policy learning over on-policy learning Li
et al. (2019a), we aim at developing an off-policy game
Q-learning algorithm to solve the anti-interference control
problem for discrete-time linear multi-player systems using
only measured data.

In this paper, we develop a novel off-policy game Q-
learning algorithm based on game theory and ADP
method to solve a multi-player zero-sum game using mea-
sured data, such that the negative effect caused by the
external interference can be eliminated and meanwhile the
stability of multi-player systems can be ensured.

This paper is organized as follows. Section 2 devotes to the
problem formulation of the multi-player anti-interference
control with linear DT systems and transforms it into a
zero-sum game. In Section 3, we derive the theoretical
solution to the multi-player zero-sum game and develop a
data-driven off-policy game Q-learning algorithm. Section
4 gives a simulation example to demonstrate the effective-
ness of the proposed algorithm. Conclusions are stated in
Section 5.

The following notations will be used in this article: Rp

denotes the p dimensional Euclidean space. Rp×q is the
set of all real p by q matrices. Positive definite matrix is
assumed that in the case that Q is a square matrix of order
n and x is any non-zero vector, xTQx > 0. If xTQx ≥ 0,
it is a semi-positive definite matrix. ∥·∥ donates the vector
norm. The superscript T is used for the transpose. ⊗
stands for the Kronecker product. vec(L) is used to turn
any matrix L into a single column vector.

2. PROBLEM STATEMENT

In this section, we formulate the anti-interference control
problem for linear DT systems with multiple players first.
Then it is transformed into a zero-sum game problem,
where all players have a common goal of minimizing the
performance index, while the disturbance is to make the
performance worse.

Consider the following linear DT multi-player system
subject to exogenous disturbance

xk+1 = Axk +B

n∑
i=1

uik + Edk (1)

where xk = x(k) ∈ Rp is the system state with initial
state x0, uik = ui(k) ∈ Rm is the control input and
dk = d(xk) ∈ Rq is the external disturbance input.
A ∈ Rp×p, B ∈ Rp×m, E ∈ Rp×q and k is the sampling
time instant.

Definition 1. (Kiumarsi et al. (2017)) System (1) has L2-
gain less than or equal to γ if

∞∑
k=0

(xT
kQxk +

n∑
i=1

uT
ikRiuik) ≤ γ2

∞∑
k=0

∥dk∥2 (2)

for all dk ∈ L2[0,∞). Q ≥ 0, Ri > 0 and γ ≥ 0 is a
prescribed constant disturbance attenuation level.

For the H∞ control, it is desired to find the feedback
control policies ui such that the system (1) with dk = 0
is asymptotically stable and the disturbance attenuation
condition (2) can be satisfied. By recalling the max-min
problem in Van de Schaft (1992), the anti-interference
control problem can be written as

J(x0, U, dk)

= min
U

max
dk

∞∑
k=0

(xT
kQxk +

n∑
i=1

uT
ikRiuik − γ2 ∥dk∥2) (3)

where U = {u1k, u2k, . . . , unk}, which means the set U is
composed of n players with each of them is a controller.
As one can know from (3), the objective of these players
U is to fight with the disturbance for minimizing the
performance in (3), while the disturbance dk could also
be viewed as a player that tries to maximize (3). This is a
typical zero-sum game problem and it indicates the Nash
equilibrium Vamvoudakis et al. (2012) condition holds,
that is

J(x0, U
∗, dk) ≤ J(x0, U

∗, d∗k) ≤ J(x0, U, d
∗
k)

where U∗ = {u∗
1k, u

∗
2k, . . . , u

∗
nk}.

The saddle point solution exists for the zero-sum game
shown in (3) if and only if there is a value function V (xk)
satisfying the following Hamilton-Jacobi-Bellman (HJB)
equation Vamvoudakis et al. (2017).

V ∗(xk) = min
U

max
dk

∞∑
l=k

(xT
l Qxl +

n∑
i=1

uT
ilRiuil − γ2 ∥dl∥2)

= min
U

max
dk

(xT
kQxk +

n∑
i=1

uT
ikRiuik − γ2 ∥dk∥2 + V ∗(xk+1))

= xT
kQxk +

n∑
i=1

u∗T
ik Riu

∗
ik − γ2 ∥d∗k∥

2

+ V ∗(Axk +B

n∑
i=1

u∗
ik + Ed∗k) (4)

where V ∗(xk) is viewed as the optimal value function.

The arguments provided above have demonstrated that
anti-interference control can be fixed out by solving the
HJB equation (4). Now, we are in the position to solve
HJB (4) for finding the H∞ controller.
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Similar to Al-Tamimi et al. (2007); Li et al. (2017), the
optimal Q-function referring to (3) can be defined as

Q∗(xk, U, dk)

= xT
kQxk +

n∑
i=1

uT
ikRiuik − γ2 ∥dk∥2 + V ∗(xk+1) (5)

Thus, the following relation holds

V ∗(xk) = min
U

max
dk

Q∗(xk, U, dk) = Q∗(xk, U
∗, d∗k) (6)

Lemma 2. Under the assumption that there are admissible
control policies ui = −Kixk and dk = −Kxk, the
quadratic forms of the value function and Q-function can
be expressed as

V (xk) = xT
k Pxk (7)

and
Q(xk, U, dk) = zTk Hzk (8)

where P and H are positive definite matrices. And

zk =
[
xT
k uT

1k uT
2k . . . uT

nk dTk
]T

M =
[
I −KT

1 −KT
2 . . . −KT

n −KT
]T

P = MTHM (9)

H =



Hxx Hxu1
Hxu2

. . . Hxun
Hxd

HT
xu1

Hu1u1
Hu1u2

. . . Hu1un
Hu1d

HT
xu2

HT
u1u2

Hu2u2
. . . Hu2un

Hu2d

...
...

... . . .
...

...
HT

xun
HT

u1un
HT

u2un
. . . Hunun

Hund

HT
xd HT

u1d HT
u2d . . . HT

und Hdd



=



ATPA+Q . . . ATPB ATPE
(ATPB)T . . . BTPB BTPE
(ATPB)T . . . BTPB BTPE

... . . .
...

...
(ATPB)T . . . BTPB +Rn BTPE
(ATPE)T . . . (BTPE)T −γ2I + ETPE


(10)

3. SOLVING MULTI-PLAYER ZERO-SUM GAME

In this section, the theoretical solution to the zero-sum
game for multi-player systems is first obtained. Then, an
off-policy game Q-learning algorithm is developed to solve
this problem.

3.1 Theoretical Solution

By Lemma 1, we can refer to the HJI equation (4) to get
the Q-function based Bellman equation.

zTk Hzk = xT
kQxk +

n∑
i=1

uT
ikRiuik − γ2 ∥dk∥2 + zTk+1Hzk+1

(11)

The optimal control policy u∗
i of each player i and the

worst-case disturbance d∗k should satisfy ∂Q∗(xk,U,dk)
∂ui

= 0

and ∂Q∗(xk,U,dk)
∂dk

= 0. Therefore, one has

u∗
i (k) = −K∗

i xk, d∗k = −K∗xk (12)

where

K∗
i = H−1

uiui

[
HT

xui
− (Huiu1

K1 + · · ·+Huiui−1
Ki−1

+Huiui+1
Ki+1 + · · ·+Huiun

Kn +HuidK)
]
(13)

K∗ = H−1
dd

[
HT

xd − (Hdu1K1 +Hdu2K2 + · · ·+HdunKn

]
(14)

Substituting K∗
i in (13) and K∗ in (14) into (11) yields

the optimal Q-function based game Riccati equation.

(zk)
TH∗zk

= xT
kQxk +

n∑
i=1

(u∗
i )

TRiu
∗
i − γ2 ∥d∗k∥

2
+ (zk+1)

TH∗zk+1

(15)

It is worth pointing out that Al-Tamimi et al. (2007) and
Li et al. (2019b) have proved that the following K∗

i (i =
1, 2, ...n) and K can keep system (1) stable when dk = 0
and achieve Nash equilibrium.

K∗
i = (H∗

uiui
)−1

[
(H∗

xui
)T − (H∗

uiu1
K∗

1 + · · ·+H∗
uiui−1

×K∗
i−1 +H∗

uiui+1
K∗

i+1 + · · ·+H∗
uiun

K∗
n +H∗

uidK
∗
]
(16)

K∗ = (H∗
dd)

−1
[
(H∗

xd)
T − (H∗

du1
K∗

1 +H∗
du2

K∗
2 + . . .

+H∗
dun

K∗
n

]
(17)

Note that solving (16) and (17), that is, solving the zero-
sum game problem defined by (5), is to find the optimal
control policies satisfying the disturbance attenuation con-
dition (2).

Remark 3. Since the control policy gains Ki and K are
coupled with each other, it is difficult to solve them. In
addition, accurately identification of the system models
can not come ture in real industry. Therefore, a data-
driven off-policy game Q-learning algorithm is going to
be presented to overcome these difficulties, such that
the control laws u∗

i (k) and disturbance policy d∗k can be
learned.

3.2 Off-Policy Q-Learning Algorithm

Rewrite (11) as the following form of iteration Bellman
equation.

zTk H
j+1zk

= xT
kQxk +

n∑
i=1

(uj
ik)

TRiu
j
ik − γ2

∥∥∥djk∥∥∥2 + zTk+1H
j+1zk+1

(18)

Then, one has

(M j)THj+1M j

= (M j)TΛM j +

(
A−B

n∑
i=1

Kj
i − EKj

)T

× (M j)THj+1M j

(
A−B

n∑
i=1

Kj
i − EKj

)
(19)

where
Λ = diag(Q,R1, R2, . . . , Rn,−γ2I)
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Introducing auxiliary variables uj
i = −Kj

i xk and djk =
−Kjxk to system (1) yields

xk+1 = Acxk +B

n∑
i=1

(uik − uj
ik) + E(dk − djk) (20)

where Ac = A − B
∑n

i=1 K
j
i − EKj , ui and dk are called

the behavior control policies and the behavior disturbance
policy, while uj

ik and djk are called the target control
policies and the target disturbance policy. Along the
system trajectory (20), one has

Qj+1(xk, U, dk)− xT
kA

T
c (M

j)THj+1M jAcxk

= xT
k (M

j)THj+1M jxk

−

(
xk+1 −B

n∑
i=1

(uik − uj
ik)− E(dk − djk)

)T

(M j)THj+1

×M j

(
xk+1 −B

n∑
i=1

(uik − uj
ik)− E(dk − djk)

)
= xT

k (M
j)TΛM jxk (21)

Since P j+1 and Hj+1 have the relationship shown in (9)
and (10), then the following holds.

xT
k (M

j)THj+1M jxk − xT
k+1(M

j)THj+1M jxk+1

+ 2

(
Axk +B

n∑
i=1

uik + Edk

)T

P j+1B

n∑
i=1

(uik − uj
ik)

+ 2

(
Axk +B

n∑
i=1

uik + Edk

)T

P j+1E(dk − djk)

−
n∑

i=1

(uik − uj
ik)

TBTP j+1B

n∑
i=1

(uik − uj
ik)

− 2

n∑
i=1

(uik − uj
ik)

TBTP j+1E(dk − djk)

− (dk − djk)
TETP j+1E(dk − djk)

= xT
k (M

j)TΛM jxk (22)

Further

xT
k (M

j)THj+1M jxk − xT
k+1(M

j)THj+1M jxk+1

+ 2xT
k

[
Hj+1

xu1
Hj+1

xu2
. . .Hj+1

xun

] n∑
i=1

(uik +Kj
i xk)

+ 2

n∑
i=1

uT
ikG

j+1
n∑

i=1

(uik +Kj
i xk)

+ 2dTk (H
j+1
uid

)T
n∑

i=1

(uik +Kj
i xk)

+ 2xT
k (H

j+1
xd )(dk +Kjxk) + 2

n∑
i=1

uT
ikH

j+1
uid

(dk +Kjxk)

−
n∑

i=1

(
uik +Kj

i xk

)T
Gj+1

n∑
i=1

(uik +Kj
i xk)

− 2

n∑
i=1

(
uik +Kj

i xk

)T
Hj+1

uid
(dk +Kjxk)

− (dk +Kjxk)
T (Hj+1

dd + γ2I)(dk +Kjxk)

= xT
k (M

j)TΛM jxk (23)

where

Gj+1 =


Hj+1

u1u1
−R1 Hj+1

u1u2
. . . Hj+1

u1un

(Hj+1
u1u2

)T Hj+1
u2u2

−R2 . . . Hj+1
u2un

(Hj+1
u1u3

)T (Hj+1
u2u3

)T . . . Hj+1
u3un

...
... . . .

...
(Hj+1

u1un
)T (Hj+1

u2un
)T . . . Hj+1

unun
−Rn


Rewritten (23) as the following form

θ̂j(k)L̂j+1 = ρ̂k (24)

where

ρ̂k = xT
kQxk +

n∑
i=1

uT
ikRiuik − γ2dTk dk

L̂j+1 =
[
(vec(L̂j+1

rz ))T , . . . , (vec(L̂j+1
n+1,n+1))

T
]T

θ̂j(k) =
[
θ̂jrz, . . . , θ̂

j
n+1,n+1

]
with r = 0, 1, 2, . . . , n + 1, z = r, r + 1, r + 2, . . . , n + 1.
Besides,

θ̂j00 = xT
k ⊗ xT

k − xT
k+1 ⊗ xT

k+1

L̂j+1
00 = Hj+1

xx

θ̂jss = −(Kj
sxk+1)

T ⊗ (Kj
sxk+1)

T + uT
s ⊗ uT

s

L̂j+1
ss = Hj+1

usus

θ̂js+1,s+1 = −(Kjxk+1)
T ⊗ (Kjxk+1)

T + dTk ⊗ dTk

L̂j+1
s+1,s+1 = Hj+1

dd

θ̂j0s = 2xT
k+1 ⊗ (Kj

sxk+1)
T + 2xT

k ⊗ uT
s

L̂j+1
0s = Hj+1

xus

θ̂j0s+1 = 2xT
k+1 ⊗ (Kjxk+1)

T + 2xT
k ⊗ dTk

L̂j+1
0s+1 = Hj+1

xd

θ̂jst = −2(Kj
sxk+1)

T ⊗ (Kj
t xk+1)

T + 2uT
s ⊗ uT

t

L̂j+1
st = Hj+1

usut

θ̂js,s+1 = −2(Kj
sxk+1)

T ⊗ (Kjxk+1)
T + 2uT

s ⊗ dTk

L̂j+1
s,s+1 = Hj+1

usd

with s ̸= t and s, t = 1, 2, . . . , n.

Based on the above part, Kj+1
1 ,Kj+1

2 , . . . ,Kj+1
n and Kj+1

can be expressed as the form of L̂j+1

Kj+1
i = (L̂j+1

ii )−1
(
(L̂j+1

0i )T −
[
(L̂j+1

i1 )TKj
1 + . . .

+(L̂j+1
(i,i−1))

TKj
i−1 + L̂j+1

(i,i+1))
TKj

i+1

+ · · ·+ (L̂j+1
in )TKj

n + (L̂j+1
i,n+1)

TKj
])

(25)

Kj+1 =(L̂j+1
n+1,n+1)

−1
(
(L̂j+1

0,n+1)
T −

[
(L̂j+1

n+1,1)
TKj

1

+(L̂j+1
n+1,2)

TKj
2 + · · ·+ (L̂j+1

n+1,n)
TKj

n

])
(26)

4. SIMULATION RESULTS

In this section, we use a simulation example to demon-
strate the effectiveness of the proposed algorithm. Con-
sider the following linear DT system with four players and
disturbance input:

xk+1 = Axk +B

4∑
i=1

ui + Edk (27)
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Algorithm 1 Off-Policy Game Q-Learning for the Zero-
Sum Game
1 Data collection: Collect system data xk and store them
in (24) by using (20);

2 Initialize the admissible control policies of multiple play-
ers K0

1 ,K
0
2 ,K

0
3 , . . . ,K

0
n and disturbance policy gain(the

n+1 player) K0. Set the iteration index j = 0 and i = 1
represents player i(i = 1, 2, . . . , n+ 1);

3 Performing the off-policy game Q-learning: use the re-
cursive least-square method to solve the L̂j+1 in (24),

and then Kj+1
i and Kj+1 can be updated by (25) and

4 If i < n + 1, then i = i + 1 and go back to Step 3.
Otherwise j = j + 1, i = 1 and go to Step 5;

5 Stop when
∥∥∥Kj

i −Kj−1
i

∥∥∥ ≤ ε (i = 1, 2, . . . , n + 1), the

optimal control policy is obtained. Otherwise, i = 1, and
go back to Step 3.

where

A =

[
0.906488 0.0816012 −0.0005
0.074349 0.90121 −0.000708383

0 0 0.132655

]

B =

[−0.00563451
−0.08962
0.356478

]
, E =

[
0.0123956

0.068
−0.05673

]
Choose Q = diag(5, 5, 5), R1 = 1,R2 = 2,R3 = 3,R4 = 4,
and set the disturbance attenuation to be γ = 1. Rewrite
(15) as

H∗ = Λ+ΠTH∗Π (28)

where

Π =


A B B B B E

−K1A −K1B −K1B −K1B −K1B −K1E
−K2A −K2B −K2B −K2B −K2B −K2E
−K3A −K3B −K3B −K3B −K3B −K3E
−K4A −K4B −K4B −K4B −K4B −K4E
−KA −KB −KB −KB −KB −KE


By Algorithm 1, the controller gains and the worst-case
disturbance policy can be obtained below and they con-
verge to the theoretical solution to (28) calculated by using
Matlab software based on model (27).

K1 = [0.9828 1.2568 −0.0784]

K2 = [0.4914 0.6284 −0.0392]

K3 = [0.3276 0.4189 −0.0261]

K4 = [0.2457 0.3142 −0.0196]

K = [1.8357 2.1312 0.0249] (29)

Then, we assume E = 0 which means the external
disturbance is not taken into account, and implementing
Algorithm 1 yields the optimal controller gains which
converge to the optimal control gains calculated by using
Matlab software based on model in (27).

K1 = [0.4458 0.6942 −0.0877]

K2 = [0.2229 0.3471 −0.0439]

K3 = [0.1486 0.2314 −0.0292]

K4 = [0.1115 0.1735 −0.0219] (30)
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Fig. 1. Convergence ofH when implementing the off-policy
game Q-learning(E ̸= 0)
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Fig. 2. Convergence ofH when implementing the off-policy
Q-learning(E = 0)

Fig. 1 and Fig. 2 respectively show the convergence process
of matrix H and controller gains when E ̸= 0 and E = 0
during the execution of the Algorithm 1, thus showing the
effectiveness of the proposed algorithm.

Furthermore, simulation comparisons are going to be made
under the following external disturbances.

dk = e−0.001k sin(2.0k) (31)
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Fig. 3. (a) The states x of system when implementing the
off-policy Q-learning algorithm(E = 0) and (b) The
states x of system when implementing the proposed
algorithm(E ̸= 0)

Fig. 3(a) and Fig. 3(b) respectively show the system
trajectories with and without external interference. It
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can be seen that the states of the system considering
interference always tend to be stable, while the system
state without considering the anti-interference will be
greatly affected.

5. CONCLUSION

In this paper, we propose a novel off-policy game Q-
learning algorithm based on game theory and ADP to
learn the Nash equilibrium of the zero-sum game for multi-
player linear DT systems. This algorithm was shown to be
completely data-driven without requiring system models.
The simulation results have demonstrated the effectiveness
of the developed algorithm.
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