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Abstract: The automotive industry concerns about improving road safety. One of the major
challenges is to assess road risk and react accordingly in order to avoid accidents. This requires
predicting the evolution of the surrounding vehicle trajectories. However, the prediction involves
uncertainties from driver operations and ground situations. It is critical to obtain the vehicle
trajectory prediction with probabilistic-guarantee bounds. This contribution paper proposes a
novel approach to obtain probabilistic ellipsoidal bounds for vehicle trajectory prediction. The
vehicle dynamics model adopts a classical bicycle model. The uncertainty of the future trajectory
is from the driver’s intend and road condition which can be simplified by setting some parameters
of the vehicle dynamics model as a stochastic model. Then, a stochastic optimization problem is
formulated to obtain the probabilistic ellipsoidal bounds on the future vehicle trajectories. The
proposed approach is validated in a numerical simulation which shows the relationship between
the computation complexity and the conservatism of the probabilistic ellipsoidal bounds. The
proposed method can be generally used for a physics-based motion method, maneuver-based
motion method, and interaction-aware motion method by defining the probability distribution
of uncertain variables differently.
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1. INTRODUCTION

For both Advanced Driver Assistance Systems (ADAS)
and Autonomous Vehicles, safety is the cornerstone and
types of research have been focused on assuring a safe,
comfortable and cooperative experience for drivers and
passengers. For realization of road safety, the ADAS or
Autonomous Vehicles should be capable of assessing the
road risk to avoid potential accidents. An intuitive expla-
nation of risk is the severity and likelihood of the damage
that a vehicle may potentially suffer in the future. Since
the major traffic participants are vehicles, it is necessary
to predict the evolution of the vehicle trajectory under
various scenarios.

The current vehicle trajectory prediction method can be
roughly summarized into three classifications: physics-
based motion method, maneuver-based motion method,
and interaction-aware motion method (S. Lefevre et al. ,
2014). The physical-based motion method gives the vehicle
trajectory prediction considering only the laws of physics
(C-F Lin et al. , 2000; A. Eidehall et al. , 2008). The
maneuver-based motion method takes driver intends into
account, for instance, turning left or right, lane changing
et al (G. S. Aoude et al. , 2012). The interaction-aware
motion method is a refined edition of the maneuver-based
motion method by adding the dependencies between vehi-
cles maneuvers into consideration (G. Agamennoni et al. ,
2012). Recently, Deep Learning (DL) and Neural Networks
(NNs) become popular in the vehicle trajectory prediction
(C. Ju et al. , 2019; Y. Hu et al. , 2018; X. Huang et
al. , 2019). In (Y. Hu et al. , 2018), a semantic-based

intention and motion prediction structure were presented
for probabilistic vehicle trajectory prediction. The uncer-
tainty of driver intention was used to estimate prediction
confidence which was added to the physics-based predictor
to improve prediction performance in (X. Huang et al. ,
2019). Especially, (C. Ju et al. , 2019) proposed two-layer
prediction methodology with interaction for acceleration
prediction and motion layer for motion prediction. The
interaction layer gives the interaction-aware acceleration
of a vehicle based on NNs model. The motion layer uses a
simple two-order primary kinematic equation as a vehicle
dynamics model and Kalman Filter is applied to give
recursive prediction revision. The above researches are
capable to give a single trajectory or multiple possible
vehicle trajectories. While they are not able to calculate
the probabilistic bounds on the vehicle trajectories which
are more clear to reflect the potential risk. Especially,
fitting an ellipsoid to predicted samples is not done before
for the vehicle trajectory predictions. In (T. Campbell et
al. , 2015), a basic uncertainty set is constructed from a
union of posterior predictive ellipsoids for the Dirichlet
process Gaussian mixture.

This study addresses the problem of calculating the prob-
abilistic ellipsoidal bounds on the vehicle trajectory which
is inspired by the work in (C. Ju et al. , 2019) and (T.
Campbell et al. , 2015). A classical bicycle model is used
to describe vehicle dynamics. The uncertainty of the future
trajectory are from the driver’s intend and road condition
which can be simplified by setting some parameters of the
vehicle dynamics model as a stochastic variable. Then, a
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Fig. 1. Brief illustration of the vehicle model.

stochastic optimization problem is formulated to obtain
the probabilistic ellipsoidal bounds on the future vehicle
trajectories. A numerical simulation is conducted to vali-
date the proposed approach which shows the relationship
between the computation complexity and the conservatism
of the probabilistic ellipsoidal bounds. Generally, the pro-
posed method for probabilistic bounds computation is not
constrained by the complexity of the model and can be
used for a physics-based motion method, maneuver-based
motion method, and interaction-aware motion method by
changing the probability distribution of uncertain vari-
ables.

The paper is organized as follows. Section 2 formulates
the problem after introducing the vehicle dynamics model.
Then, the proposed method for computing the probabilis-
tic ellipsoidal bounds on vehicle trajectory is presented
in Section 3. In Section 4, the proposed method is vali-
dated through a numerical simulation. Finally, Section 5
concludes the contribution paper.

2. PROBLEM DESCRIPTION

2.1 Vehicle Dynamics Model

The vehicle dynamic model is implemented as a classical
bicycle model as shown in Fig. 1 by following the contents
of (S. Taheri, 1990). Specifically, denote the state variable
as s := {x, y, θ, vx, vy, r} where x and y are the coordinates
of position, θ is the orientation, vx and vy are velocities,
and r is the yaw rate. The discrete bicycle model is written
as follows:

vx,k+1 = vx,k + ax,kdt,

vy,k+1 = vy,k + ay,kdt,

rk+1 = rk + ar,kdt,

θk+1 = θk + rkdt,

xk+1 = xk + {vx,kcos(θk)− vy,ksin(θk)}dt,
yk+1 = yk + {vx,ksin(θk) + vy,kcos(θk)}dt

(1)

where k = 0, 1, ... denotes the time index, and dt is a
constant sample time, and ax,k, ay,k and ar,k denotes the
accelerations of coordinates and yaw rate at time step
k respectively. Moreover, ax,k, ay,k and ar,k depends on
the driver operation and the road condition which are
uncertain. The sample spaces of them can be denoted
as ∆ax,k

⊂ R, ∆ay,k
⊂ R and ∆ar,k

⊂ R respectively.
The probability measures, Prax,k

, Pray,k
and Prar,k

, are
known but not limited as Gaussian distribution. This
study does not concerns about how to get the probability

measure which can be obtained as the study in (C. Ju
et al. , 2019). For simplicity, {ax,k, ay,k, ar,k} is denoted
as stochastic variable vector ωk. Accordingly, the sample
spaces is as ∆ωk

⊂ R3 and the probability measure is as
Prωk

. Moreover, the initial state s0 is also uncertain with
sample space as ∆s0 ⊂ R6 and probability measure as
Prs0 . Then, Eq. 1 is simplified as

sk+1 = f(sk, ωk),

ωk ∈ ∆ωk
⊂ R3

s0 ∈ ∆s0 ⊂ R6

(2)

where f : R6×R3 → R6 is the function expressed in Eq. 1
which is convex, continuous and differentiable on R6×R3.

2.2 Problem Formulation

Due to the uncertain initial state and stochastic variables,
the state vector at k−step is uncertain state. The purpose
is to give the probabilistic ellipsoidal bounds on the
vehicle trajectory on time step k = 1, 2, 3, ... which are
the probabilistic ellipsoidal bounds on xk and yk. For
convenience, denoting {xk, yk} as pk. Obviously, pk ⊂ sk.
Thus, the problem can be defined well.

Problem 1. Given a vehicle dynamics system of the form
described in (2), find the tightest possible outer bounds
on the trajectory pk ⊂ sk for any k ∈ {1, 2, 3, ...} to make
sure that the probability that pk locates in the bounds is
larger than a given probability level. The problem can be
formulated as
∀k = 0, 1, 2, 3, ...

min
Uk

det M−1
k+1

s.t. sk+1 = f(sk, ωk),

s0 ∈ ∆s0 ⊂ R6,

ωk ∈ ∆ωk
⊂ R3,

Pr{(pk+1 − Ck+1)
TMk+1(pk+1 − Ck+1) ≤ 1} ≥ 1− α

(3)

where Mk+1 is a matrix with 2 columns and 2 raws, Ck+1

is a 2-dimension vector, and Uk+1 = {Ck+1,Mk+1} is the
input variable for the problem.

Problem 1 is NP-hard problem due to the existence of
probabilistic constraint in which the uncertainty is with
continuous distribution (Y. Wu et al. , 2018). This work
addresses Problem 1 with the scenario approach (G. C.
Calafiore et al. , 2006).

3. PROPOSED METHOD

3.1 Scenario Approach

A typical uncertain convex optimization problem with
probabilistic constraint expressed in (R. Jiang et al. , 2016)
is as

min
u∈U

J(u)

s.t. Pr{h(u, δ) ≤ 0} ≥ 1− α, δ ∈ ∆, α ∈ (0, 1)
(4)

where u ∈ U ⊂ Rnu denotes the decision variable whose
set U is convex and closed, δ ∈ ∆ ⊂ Rnδ is an uncertain
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parameter, the set ∆ is the sample space of δ and Pr is a
probability measure on ∆, α is a given probability level,
moreover, for any fixed value δ ∈ ∆, both J(u, δ) : U ×
∆ → R and h(u, δ) : U × ∆ → R are continuous
and convex in u. The constraint of program (4) is a
probabilistic constraint (A. Nemirovski et al. , 2006).

Definition 1. For a given u, the probability measure of
violating the constraint in (4) is defined as

V (u)
.
= Pr{δ ∈ ∆ : h(u, δ) > 0}. (5)

Then, the probabilistic constraint can also be written as

V (u) ≤ α. (6)

The program (4) is NP hard due to probabilistic constraint
(K. G. Murty et al. , 2009).

If samples δ(i), i = 1, ..., N is identically extracted from
∆ according to probability measure Pr, a deterministic
convex optimization problem can be formed as

min
u∈U

J(u)

s.t. h(u, δ(i)) ≤ 0, i = 1, ..., N
(7)

which is a standard convex finite optimization problem
and a solution can be found at low computational cost by
available solvers when N is not too large (M. C. Campi
et al. , 2011). The optimal solution ûN of the program
(7) is called as the scenario solution for program (4)
generally. Moreover, since the extractions δ(i), i = 1, ..., N
is randomly extracted, the optimal solution ûN is random
variable. On the other hand, the degree of robustness of
ûN should be investigated, precisely, the measure that ûN

satisfies the probabilistic constraint described by (6). The
following theorem shows that V (ûN ) tends rapidly to zero
as N increases.

Theorem 1. Let α ∈ (0, 1), β ∈ (0, 1) be two given proba-
bility levels. If

N ≥ 2

α
ln

1

β
+ 2nu +

2nu

α
ln

2

α
, (8)

then, it holds that

PrN{(δ(1), ..., δ(N) ∈ ∆N : V (ûN ) ≤ α} ≥ 1− β. (9)

The proof of Theorem 1 is omitted here which is intro-
duced in (G. C. Calafiore et al. , 2006). Theorem 1 indi-
cates that the scenario approach cannot be robust against
all situations while the level of robustness is able to be
retained. Note that β is an important factor and choosing
β = 0 makes N = ∞. However, for practical purposes, β
has very limited importance due to its appearance under
the sign of logarithm: although β is selected as 10−10

which is near zero in practical purpose, N does not grow
significantly.

3.2 Proposed Algorithm

The problem of deciding probabilistic ellipsoidal bound of
p1, vehicle position at time index k = 1, can be expressed
as

min
U1

det M−1
1

s.t. s1 = f(s0, ω0),

s0 ∈ ∆s0 ⊂ R6,

ω0 ∈ ∆ω ⊂ R3,

Pr{(p1 − C1)
TM1(p1 − C1) ≤ 1} ≥ 1− α

(10)

Where U1 = {C1,M1} stands for the decision variable
for time index k = 1. Then, the independent samples

s
(i)
0 , ω

(i)
0 , i = 1, ..., Ns are randomly extracted from ∆s0

and ∆ω0
and the deterministic problem is formed conse-

quently as

min
U1

det M−1
1

s.t. ∀i ∈ {1, ..., Ns},
s
(i)
1 = f(s

(i)
0 , ω

(i)
0 ),

s
(i)
0 ∈ ∆s0 ⊂ R6,

ω
(i)
0 ∈ ∆ω ⊂ R3,

(p
(i)
1 − C1)

TM1(p
(i)
1 − C1) ≤ 1.

(11)

The solution to problem expressed in (11) is denoted as

Û1(Ns) = {M̂1(Ns), Ĉ1(Ns)}.
Corollary 1. If

Ns ≥
2

α
ln

1

β
+ 12 +

12

α
ln

2

α
, (12)

PrNs

{
(s

(1)
0 , ..., s

(Ns)
0 ) ∈ ∆Ns

s0

(ω
(1)
0 , ..., ω

(Ns)
0 ) ∈ ∆Ns

ω0

: V (Û1(Ns)) ≤ α

}
≥ 1− β

(13)
holds.

Proof. The input variables for both (10) and (11) are U1

which consists of C1 and M1. The dimension for C1 is
equal to the dimension of p1 which equals 2. Since M1 is
a 2 × 2 matrix, the number of parameters to be decided
is also 4. Thus, the dimension of the input variables is 6.
Thus, Corollary 1 is proved according to Theorem 1.

Lemma 1. If s
(i)
0 ∈ ∆s0 and ω

(i)
j ∈ ∆ωj

holds for any

i ∈ {1, ..., Ns} and j ∈ {0, ..., k−1}, then, s(i)k−1 is randomly
extracted from ∆sk−1

.

Proof. For k = 1, although both ∆s1 and Prs1 are

unknown, since, for any i ∈ 1, .., Ns, s
(i)
1 are calculated

from

s
(i)
1 = f(s

(i)
0 , ω

(i)
0 ) (14)

where s
(i)
0 ∈ ∆s0 , ω

(i)
0 ∈ ∆ω0

holds. Thus, s
(i)
1 ∈ ∆s1

holds consequently. Moreover, s
(i)
0 ∈ ∆s0 , ω

(i)
0 ∈ ∆ω0

are

randomly selected and s
(i)
1 is consequently determined,

which implies that s
(i)
1 is randomly selected from ∆s1 .

Therefore, Lemma 1 stands for k = 1. Suppose that,

Lemma 1 stands for k = l > 1. Then, as k = l+1, s
(i)
l can

be calculated as

s
(i)
l = f(s

(i)
l−1, ω

(i)
l−1), ω

(i)
l−1 ∈ ∆ωl−1

. (15)

Since s
(i)
l−1 ∈ ∆sl−1

,∀i ∈ {1, ..., Ns}, s
(i)
l ∈ ∆sl holds

consequently. Moreover, s
(i)
l−1 ∈ ∆sl−1

, ω
(i)
l−1 ∈ ∆ωl−1

are

randomly selected and s
(i)
l−1 is consequently determined,

which implies that s
(i)
l is randomly selected from ∆sl .

Then, the proof is completed.

For the case k ∈ {1, 2, 3, ...}, the original problem ex-
pressed as
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min
Uk

det M−1
k

s.t. sk = f(sk−1, ωk−1),

sk−1 ∈ ∆sk−1
⊂ R6,

ωk−1 ∈ ∆ωk−1
⊂ R3,

Pr{(pk − Ck)
TMk(pk − Ck) ≤ 1} ≥ 1− α.

(16)

where Uk stands for the input variable {Ck,Mk}, ∆xk
is

the sample space of sk for any k ∈ {1, 2, 3, ...}. Absolutely,
both Prsk and ∆sk are unknown.

Theorem 2. When k ∈ 1, 2, 3, ..., for any i ∈ {1, ..., Ns},
calculate the samples of s

(i)
k−1 recursively from s

(i)
0 and

ω
(i)
0 , ω

(i)
1 , ... through

∀i ∈ 1, ..., Nx

s
(i)
1 = f(s

(i)
0 , ω

(i)
0 ),

......

s
(i)
j+1 = f(s

(i)
j , ω

(i)
j ),

......

s
(i)
k−1 = f(s

(i)
k−2, ω

(i)
k−2)

(17)

where the samples s
(1)
0 , ..., s

(Ns)
0 and ω

(1),...,ω
(Ns)
j

j ,∀j ∈
{0, ..., k − 2} are randomly selected from ∆s0 and ∆ωj

.

Then, the optimal solution Ûk(Ns) of the deterministic
problem

min
Uk

det M−1
k

s.t. ∀i ∈ {1, ..., Ns},
s
(i)
k = f(s

(i)
k−1, ω

(i)
k−1),

s
(i)
k−1 ∈ ∆sk−1

⊂ R6,

ω
(i)
k−1 ∈ ∆ωk−1

⊂ R3,

(p
(i)
k − Ck)

TMk(p
(i)
k − Ck) ≤ 1.

(18)

satisfies

PrN

{
(s

(1)
k−1, ..., s

(Ns)
k−1 ) ∈ ∆Ns

sk−1

(ω
(1)
k−1, ..., ω

(Ns)
k−1 ) ∈ ∆Ns

ωk−1

: V (Ûk(Ns)) ≤ α

}
≥ 1−β

(19)
if (12) holds.

Proof. The case for k = 1 is proved by Corollary 1. When

k > 1, since s
(i)
k−1 is randomly extracted from ∆sk−1

},∀i ∈
{1, .., Ns} according to Lemma 1 and ω

(i)
k−1,∀i ∈ {1, ..., Ns}

is randomly extracted from ∆ω, Ûk(Ns) also satisfies (19)
if (12) holds according to Corollary 1 by replacing 0 and 1
with k − 1 and k. Thus, Theorem 1 is completely proved.

The proposed algorithm is summarized as in Algorithm 1.

4. SIMULATION VALIDATION

In this section, an example of the implementation of the
probabilistic ellipsoidal bounds calculation for vehicle tra-
jectory prediction is presented as validation. The vehicle
dynamics model is expressed in Eq. 1.The system starts
with the initial state as

Algorithm 1 Compute probabilistic ellipsoidal bounds on
the vehicle trajectory prediction from k = 1 to n

Input: s
(i)
0 , ω

(i)
0 , i = 1, .., Ns

Output: C1,M1, ..., Cn,Mn

1: For k = 1 to n do
2: For i = 1 to Ns do

3: Step 1: Calculate s
(i)
k through sik = f(s

(i)
k−1, ω

(i)
k−1)

4: End for
5: Step 2: solve the problem min

{Ck,Mk}
det M−1

k

with constraint (p
(i)
k − Ck)

TM1(p
(i)
k − Ck) ≤ 1

6: End for


vx,0
vy,0
r0
θ0
x0

y0

 =


8
0
0
0
0
0

. (20)

For the uncertain parameters, the probability distribution
is Gaussian distribution and ∀k = 0, 1, ... the mean vector
and covariance matrix are written as[

āx,k
āy,k
ār,k

]
=

[
0.15
0.1
0.1

]
(21)

and

δω,k =

[
0.25 0.0001 0.000016
0.0001 0.0025 0.000025
0.000016 0.000025 0.0025

]
. (22)

The numerical simulation were performed for the algo-
rithm proposed in previous section. The state variable in
this problem contains 6 variables. While, only 2 variables
were considered for the bound calculation. Hence, fixing
a priori probabilistic levels α = 0.1 and β = 0.1, and
using Eq. 12, the sample size should satisfy Ns ≥ 417.
The numerical solution results about time evolutions of the
bound by different Ns for steps k = 101, 111, ..., 491, 501
are shown in Fig. 2. The red points are the realization from
posteriori Monte-Carlo analysis based on the initial state
and uncertain parameters’ probability distribution. The
posterior test generates 501 trajectories. The blue lines are
the 0.9−probability ellipsoidal bounds for every step. The
red points at every step are supposed to locates inside the
ellipsoidal with probability 0.9. As shown in Fig. 3 which
indicates that larger Ns brings larger bounds for the same
time step. This implies that more conservative bounds
are obtained with more samples. The result makes senses
since the constraints become more when extracting more
samples. Intuitively speaking, the ellipse should be larger
to encircle more points. The constraint failure probability
α is calculated in every case and comprehensive statistical
analysis results are shown in Fig. 4. As Ns gets larger,
the probability of constraints failure decreases statisti-
cally, Moreover, the probability that α > 0.1 denotes as
Pr{α > 0.1} is also calculated for every Ns and listed
in Tab. 1. When Ns ≥ 150, Pr{α > 0.1} is already
smaller than 0.1 which means that it is potential to use
less scenarios to ensure the probabilistic level which can
reduce the computation burden.
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Fig. 2. Time evolution of bounds computed by proposed algorithm of time steps k = 101, 111, ..., 501 using different
sample numbers: (a) Sample number Nx is 50; (b) Sample number Nx is 150; (c) Sample number Nx is 500; (d)
Sample number Nx is 1000.

Fig. 3. Bounds computed by proposed algorithm at different time steps: (a) time step k = 101; b) time step k = 161;
c) time step k = 201; d) time step k = 301. The bounds are different types of blue lines. The red ”*” are the
randomly generated points at the certain time steps.

Table 1. The probability that constraint failure
probability α > 0.1

Nx 50 150 300 500 1000

Pr{α > 0.1} 0.1419 0.0639 0.0559 0.0259 0.02

5. CONCLUSION AND FUTURE WORK

Scenario approach-based algorithm is proposed for calcu-
lating the probabilistic ellipsoidal bounds of the vehicle
trajectory prediction. The probabilistic ellipsoidal bounds
are essentially approximate ones. For given probabilistic
level, the least number of samples for calculating the

bound can be determined. Then, after sample extraction,
the ellipsoidal bounds parameters is able to be calculated
through solving a deterministic optimization problem. The
obtained solution can be used for obtaining the probabilis-
tic ellipsoidal bounds. Through the simulation validation,
the proposed algorithm can achieve the goal for computing
the probabilistic bounds for future trajectory. However,
there are also future work to be done for improvement.

(1) The lower bound of the sample number for certain
probabilistic level of violation should be decreased for
saving computation resource;
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Fig. 4. Statistical analysis on probability of constraints failure for cases with different sample numbers: (a) Sample
number Nx is 50; (b) Sample number Nx is 150; (c) Sample number Nx is 500; (d) Sample number Nx is 1000.

(2) In the current stage, the probability distribution of
uncertain parameters is supposed to be arbitrary.
Essentially, for more efficiently extracting the sam-
ples, the information probability distribution of un-
certain parameters should be known. Then, the re-
sulted probabilistic bounds would be more reliable
and practical.
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