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Abstract: Trajectory Planning and Vehicle Control at low speed is the automation of traditional manual 

vehicle maneuvers in home zones. We refer to living streets that are designed primarily to meet the needs 

of pedestrians, cyclists, children and residents and where the speeds and dominance of the cars are 

limited. In this study, we present the trajectory planning and vehicle control by using model predictive 

control (MPC) both for lateral and longitudinal dynamics. In particular, the lateral control of the vehicle 

solves a convex optimization with steering and lateral travel range constraints. It is based on a linear 

model of vehicle kinematics which is synthesized from nonlinear dynamics by using time-state control 

form (TSCF) transformation. The longitudinal model predictive control is based on a simple double 

integrator model with longitudinal travel and speed references. The performance of the proposed method 

is verified with a V-cycle model-based approach, starting from Model-in-the-Loop simulation through 

vehicle experiments on Jeep Renegade prototypal vehicle. 
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

1. INTRODUCTION 

In the last years, new cars have changed. What was mainly 

mechanical transportation means has now been fully packed 

with advanced technology. The evolution started slowly at 

the beginning, while it is much faster now. What was thought 

as a way to avoid collisions at relatively low speed has 

evolved so far. For example, the newest cars can now avoid 

collisions with many types of obstacles by steering as well as 

braking. Nowadays, tools assist the everyday driving by 

keeping the car inside the lanes and controlling the relative 

speed to other road-users. Self-driving cars are going to loom 

on the horizon. 

Before humans take their hands off the steering wheel 

completely, there will be an increasing level of advanced 

driver assistance systems (ADAS). This will help the driver 

avoid accidents due to human error saving both lives and 

money. Although higher speed results in more severe 

accidents, more than 50,000 crashes occur in parking lots 

annually in the US, resulting in 500 or more deaths and more 

than 60,000 injuries according to the National Safety Council 

(see US NSC Parking lot safety (2019)). Furthermore, the 

Swedish Road Insurance Association estimated a cost of 

parking-related accidents in Sweden equal to 229 MLN SEK 

(21 MLN EUR) in 2015, with an increasing trend in last 

years (Trafikförsäkringsföreningen - årsredovisning 2015). 

Literature demonstrate the importance and the significance of 

working on automated manoeuvres at low speed. Our activity 

about has considered to use a theoretical approach that solve 

the problem of vehicle control and trajectory planning at low 

speed in a general way, such that the vehicle could face 

different scenarios by minimizing the specific code for. 

In the next paragraphs, the paper is structured as follows: 

Section 2 presents the prototypal vehicle setup for control 

development. The design model is included in Section 3, 

whereas Section 4 includes control problem explanation and 

solution design. Section 5 reports the experimental validation 

and simulation on the same test track are presented, near to 

FCA Research and Development Technical Center. Some 

conclusions are drawn in Section 6.  

 

Fig. 1. Jeep Renegade prototypal vehicle. 

2. PROTOTYPAL VEHICLE SETUP FOR CONTROL 

DEVELOPMENT 

2.1 Vehicle 

The prototypal vehicles which has been used during the 

development is a Jeep Renegade 1.6 Multijet with dual dry 

clutch transmission (DDCT).  
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2.2 Sensors platform 

The main sensors that equip the vehicle are traditional normal 

production Electronic Stability Control (ESC) inertial Active 

Chassis sensors: longitudinal/lateral acceleration and yaw 

rate sensors (Konrad (2015)). Then, as fundamental sensor 

that links vehicle signals to surroundings references which 

has been used is Novatel dual antenna Global Navigation 

Satellite System (GNSS), two Manta forward-looking stereo 

camera sensors, six Ibeo LIDAR, normal production forward-

looking camera, radar, and twelve Ultra Sound Scan sensors. 

In our paper and related development, the main sensors 

involved are traditional ESC sensors plus GNSS positioning 

system. 

2.3 Actuators: steering, braking and powertrain 

Electric Power Steering (EPS) uses an electric motor to assist 

the driver of a vehicle. Sensors detect the position and torque 

of the steering column and an ECU applies assistive torque 

via the motor, which connects to either the steering gear or 

steering column. This allows varying amounts of assistance 

to be applied depending on driving conditions. Jeep 

Renegade is equipped with a TRW/ZF column EPS, able to 

be driven by using traditional ParkAssist HWTO 

(HandWheel Torque Overlay) interface on vehicle C-CAN 

network. In particular, the normal production HWTO 

interface has been modified in terms of maximum vehicle 

speed, in order to use the EPS as a mechatronic unit able to 

steer the vehicle, and not to only assist the driver anymore.  

Braking system module (BSM) provides the functional 

interface to realize an acceleration/deceleration action of the 

vehicle. In detail, in our prototypal vehicle, we used a SW 

modified TRW/ZF EBC 460. This ECU provides on vehicle 

C-CAN network a functional channel able to be a gateway of 

acceleration / positive torque to the powertrain ECU (ECM) 

and the way to decelerate the vehicle by brakes. The normal 

production parking longitudinal interface has been modified 

in order to achieve technical targets of present work. Also the 

DDCT ECU SW has been modified in order to manage the 

longitudinal manoeuvres from/to 0/15 km/h around to 0 Nm 

of engine torque in a comfortable way. 

3. VEHICLE MODEL 

Next, we introduce the vehicle models used for Trajectory 

Planning and Control. The well-known dynamic models are 

undefined or ill-conditioned at low speeds. As shown to be 

effective in Polack et al. (2017) and Kong et al. (2015), the 

model used for low speed application (0÷20 km/h) is the 

kinematic bicycle model. 

3.1 Lateral vehicle model 

The 4 d.o.F. kinematic bicycle model is one of the simplest 

models used in motion planning. In this model, the two left 

and right front wheels are represented by one single wheel at 

point A (see fig.2). Similarly, the rear wheels are represented 

by one central rear wheel at point B.  

The steering angles for the front and rear wheels are 

represented by δf and δr respectively.  

The model is derived assuming that only the front wheel can 

be steered (δr =0). For that reason and simplicity, we will use 

the notation δ = δf. 

The resulting kinematic bicycle model (fig. 2) is described by 

the following state-space equations in the Inertial frame:  

𝑥 = 𝑣 𝑐𝑜𝑠 𝜓  (1) 

𝑦 = 𝑣 𝑠𝑖𝑛 𝜓  (2) 

𝜓 =
𝑣

𝐿
𝑡𝑎𝑛 𝛿 (3) 

𝑣 = 𝑎 (4) 

 

In particular x,y are the Cartesian coordinates of the vehicle’s 

rear wheel, while ψ describes the orientation (Yaw angle) of 

the vehicle. v and a denote the velocity and longitudinal 

acceleration respectively. Thus, the state and input vectors of 

this model can be defined as X=[x,y,ψ,v] and U=[δ,a], 

respectively. 

Since the kinematic model described is nonlinear, we utilize 

the Time-State Control Form (TSCF) (Kiyota H. et al. 

(1998)), as described by Oyama K. et al. (2013). Thanks to 

this approach, the lateral dynamic is linearized and 

represented as a differential equation w.r.t. the state (x) 

instead of time. 

Dividing (2) and (3) by (1), we get the following TSCF: 

𝑑𝑦

𝑑𝑥
 =  𝑡𝑎𝑛 𝜓  

(5) 
 𝑑𝜓

𝑑𝑥
=

𝑡𝑎𝑛 𝛿 

𝐿 𝑐𝑜𝑠 𝜓 
 

 

Let’s also introduce the nonlinear state and input 

transformation: 

 

𝑧1

𝑧2

𝑧3

 =  

𝑥
𝑦

𝑑𝑦/𝑑𝑥
 =  

𝑥
𝑦

𝑡𝑎𝑛 𝜓 
  (6) 

𝜇1 = 𝑣 𝑐𝑜𝑠 𝜓  (7) 

𝜇2 =
𝑡𝑎𝑛 𝛿 

𝐿 𝑐𝑜𝑠3 𝜓 
 (8) 

 

By applying the transformation to (5) we obtain two linear 

subsystems given by: 

𝑑𝑧1

𝑑𝑡
   =     𝜇1 (9) 

𝑑𝑡

𝑑𝑧1

 

𝑑𝑧2

𝑑𝑡
𝑑𝑧3

𝑑𝑡

 =  
0 1
0 0

  
𝑧2

𝑧3
 +  

0
1
 𝜇2 (10) 

 

In which the first one is a differential equation w.r.t. time, the 

second depends on the time-state x. The actual steering angle 

δ is computed using μ2 and ψ by inverting (8): 

𝛿 = 𝑡𝑎𝑛−1 𝐿 𝑐𝑜𝑠3 𝜓 𝜇2  (11) 
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Fig. 2. Inertial and Vehicle reference frames for lateral control. 

3.2 Longitudinal vehicle model 

In general, the point-mass model is not used for design lateral 

controllers due to their large modelling errors. However, 

those models are widely used for longitudinal control 

purposes. In this work, the vehicle’s longitudinal motion is 

described, in the Vehicle frame, as a double integrator 

system, in which the states are the travelled distance (ξ) and 

the vehicle speed (v):  

𝜉 = 𝑣 (12) 

𝑣 = 𝑎 (13) 

 

 
Fig. 3. General block diagram, in dotted red box main contents 

included in presented work. 

4. CONTROL DESIGN 

Fig. 3 shows the general block diagram for low speed 

manoeuvres planning and automated control. In particular, 

the general idea foresees starting from a map of static 

obstacles in order to build a path (path planning block). From 

a defined path that we can consider as the half of free space, 

it passes to the ‘trajectory planning & control’ and ‘motion 

control’ blocks that are the targets of this paper. The inputs 

for trajectory planning at low speed are the points of 

calculated path and sensors information about dynamic 

obstacles in the scenario. The next paragraphs of Control 

Design are going to be presented how lateral and longitudinal 

vehicle trajectory is planned, considering the following as 

inputs: the desired path and dynamic obstacles, these 

represented as space constraints in the vehicle reference 

frame. 

4.1 Trajectory Planning and Control  

Model Predictive Control (MPC) has been developed 

considerably over the last two decades. The main advantage 

of MPC is the fact that it allows the current timeslot to be 

optimized while taking future time-slots in account. This is 

achieved by optimizing a finite time-horizon, but only 

implementing the first time-slot.  

MPC can manage future profiles of reference and constraints 

and anticipate control actions accordingly with them. These 

limits may be imposed on any part of the system variables, 

such as states, outputs, inputs, and considering main actuators 

characteristics and operative limitations. 

4.1.1 Lateral MPC 

From (10), to control z2 and z3 using μ2, the MPC controls the 

lateral vehicle dynamics to track the optimal path according 

to constraints on the steering limitation and free space 

corridor. Discretizing (10) by using Tustin method, we 

obtain: 

 
𝑧2 𝑘 + 1 

𝑧3 𝑘 + 1 
 =  

1 𝛥𝑠

0 1
  

𝑧2 𝑘 

𝑧3 𝑘 
 +  

𝛥𝑠
2/2
𝛥𝑠

 𝜇2 𝑘  (14) 

 

Where Δs is the step w.r.t. the time-state x (positive or 

negative respectively for forward or backward motion): in 

other words, Δs is not a time step, but it’s the delta distance of 

movement along x. Denoting the state vector, z= [ z2  z3 ]T, 

the control horizon, H, the weight diagonal positive definite 

matrices Q and R, the general performance index for path 

tracking control is defined as: 

𝐽 = 𝒛 𝐻 𝑇𝑄𝑓𝑖𝑛 𝒛 𝐻  

+  𝒛 𝑘 𝑇𝑄 𝒛 𝑘 + 𝑅𝜇2 𝑘 2
𝐻−1

𝑘=0
 

(15) 

 

Subject to the constraints: 

𝑧2𝑚𝑖𝑛
  𝑧1 ≤ 𝑧2 ≤  𝑧2𝑚𝑎𝑥

  𝑧1  (16) 

𝛿𝑚𝑖𝑛 ≤  𝛿 ≤ 𝛿𝑚𝑎𝑥  (17) 

 

Let’s consider from the (11) the function: 

𝛤  𝑧3, 𝜇2 = 𝑙 𝑐𝑜𝑠3 𝑡𝑎𝑛−1 𝑧3  𝜇2  (18) 

 

Thanks to which it is possible to rewrite (18) as: 

𝑡𝑎𝑛 𝛿𝑚𝑖𝑛   ≤  𝛤 𝑧3, 𝜇2 ≤ 𝑡𝑎𝑛 𝛿𝑚𝑎𝑥   (19) 

 

Since it is a nonlinear function of z3, in order to solve the 

optimization through linear constraints, it is approximated 

with a first-order Taylor series expansion: 

𝛤  𝑧3, 𝜇2 = 𝛤 𝑧 3 𝑘 , 𝜇 2 𝑘   

+
𝑑𝛤

𝑑𝑧3

 𝑧3 − 𝑧 3 𝑘  +
𝑑𝛤

𝑑𝜇2

 𝜇2 − 𝜇 2 𝑘   
(20) 

 

With: 
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𝑑𝛤

𝑑𝑧3

= − 
𝑠𝑖𝑛 𝑡𝑎𝑛−1 𝑧3  3𝐿 𝑐𝑜𝑠3 𝑡𝑎𝑛−1 𝑧3  𝜇2

1 + 𝑧 3
2(𝑘)

       (21) 

𝑑𝛤

𝑑𝜇2

= 𝑙 𝑐𝑜𝑠3 𝑡𝑎𝑛−1 𝑧3        (22) 

 

Where )(ˆ
2 k  is the input of previous sampling and )(ˆ

3 kz  is 

the predicted state using the input of previous sampling and 

initial current state. Hence, the constraint related to the 

steering angle is approximated by: 

𝑡𝑎𝑛 𝛿𝑚𝑖𝑛   ≤  𝛤  𝑧3, 𝜇2 ≤ 𝑡𝑎𝑛 𝛿𝑚𝑎𝑥   (23) 

 

Thus, we can rewrite the lateral MPC formulation as: 

𝑱 𝑧2 , 𝑧3 

=  
𝑦𝑟𝑒𝑓  𝐻𝑙𝑎𝑡  − 𝑧2 𝐻𝑙𝑎𝑡  

−𝑧3 𝐻𝑙𝑎𝑡  
 

𝑇

𝑸𝒇  
𝑦𝑟𝑒𝑓  𝐻𝑙𝑎𝑡  − 𝑧2 𝐻𝑙𝑎𝑡  

−𝑧3 𝐻𝑙𝑎𝑡  
 

+   
𝑦𝑟𝑒𝑓  𝑘 − 𝑧2 𝑘 

−𝑧3 𝑘 
 
𝑇

𝑸

𝐻𝑙𝑎𝑡 −1

𝑘=1

 
𝑦𝑟𝑒𝑓  𝑘 − 𝑧2 𝑘 

−𝑧3 𝑘 
 

+  𝑹
𝐻𝑙𝑎𝑡 −1

𝑘=0
𝜇2

2 𝑘  

(24) 

 

Subject to: 

𝒀𝑴𝑰𝑵 ≤ 𝒛𝟐 𝑘 ≤ 𝒀𝑴𝑨𝑿 (25) 

𝑡𝑎𝑛 𝛿𝑚𝑖𝑛  ≤ 

𝛤  𝑧3, 𝜇2 +
𝑑𝛤

𝑑𝑧3

 𝑧3 − 𝑧 3 𝑘  +
𝑑𝛤

𝑑𝜇2

 𝜇2 − 𝜇 2 𝑘  

≤ 𝑡𝑎𝑛 𝛿𝑚𝑎𝑥   

(26) 

 

The main problems of this approach are the representation 

singularities introduced by the model, defined for-π/2<ψ<π/2, 

and the error introduced by the linearization. 

The innovative contribution in our solution is that the 

developed algorithm smoothly rotates the path in the vehicle 

system in order to manage cases in which the vehicle has to 

follow a path with bends greater than π/2. The aim is to avoid 

singularities, to reduce the linearization errors at each time 

step, and to maximize the length of the section of path usable 

by MPC. In this way, we obtain maximum flexibility of 

scenario coverage.  

In detail, once the path is defined as a set of segments, the 

algorithm, at each step time, firstly defines in which segment 

the vehicle is located. Then, by using the orientation angles 

of the actual segment (θi), and the next one (θi+1), the path is 

dynamically rotated using a linear interpolation and a 

weighted (W) “corrective factor” which considers also θi+2 

through (27), where (xv,yv) are the current vehicle’s 

coordinates, d is the Euclidean distance between the vehicle 

and the end point of the actual segment (xi,yi) and di+1,i is the 

distance between the current and the next segment. 

𝜃𝑅𝑂𝑇 = 𝑊
 𝜃𝑖+2 − 𝜃𝑖+1 𝑑

𝑑𝑖+1,𝑖

+
 𝜃𝑖+1 − 𝜃𝑖 𝑑

𝑑𝑖+1,𝑖

+ 𝜃𝑖  
(26) 

 

 

 

4.1.2 Longitudinal MPC 

Also in this case, the chosen control technique is the linear 

MPC. This allows us to manage both speed reference and 

obstacle tracking in a single integrated approach. 

To implement a control by using the vehicle’s longitudinal 

motion model, we can firstly discretize the aforementioned 

system (12, 13): 

 
𝜉 𝑘 + 1 

𝑣 𝑘 + 1 
 =  

1 𝛥𝑡

0 1
  

𝜉 𝑘 

𝑣 𝑘 
 +  

𝛥𝑡
2/2
𝛥𝑡

 𝑎 𝑘  (28) 

 

where Δt is the time step.  

This type of formulation, easily handles problems such as 

tracking of speed reference and maintenance of position 

constraints. However, this approach can’t handle stationary 

error due to exogenous disturbances and/or motion control 

inaccuracy.  

To solve this problem, it was decided to add a position 

reference computed as the difference between the integral of 

speed reference and Dsmeas, which is the travelled space 

measured from longitudinal control enabled by the wheel 

speed sensors: 

𝜉𝑟𝑒𝑓 =  𝑉𝑟𝑒𝑓  𝑑𝑡 − 𝐷𝑠𝑚𝑒𝑎𝑠  (29) 

 

The performance index for speed tracking control can be 

written as: 

𝑱 𝜉, 𝑣 

=  
𝜉𝑟𝑒𝑓  𝐻𝑙𝑜𝑛  − 𝜉 𝐻𝑙𝑜𝑛  

𝑉𝑟𝑒𝑓  𝐻𝑙𝑜𝑛  − 𝑣 𝐻𝑙𝑜𝑛  
 

𝑻

𝑸𝒇  
𝜉𝑟𝑒𝑓  𝐻𝑙𝑜𝑛  − 𝜉 𝐻𝑙𝑜𝑛  

𝑉𝑟𝑒𝑓  𝐻𝑙𝑜𝑛  − 𝑣 𝐻𝑙𝑜𝑛  
 

+   
𝜉𝑟𝑒𝑓  𝑘 − 𝜉 𝑘 

𝑉𝑟𝑒𝑓  𝑘 − 𝑣 𝑘 
 

𝑻

𝑸

𝐻𝑙𝑜𝑛 −1

𝑘=1

 
𝜉𝑟𝑒𝑓  𝑘 − 𝜉 𝑘 

𝑉𝑟𝑒𝑓  𝑘 − 𝑣 𝑘 
 

+  𝑹
𝐻𝑙𝑜𝑛 −1

𝑘=0
𝑎2 𝑘  

(30) 

 

Subject to the constraints on the position, speed, acceleration 

and jerk: 

𝝃𝑴𝑰𝑵 ≤ 𝜉 𝑘 ≤ 𝝃𝑴𝑨𝑿 (31) 

𝒗𝑴𝑰𝑵 ≤ 𝑣(𝑘) ≤ 𝒗𝑴𝑨𝑿 (32) 

𝒂𝑴𝑰𝑵 ≤ 𝑎 𝑘 ≤ 𝒂𝑴𝑨𝑿 (33) 
𝜕

𝜕𝑡
 𝒂𝑴𝑰𝑵 𝛥𝑡 ≤ 𝑎 𝑘 − 𝑎 𝑘 − 1 ≤

𝜕

𝜕𝑡
𝒂𝑴𝑨𝑿 𝛥𝑡  

(34) 

 

The general idea regarding speed reference is the following: 

- to try to follow the maximum speed allowed along the 

straight sections and  

- to reduce it taking into account: 

o the curvature, ρ, predicted by the lateral MPC, and  

o the maximum allowed lateral acceleration, aymax: 
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𝑉𝑟𝑒𝑓 =  
𝑎𝑦𝑚𝑎𝑥

𝜌
 (35) 

 

Where the curvature is computed: 

𝜌 =
2𝑠𝑖𝑛  

𝜃𝑖 − 𝜃𝑖+1

2
 

𝛥𝑠𝑖

𝑐𝑜𝑠  
𝜃𝑖 + 𝜃𝑖+1

2
 

 
(36) 

 

4.2 Motion Control  

The vehicle models presented in the previous sections assume 

that the inputs, desired steering wheel angle δ and 

longitudinal acceleration a, can be directly controlled. 

However, low level controllers are needed to transform this 

control input into physical signals for the actuators. In detail, 

the steering angle control is realized by using the Electronic 

Power Steering (EPS) system torque interface available on 

the vehicle CAN network. Similarly, the vehicle longitudinal 

motion is controlled by means of acceleration/deceleration 

request to the braking system through normal production 

(NP) Adaptive Cruise Control interface. 

4.2.1 Steering Control 

The EPS low level control loop has been designed by using a 

state feedback controller. This consists of: 

1. A linear time invariant Kalman observer that 

filters/estimates the system states, also useful to estimate 

driver hands on the steering wheel.  

2. An optimal linear quadratic integral controller able 

to track the steering wheel angle reference from MPC lateral 

control. 

For further details please refer to Raffone (2016), where you 

can find model based development and related practical 

considerations. 

 

Fig. 4. General block diagram for longitudinal control setup. 

4.2.1 Longitudinal acceleration control 

Conversely to the steering control, the longitudinal 

acceleration control is managed by multiple actuations (e.g. 

engine, electric motor, gear-box and braking), hence the 

interfaces can change according to vehicle architecture, 

actuator controls and their integration. 

In this case, we face a vehicle in which the vehicle interfaces, 

for longitudinal dynamic control, are: 

1. Engine-torque request:delivered to Engine Control (Treqs) 

2. Deceleration request: delivered to Brake System (areqs) 

Aiming to keep the control architecture simply and easy to 

tune, no further feedback control loop have been introduced 

at this level. Therefore, implementation of the longitudinal 

acceleration control, assume the structure shown in fig. 4.  

The command ax is split in two channels, one for each 

interface. The braking system includes a deceleration closed 

loop that allows to accept directly deceleration command 

(areqs) and to generate a braking torque Tbra. The engine 

control performs a closed-loop control based on an estimation 

of applied engine torque TEng. To match the available 

interface an inverse vehicle model has been implemented in 

order to convert ax in Treqs, which considers the current 

vehicle configuration (e.g. gear ratio, inertia, friction) and 

mainly exogenous input (e.g. road slope, drag forces). The 

relative equation can be written as: 

𝑇𝑟𝑒𝑞 = 𝑚 𝑎𝑥 + 𝑔 𝑠𝑖𝑛 𝛼  𝑅𝑤𝜏𝑔𝑟𝜂𝑔𝑟𝜏𝑎𝑟 𝜂𝑎𝑟 + 

 𝐹0 + 𝑣𝑥𝐹1 + 𝑣𝑥
2𝐹2  

(37) 

 

Where m is the equivalent vehicle mass, g the gravity 

acceleration, α the road slope, Rw the loaded wheel radius, τgr 

and τar are respectively the gearbox and axle ratios, ηgr and ηar 

are the mechanical efficiency of gearbox and transmission 

and F0, F1, F2 are the coast down coefficients.  

5.  SIMULATION AND EXPERIMENTAL RESULTS 

The proposed algorithm has been first validated via 

simulation by using IPG CarMaker in a Matlab/Simulink 

environment. Afterwards, only part of simulation scenarios 

has been evaluated on Jeep Renegade equipped with a 

dSPACE MicroAutobox II. The optimization problem solvers 

were generated by CVXGEN Code Generation for Convex 

Optimization (Mattingley et al. (2012)) for real time 

execution.  

To test the performance of our solution, a series of low speed 

manoeuvres have been simulated and experimentally tested. 

The aim is to follow this manoeuvres as close as possible 

while maintaining the validity of the constraints. 

Both simulations in a virtual environment, and tests on road 

are made setting: 

- The Lateral MPC with a prediction horizon (Hlat)  equal 

to 60 steps and step width (Δs) of 0.5 m 

- The Longitudinal MPC with a prediction horizon (Hlong)  

equal to 40 steps and step width (Δt) of 100 ms. 

The chosen prediction step is enough to represent a quasi-

infinite horizon for vehicle kinematics optimization (about 30 

meters or 4 seconds).  

In detail, two development scenarios useful to focus on main 

described contents have been developed. Scenarios are 

defined in fig. 5.  
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Fig. 5. Scenarios for low speed manoeuvre used for algorithm 

testing in virtual environment and real proto. 

5.1 Scenario A 

The first scenario foresees that the vehicle engages a curve, 

trying to maintain the half of the road lane and the vehicle 

bearing as parallel to the actual segment orientation as 

possible (fig. 6). The required longitudinal behavior expects 

to track a reference vehicle speed of 10km/h. The lateral 

controller is able to compute a smooth steering angle 

reference which satisfies the physical constraints according to 

(17) (fig. 8). The lateral prediction is used to realize a 

deceleration profile proportionate to the expected change of 

orientation (fig. 7) to achieve a comfortable maneuver (it can 

be seen from the decreasing in the speed reference at 7 sec).  

Finally, it is important to underline the strategy used to stop 

the vehicle when it arrives at the goal. The proposed 

algorithm includes a longitudinal position constraint and it is 

demanded to the longitudinal controller to realize a 

comfortable stop maneuver.  

Fig. 6 shows an interesting matching between developed 

algorithms in simulation and real-time on proto vehicle. It is 

possible to distinguish only limited differences between the 

simulation and the test on road in terms of trajectory and 

vehicle orientation. The same matching is also in fig. 7, 

mainly in the travelled distance: significant differences 

between reality and simulation are about vehicle speed, this is 

due to the fact that the implemented vehicle model is not so 

detailed in terms of powertrain hysteresis and non-linearities.  

Also the acceleration command demonstrates differences in 

comparison with the simulated output of the longitudinal 

controller, which is again due to differences between real and 

simulated powertrains. In both cases, the performance in 

terms of comfort (speed tracking and oscillations) and 

distance is acceptable.  

5.2 Scenario B 

The second scenario is for sure most challenging and is 

useful to demonstrate the validity of our approach in a 

convincing plot. It can be considered as an automated valet 

parking search maneuver, with narrow spaces and two 

consecutive u-curves. For that maneuver the speed reference 

is set at 5km/h. Again the matching between simulation and 

real vehicle behavior is impressive in terms of trajectory and 

bearing (fig. 9). The differences in terms of longitudinal and 

lateral commands are reasonable (fig. 10, 11). This mismatch 

is acceptable considering a simulation tool complex enough 

to represent the vehicle for the model based design, and, at 

the same time, simple enough to be identified and 

maintained. 

In addition to results already seen for the previous scenario 

(A), fig. 9 shows the rotation angle derived from (26) used to 

rotate the path, and fig. 13 shows the sequence of predicted 

trajectories at different time steps during the maneuver for 

scenario B. The black line is the trajectory done by the car, 

while the colored trends are the constraints (dashed) and the 

planned trajectories at each timestamp. It’s very impressive to 

see how the planned trajectory tries to track the references 

and to keep the defined constraints. The sequence of plots 

also shows how the optimization solvers have to solve a 

different problem including, step by step, different path 

segments and different path segment orientations. This 

demonstrates the effectiveness of explained approach to solve 

a non-linear optimization problem with a linear approach 

based on time state control form (TSCF) transformation. 

 
Fig. 6. Comparison vehicle’s lateral states between simulation 

(blue) and test on road (red) 

 

Fig. 7. Comparison vehicle’s longitudinal states between simulation 

(blue) and test on road (red). 
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Fig. 8. Comparison of reference and actuated Control Inputs 

between simulation (blue) and test on road (red). 

 

 
Fig. 9. Rotation angle of MPC Reference Frame for scenario B. 

 

 

Fig. 10. Comparison vehicle lateral states between simulation (blue) 

and test on road (red). 

 

Fig. 11. Comparison of reference and actuated Control Inputs 

between simulation (blue) and test on road (red). 

 

Fig. 12. Comparison vehicle longitudinal states between simulation 

(blue) and test on road (red). 

6. CONCLUSIONS 

This work has presented the design of a model based 

trajectory planning and control for vehicles at low speed. It 

has also shown the general approach to the problem of 

trajectory generation with a solution that foresees a kinematic 

vehicle model and guarantees the dynamical feasibility of the 

planned trajectory by the model-based prediction of the 

vehicle's motion.  

This is an interesting technical solution since it does not 

require solving a joint optimization of longitudinal and lateral 

dynamics and generally lead to leads performance. The 

results were first evaluated in a simulation environment with 

IPG Car-Maker, where an initial setup has been made. From 
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this starting point, experimental tests have been conducted 

and it has have shown the performance reached by the 

proposed trajectory planner and controller. The car is able to 

properly perform a series of low speed manoeuvres defining a 

physically shaped trajectory. 

Future work will be the extensive testing of trajectory 

planning in different and extended real-time scenarios in 

order to improve the robustness and coverage of our work. In 

particular, future work will refine: the constraints generation 

considering the vehicle size and the optimization integration 

with dynamic obstacles that haven’t been included in the 

presented scenarios. 
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Fig. 13. Lateral constraints and predicted trajectories by the 

Lateral MPC at different time stamps (coloured lines), and the 

travelled trajectory (black line). 
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