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Abstract: Optimal Experiment Design (OED) is an essential aspect in accurate Frequency
Response Function (FRF) identification of complex systems. The aim of this paper is to
optimally design experiments for FRF identification of multivariable motion systems subject to
element-wise power constraints. This design problem involves solving a non-convex and generally
NP-hard optimization problem. An algorithm to solving this problem approximately is presented
based on sequential semi-definite relaxations. Experimental results on a wafer stage show an
improvement of the FRF quality using the proposed techniques over traditional excitation design
methods.
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1. INTRODUCTION

Ever increasing performance requirements for high pre-
cision positioning systems necessitate the availability of
accurate models (Oomen, 2018), both for control design
(Karimi and Kammer, 2016) and diagnostics (Van der
Maas et al., 2016). These motion systems, including wafer
scanners, printing systems, and medical scanners, typi-
cally exhibit complex multivariable dynamics, e.g., due to
flexible mechanics. For such systems, the identification of
FRF models from experimental data, as opposed to first
principles modeling, is considered fast, inexpensive, and
accurate (Ljung, 1999; Pintelon and Schoukens, 2012).
The choice of input signal is crucial for the quality of
the identified FRF, which motivates optimal input de-
sign strategies. Optimal experiment design involves the
optimization of the inputs to maximize the model accu-
racy with limited resources, e.g., under bounded inputs or
outputs. OED is particularly relevant for Multiple Inputs
Multiple Outputs (MIMO) systems, as the number of
experiments increases with the number of system inputs.
Optimal experiment design for FRF identification of
MIMO systems is addressed in Pintelon and Schoukens
(2012), Ch 2,5; Guillaume et al. (1996); Dobrowiecki et al.
(2006). Herein, a multiple input signal design approach
is proposed using orthogonal excitations. Such orthogonal
excitations are optimal (in view of various classical op-
timality criteria) in the case of input power constraints.
However, they do not provide an optimal solution to the
general case, e.g., under bounded inputs and outputs. In-
deed, due to the inherent directionality in MIMO systems,
the optimal excitations, in general, are not orthogonal
but have directionality that depends on the system itself
(Dirkx et al., 2019).

? This work is part of the research programme VIDI with project
number 15698, which is (partly) financed by the Netherlands Organ-
isation for Scientific Research (NWO).

Optimization-based approaches to experiment design are
developed in, e.g., Ljung (1999), Ch. 13; Goodwin and
Payne (1977), Ch 6; Hjalmarsson (2005); Gevers et al.
(2011). Typically, the aim is to formulate the problem
as the minimization of a convex objective function over
a convex set (Jansson, 2004). This concept is also used
in Barenthin et al. (2008); Mehra (1974), with a specific
focus on OED for MIMO systems. Herein, convexity of the
optimization problem is preserved by considering input de-
sign problems subject to constraints on total input or total
output power, which is affine in the excitation spectrum
and hence leads to a convex constraint set.
For multivariable motion systems, however, total power
constraints are often not representative for the actual
physical limitations of the system. For such systems, limi-
tations related to specific elements of the system are much
more important, e.g., bounded power for a specific actua-
tor. A framework for OED design for FRF identification for
multivariable systems subject to element-wise constraints
is presented in Dirkx et al. (2019). It is shown that the
problem consists in solving a rank-constrained optimiza-
tion problem, and although an exact solution for a special
case is reported, no computational tools are available yet
to solve the involved non-convex problem.
The aim of this paper is to solve the rank-constrained OED
problem for FRF identification of complex multivariable
systems under element-wise power constraints. Rank con-
straints in optimization are considered highly challenging
and general methods to solve such problems exactly do
not exist (Markovsky, 2008). Therefore, existing methods
typically aim to arrive at an approximate solution by
approximating the original problem in a certain sense, e.g.,
through combined linearization and factorization (Has-
sibi et al., 1999), through a rank approximation heuristic
(Recht et al., 2007), or through alternating projection-
based schemes, e.g., (Dattorro, 2010; Delgado et al., 2014).
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Typically, the choice and design of such methods is largely
determined by the specific structure of the problem at
hand.
The main contributions in this paper are the following:
C1 A Sequential Semi-Definite Relaxation (SSDR) algo-

rithm to solve the multivariable OED problem in the
general case, in Section 3.

C2 An experimental validation of the SSDR algorithm on
a prototype wafer stage, in Section 4.

Notations and definitions Hn denotes the set of n ×
n Hermitian matrices. Subscripts (+)+ denote positive
(semi)-definiteness of a matrix or (semi)-positivity of a
vector. X represents the complex conjugate of X ∈ C.
Operation 〈A,X〉 =

∑
i,j AijXij = Tr(AHX) denotes

the Frobenius inner product of equal sized matrices A
and X. The ⊗ operator denotes the Kronecker product.
The Discrete Fourier Transform (DFT) of a discrete time
sampled signal x(t) is defined as

X(k) =
1

N

∑N−1

n=0
x(nTs)e

−j2πnk/N (1)

with N the number of samples, Ts the sample time, and k
the discrete frequency index. The normalization factor of
1/N in (1) is chosen over the conventional factor 1/

√
N to

simplify the equations in this paper.

2. PROBLEM DEFINITION

2.1 Identification framework

Identification scheme Consider the identification scheme
in Fig. 1, where G represents the ny×nu LTI system to be
identified. K is a (given) feedback controller. Throughout,
w ∈ Rnu is a multisine excitation signal (Pintelon and
Schoukens (2012), Ch. 2, Ch. 5). Signals w, u and y
are measured for system identification. The signal y is
corrupted by measurement noise νy, characterized as a fil-
tered independent and identically distributed (iid) random
sequence. The DFT of the signals u(t) and y(t) measured
during an e-th experiment, with e = 1, . . . , nu, are given
by

Z [e](k) =

[
Y [e](k)
U [e](k)

]
=

[
G(k)
I

]
S(k)W [e](k) + V [e]

z (k),

with W [e](k) ∈ Cnu the DFT of w and V
[e]
z (k) ∈ Cny+nu of

the noise contribution of νy onto z = [yT uT ]. Furthermore,

S(k) = (I +K(k)G(k))
−1

denotes the Sensitivity func-
tion. The matrix W (k) is formed by performing a number
of nu experiments as

W (k) = [W [1](k) . . . W [nu](k) ] =

W
[1]
1 (k) . . . W

[nu]
1 (k)

...
. . .

...

W
[1]
nu (k) . . . W

[nu]
nu (k)

 .
(2)

Matrices Y (k), U(k), and Z(k) are constructed similarly.
The plant estimate

Ĝ(k) = Y (k)U−1(k). (3)

is used throughout.

2.2 Formulation of the multivariable OED problem

The goal of OED is to design the excitations W =
[W (1), . . . ,W (N)] such to minimize a scalar cost function

K G

u

y

νy

−

w

Fig. 1. Closed-loop identification scheme.

J (W ) related to the accuracy of estimate Ĝ in (3), while
satisfying specified signal constraints, e.g., on the signals
w, u, or y. The OED problem is therefore naturally posed
as,

minimize
W (k)∈Cnu×nu

J (W )

subject to g(W ) ≤ 0.
(4)

Its components are discussed in more detail in the follow-
ing, and the explicit form of (4) is presented.

Cost function The cost function in (4) is chosen as the
A-optimality criterion,

J (W ) =
∑N

k=1
Tr
(
CĜ(k)

)
, (5)

where CĜ(k) ∈ Hnynu+ is the covariance matrix associated

to the estimation uncertainty in Ĝ(k),

CĜ(k) =

(
S(k)

nu∑
e=1

W [e](k)W [e]H(k)SH(k)

)−1

⊗ CY (k). (6)

Herein,

CY (k) = V (k) CZ(k)V H(k)

V (k) =
[
Iny −G(k)

]
,

and CZ(k) is the covariance matrix associated to Z(k),
see Pintelon and Schoukens (2012), Ch 2. Cost function
(5) represents the total variance over all frequencies and
all entries of the identified FRF of G. Expression (6)
requires prior knowledge of S(k), G(k), and CZ(k). These
quantities can be estimated from a preliminary experiment
as illustrated in Dirkx et al. (2019).

Constraints Throughout, the focus is on signal power
constraints. Such constraints are directly relevant in typi-
cal mechatronic systems, e.g., due to actuator or amplifier
limitations. Moreover, a power-constrained design may
serve as a preliminary design to a further peak amplitude
constrained signal design (Manchester, 2009).
In traditional OED for MIMO systems, constraints on
the total power are considered, e.g., in Barenthin et al.
(2008); Mehra (1974). To understand the notion of total
power, consider a set of vector-valued signals, say ξ[e](t) ∈
Rnξ , e = 1, . . . , nu with DFT Ξ(k), structured as in
(2). The total power is then defined as the scalar quantity

Pξ =
∑N
k=1 Tr

(
Ξ(k)ΞH(k)

)
and represents the sum of

powers over all nξ signals and all nu experiments.
Although the use of total power constraints eases the
design problem, as it typically leads to a convex con-
straint set, the total power does not necessarily represent
a relevant or even meaningful physical quantity in MIMO
systems. For motion systems in particular, the truly phys-
ically relevant powers are typically those of each of the

individual elements ξ
[e]
i (t), instead of of their sum. For

instance, a signal element ξ
[e]
i (t) may directly represent a

voltage or current requested from an ith actuator during
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the eth experiment. This motivates the use of element-
wise power constraints, wherein the power in each of the
signals and experiments are explicitly distinguished. The
element-wise power is formally defined as:

Definition 1. The element-wise power of a scalar-valued

signal ξ
[e]
i (t), i ∈ [1, nξ] out of a vector-valued signal

ξ(t) = [ξ
[e]T
1 (t), . . . , ξ

[e]T
nξ (t)]T is given by

P [e]
ξi

=
∑N

k=1
|Ξ[e]
i (k)|2

with Ξ
[e]
i (k) the DFT of ξ

[e]
i (t).

Let the signal vector ξ be a function of the excitation signal
w through ξ = Gξw, where system Gξ depends on the
selected signals in ξ. For example, ξ could be composed
as ξ = [wT uT yT ]T such that Gξ = [I ST GST ]T .
By Definition 1, the associated element-wise power is
expressed as

P [e]
ξ,i =

N∑
k=1

|Ξ[e]
i (k)|2 =

N∑
k=1

〈Hi(k),W [e](k)W [e]H(k)〉 (7)

where Hξi(k) , GHξi (k)Gξi(k), ∀k and Gξi denotes the i-th
row of Gξ.

OED problem in explicit form (NLP) Combining the
power equations (7) with the cost function (5), the general
OED problem (4) to be solved is formulated explicitly as

minimize
W [e](k)∈Cnu

N∑
k=1

γ(k)Tr

(
S(k)

nu∑
e=1

W [e](k)W [e]H(k)SH(k)

)−1

subject to
N∑
k=1

〈Hξi (k),W [e](k)W [e]H(k)〉 ≤ cξi , ∀i, e

(NLP)

where γ(k) , Tr (CY (k)) and cξ is the user-defined vector
containing the power limits. Tr(A ⊗ B) = Tr(A)Tr(B) is
applied to form the cost function.
Program (NLP ) is the minimization of an inverse quadratic
form over an intersection of ellipsoids. This problem is
non-convex and NP-hard in general, hence solving this
problem non-straightforward. An algorithm to solve (NLP )
approximately is presented in the next section.

3. SEQUENTIAL SEMI-DEFINITE RELAXATION
APPROACH

This section constitutes contribution C1.

The OED problem in (NLP ) is non-convex and generally
NP-hard. For a special case, an exact analytic solution
is reported in Dirkx et al. (2019). For the general case,
such exact solutions are not known to exist. Therefore, this
section presents a method that solves the OED problem
(NLP ) approximately. This method consists of 2 steps:

1) A reformulation of problem (NLP ) into a rank-
constrained Semi-Definite Program (SDP),

2) A Sequential Semi-Definite Relaxation (SSDR) algo-
rithm.

The steps are explained in the following.

1) Rank-constrained SDP and semidefinite relaxation

The non-convex problem (NLP ) is reformulated as a rank-
constrained SDP. Such reformulation is achieved by first
lifting the product of vectors in W [e](k) ∈ Cnu to the space
of rank one Hermitian positive semi-definite matrices in
H+,i.e.,

Φ[e]
w (k) ,W [e](k)W [e]H(k), rank(Φ[e]

w (k)) = 1,

∀e, k, see, e.g., Nesterov (1998); Nemirovski et al. (1999).

Matrix Φ
[e]
w (k) ∈ Hnu+ represents the experiment-wise ex-

citation spectrum. Expressing problem (NLP ) in terms

of the new matrix variables Φ
[e]
w (k) leads to a nonlinear

minimization problem of a matrix inverse objective over
a set of linear constraints and rank constraints. Sub-
sequently, the nonlinear objective is transformed to a
linear one by using the standard result that minimiza-

tion of
(
S(k)Φw(k)SH(k)

)−1
is equivalent to the mini-

mization of its epigraph (Boyd and Vandenberghe, 2004),
which is achieved through minimizing auxiliary variable
Z(k) ∈ Hnu subject to the conic constraint Z(k) −
S−H(k)Φ−1

w (k)S−1(k) � 0. Then, the Schur-complement
is applied to replace this conic constraint by a LMI con-
straint. This allows reformulation of (NLP ) as

minimize
Φ

[e]
w (k),Z(k)∈Hnu

+

∑N

k=1
γ(k)Tr (Z(k)) (RSDP )

subject to

[
Z(k) S−H(k)

S−1(k)
∑nu
e=1 Φ

[e]
w (k)

]
� 0, ∀k∑N

k=1
〈Hξi(k),Φ[e]

w (k)〉 ≤ cξi , ∀i, e

rank
(

Φ[e]
w (k)

)
= 1, ∀k, e.

Program (RSDP ) is a rank-constrained SDP and is equiv-
alent to (NLP ). The solution W [e]∗(k) to (NLP ) can be
uniquely reconstructed (up to the sign) from the solu-

tion Φ
[e]∗
w (k) of (RSDP ) through an Eigendecomposition.

Due to the discontinuous and non-convex nature of rank
constraints, solving (RSDP ) is still not straightforward.
However, the fundamental difficulty of program (RSDP ) is
captured fully in the rank constraint. This enables relaxing
the problem by eliminating the rank constraints, which
leads to:

minimize
Φ

[e]
w (k), Z(k)

∑N

k=1
γ(k)Tr (Z(k)) (SDR )

subject to

[
Z(k) S−H(k)

S−1(k)
∑nu
e=1 Φ

[e]
w (k)

]
� 0, ∀k∑N

k=1
〈Hξi(k),Φ[e]

w (k)〉 ≤ cξi , ∀i, e
This semidefinite relaxation is convex and can be solved
efficiently, e.g., by interior-point algorithms (Nesterov and
Nemirovski, 1994; Boyd and Vandenberghe, 2004), such as
implemented in package CVX (Grant and Boyd, 2014).

The solution to (SDR ), say Φ
[e]†
w (k), is generally not of rank

one and hence it is not a solution to (RSDP ). Nevertheless,
the relaxation (SDR ) provides valuable information on the
solution of the original problem (RSDP ). To see this, let the
optimal objective values of the two programs be defined

as f†SDR and f∗RSDP , respectively. Then, f†SDR forms a lower

bound to f∗RSDP , i.e., f†SDR ≤ f∗RSDP . Although no formal
proof will be given in this paper, for many practical OED
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Algorithm 1 Sequential Semi-Definite Relaxation

Input: Problem data: Hξi , S, γ, cξ. Algorithm parameters:
α0, efmin

, efmax
, jmax, εtol,∆ftol. Output: Excitation

vectors W [e]

1: Initialize Set j = 1, α〈1〉 = 0, ε〈0〉 =∞, W [e]〈0〉(k) =
Inu

2: while j ≤ jmax & ε ≥ εtol || f
〈j〉−f〈j−1〉

f〈j−1〉 ≥ ∆ftol

3: Solve (SSDR ) and obtain Φ
[e]〈j〉
w , Z〈j〉, ε〈j〉

4: Compute W [e]〈j〉(k) = V [e]〈j〉
2 (k)V [e]〈j〉H

2 (k)

5: Compute W [e]〈j〉(k) = V [e]〈j〉
1 (k)

√
λ

[e]〈j〉
1 (k) with

V [e]〈j〉
1 (k) and λ

[e]〈j〉
1 (k) the principal eigenvector and

eigenvalue of Φ
[e]〈j〉
w (k), respectively

6: Compute true objective value f 〈j〉 = J (W 〈j〉) by (5)
7: Update α〈j〉 through (10) and update j ← j + 1
8: end while

problems the gap is quite small. This will also be shown
experimentally in Section 4.
Besides providing a lower bound for performance, program
(SDR ) also plays a key role in the algorithm for solving the
non-convex problem (RSDP ), which is presented next.

2) Sequential Semi-Definite Relaxation (SSDR) algorithm

The main idea of the SSDR algorithm is to replace the
troublesome rank constraint in (RSDP ) by an approxima-
tive function that is convex, and then solve the resulting
(sequence of) convex optimization problem(s). The algo-
rithm is inspired by existing alternating projection based
methods in Dattorro (2010); Delgado et al. (2014), and the
iterative rank minimization or relaxation methods in Sun
and Dai (2017); Cao et al. (2017).

Rank approximation The key principle behind SSDR
is based on the property that a n × n matrix of rank r
has n− r zero eigenvalues. Therefore, instead of imposing
rank constraints, constraints are imposed onto the n − r
eigenvalues. The sum of the n − r smallest eigenvalues of
a matrix are computed by a result of Fan (1950):

Lemma 1. Consider X ∈ Hn+ with eigenvalues in descend-
ing order, i.e., λ1(X) ≥ . . . ≥ λn(X), then

n∑
i=r+1

λi(X) = minimize
W∈Θr

〈W, X〉 (8)

with set Θr = {W ∈ Hn+| 0 � W � I, Tr(W) = n− r}.

Matrix W in (8) is referred to as a direction matrix. The
feasible set Θr of direction matrices is the convex hull of
outer product of all rank (n − r) orthonormal matrices
(Dattorro, 2010). A closed-form solution to (8) exists,
stated in the following lemma:

Lemma 2. The direction matrix W ∈ Θr that minimizes
(8) is W = V2VH2 where V2 ∈ Cn×n−r is the matrix of
eigenvectors corresponding the n − r smallest eigenvalues
of X.

Now, the rank of a matrix is expressed in terms of the
direction matrix according to:

Corollary 1. When ε = 0 and X ∈ Hn+, rank(X) = 1
holds if and only if

〈W, X〉 ≤ ε and 〈V1VH1 , X〉 > 0 (9)

where W = V2VH2 and with V1 ∈ Cn×1 and V2 ∈ Cn×n−1

containing the eigenvectors corresponding to the largest
eigenvalue and to the n − 1 smallest eigenvalues of X,
respectively.

Application of Corollary 1 enables substituting the non-
convex constraint rank(X) = 1 by the affine constraint
(9). However, note that the direction matrix W depends
directly on the eigenvectors of X and hence cannot be
computed before X is solved.

SSDR algorithm The SSDR algorithm addresses this
dependency of W on X by performing a sequential pro-
cedure. Herein, the direction matrix W〈j〉 at an iteration
j is based on the solution X〈j−1〉 obtained in the previous
iteration j− 1. Applying the SSDR algorithm to the OED
problem (RSDP ), the following convex program is solved
iteratively for j = 1, . . . , jmax:

minimize
Φ

[e]〈j〉
w (k), Z〈j〉(k),

ε〈j〉 ∈ R+

N∑
k=1

γ(k)Tr
(
Z〈j〉(k)

)
+ α〈j〉ε〈j〉 (SSDR )

subject to

[
Z〈j〉(k) S−H(k)

S−1(k)
∑nu
e=1 Φ

[e]〈j〉
w (k)

]
� 0, ∀k∑N

k=1
〈Hξi(k),Φ[e]〈j〉

w (k)〉 ≤ cξi , ∀i, e
N∑
k=1

nu∑
e=1

〈W [e]〈j−1〉(k),Φ[e]〈j〉
w (k)〉 ≤ ε〈j〉

ε〈j〉 ≤ ε〈j−1〉.

Herein, W [e]〈j〉(k) = V [e]〈j〉
2 (k)V [e]〈j〉H

2 (k) with V [e]〈j〉
2 (k) ∈

Cnu×nu−1 the eigenvectors corresponding to the nu − 1

smallest eigenvalues of Φ
[e]
w (k). The slack variable ε〈j〉 ∈

R+ is minimized by augmenting it as a penalty term to
the cost function, weighted by the externally controlled
parameter α〈j〉 ∈ R+. Additionally, the bottom constraint
enforces a monotonic decrease of ε. Doing so, the neN rank
constraints in (RSDP ) are gradually approached, such that
when ε〈j〉 = 0, a feasible solution to (RSDP ) is obtained.
The outline of the SSDR algorithm is presented in Algo-
rithm 1. The choice of the weighting parameter α〈j〉 affects
the solution to (SSDR ). Although there are no strict rules
for choosing α〈j〉, it is proposed to make this parameter

dependent on the error e
〈j〉
f = |f 〈j〉 − f̂ 〈j〉|, where f 〈j〉 ,

J (W 〈j〉), see (5), and f̂ 〈j〉 ,
∑N
k=1 γ(k)Tr

(
Z〈j〉(k)

)
. This

error expresses the mismatch between the true cost based
on the excitation vectors W [e]〈j〉(k) and the cost based

on the ‘approximate’ rank one matrices Φ
[e]〈j〉
w (k) used in

(SSDR ). Notice that e
〈j〉
f = 0 if rank(Φ

[e]〈j〉
w (k)) = 1,∀e, k.

The weighting parameter α〈j〉 is then selected as

α〈j〉 = max
(

min(e
〈j〉
f , efmax), efmin

)
αj0 (10)

where and efmax
> efmin

> 0 are user-defined upper
and lower bounds. Hence, this update law puts more
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weight on minimizing the rank when the cost f̂ 〈j〉 is an
inaccurate representation of the true cost f 〈j〉, and vice
versa. Additionally, setting α0 > 0 enforces the nu − 1
smallest eigenvalues to zero.

Discussion The SSDR approach is related to existing
iterative approaches to solving rank constrained problems.
Though, SSDR is tailored for the potentially large dimen-
sional separable problem (RSDP ) and has the following
key features that are beneficial in terms of computation
load: a) the sequence of programs to be solved consists
only of feasible programs, in contrast to Cao et al. (2017),
b) the required projection matrices are constructed an-
alytically, instead of optimization-based like in Dattorro
(2010); Delgado et al. (2014), and c) the rank constraints
are approximated by a single linear constraint, instead of
a (set of) conic constraint(s) like in Sun and Dai (2017).

4. EXPERIMENTAL VALIDATION

This section constitutes contribution C2.

4.1 Experimental goal

The goal of the experimental validation is to demonstrate
1) the performance of the SSDR algorithm and 2) the
benefit of multivariable excitation design compared to
optimal Single Input Multiple Output (SIMO) excitation
design (Dirkx et al., 2019), in terms of achievable FRF
accuracy. While in multivariable design both the excitation
gains and directions are optimized, the SIMO design
inherently allows for optimization of the gains only.

4.2 Experimental system and procedure

System The experiments consist in the identification
of the [4 × 4] out-of-plane dynamics of the closed-loop
controlled wafer stage depicted in Fig. 2. The output
powers are constrained to a maximum value of 0.30mW.

Procedure First, a set of 4 preliminary (non-optimized)
SIMO experiments are performed to acquire estimates of
Hξ, S, and γ, that serve as inputs for optimized design.
Subsequently, for comparison purposes, 4 experiments are
performed using optimized SIMO excitations, applying the
SIMO OED framework described in Dirkx et al. (2019).
Lastly, a set of 4 experiments is performed using optimized
multivariable excitations applying the SSDR approach
from Section 3.

4.3 Preliminary design and results

For the preliminary design, SIMO excitations are used
with a signal power of 0.25 Watt for each input, uniformly
distributed over the frequency grid fe = [10 : 5 : 4995]Hz.
The resulting identified FRF is shown in black in Fig. 3.
Entry Ĝ1,1 is shown in greater detail in black in Fig 4.

4.4 Multivariable OED design and results

The multivariable excitations are generated by the SSDR
algorithm. The settings used are jmax = 50, α0 =
1.05, efmin

= 10−12, efmax
= 10−4, εtol = 10−4,∆ftol =

10−8.

Fig. 2. Wafer stage setup.
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Fig. 3. Full 4 × 4 Bode magnitude plot of the FRF obtained from
the preliminary (black), optimized SIMO (blue), and optimized
multivariable (red) measurements.
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Fig. 4. Bode magnitude plot of FRF entry Ĝ1,1 obtained from
the preliminary (black), optimized SIMO (blue), and optimized
multivariable (red) measurements, including their respective
95% confidence intervals (shades).

SSDR convergence The progression of the true and

approximate objective value f 〈j〉 and f̂ 〈j〉 are shown in

the top plot of Fig. 5, together with the lower bound f†SDR .

All curves are equally scaled such that f†SDR = 1. During

the first few iterations, f̂ 〈j〉 is an inaccurate approximation
of the true objective value f 〈j〉, but the mismatch reduces
over the iterations. In 50 iterations, the objective value
f 〈j〉 has converged towards a solution with a gap of a

factor 1.5 from the lower bound f†SDR . The progression

of the slack variable ε〈j〉 is depicted in the bottom plot
of Fig. 5, which shows a monotonic decrease. Although
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Fig. 5. Convergence of SSDR algorithm. Top: True objective value
f〈j〉 (×−), approximate objective value f̂〈j〉 (4−), and lower

bound f†SDR (−). Bottom: Monotonic decrease of variable ε〈j〉.

a rank one solution is not achieved within 50 iterations,
i.e., ε〈50〉 6= 0, it is approximated rather accurately, which
is supported (implicitly) by the small difference between

f 〈50〉 and f̂ 〈50〉 of 0.1 shown in the top plot.

FRF identification results The identified FRFs using
optimized SIMO and multivariable excitations are shown
in blue and red, respectively, in Fig. 3. The Ĝ1,1 entry
is shown in more detail in Fig 4. The optimized SIMO
excitations improve upon the accuracy of the preliminary
FRF by approximately a factor 3. Applying multivariable
excitations, yet an additional factor 2 improvement is
achieved. This showcases the benefit of optimized excita-
tion directions on top of optimized excitation gains.

5. CONCLUSIONS

An optimization-based multivariable OED framework for
the FRF identification of MIMO systems is presented.
Herein, optimization of the frequency-wise directions of
the system to-be-identified, within given element-wise
power constraints, is addressed explicitly. An algorithm
that approximately solves this non-convex and generally
NP-hard optimization problem is presented. An improve-
ment in the achieved FRF quality over existing excitation
design techniques is shown experimentally.
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