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Abstract: Many engineering applications can be described as switched linear systems, in which the
manipulated control action is the time-dependent switching signal. In such a case, the control strategy
must select a linear autonomous system at each time step, among a finite number of them. Even when
this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of
such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this
paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear
systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an
easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way.
The medical application of viral mutation and its respective drug resistance is addressed to acute and
chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the
numerical results suggested that the proposed strategy outperforms the schedule for available treatments.
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1. INTRODUCTION

Switched systems are dynamical systems composed by a col-
lection of different state dynamics switching among them ac-
cording to a discrete signal formed by a finite set of modes
(Liberzon [2003]), the so-called switching law. The interest in
switched systems relies in the fact that they have shown to be
useful for modeling complex behaviors of physical systems,
such as mechanical systems, automotive systems, power sys-
tems, aircrafts, traffic control systems, and biomedical systems.
(Chapman et al. [2018], Hernandez-Vargas [2019]).
An interesting application of switched systems is the problem
of scheduling therapies to mitigate mutation in viral infections.
A convenient way to model the mitigation viral escape problem
seems to be by means of a switched linear system (Hernandez-
Vargas [2019]). This model helps us to understand how the
viruses can mutate and develop resistance to specific drug ther-
apies (Clavel and J Hance [2004]).
In Hernandez-Vargas [2019] different control strategies have
been considered for the problem of viral mutations in order to
investigate the potential benefits of a switching strategy to the
problem of minimizing viral load and delaying the emergence
of highly resistant mutant viruses. The main clinical goal is to
delay the time until the appearance of strains resistant to the ex-
isting regimens (Martinez-Cajas and Wainberg [2008]). How-
ever, some care should be taken into account when a switching
strategy is applied: an early switching carries the risk of poor
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adherence to new drug regimens and depletes the remaining
therapies; a late switching produces the accumulates different
mutations that leads to resistance. (Molla et. al. [1996]).
All the previous suggests that Model Predictive Control (MPC)
may tackle - by taking advantage of its flexibility and antic-
ipatory properties - all these clinical recommendations. The
MPC is one of the most employed advanced control technique
due to its ability to handle, easily and effectively, control and
states constraints (Mayne et al. [2000], Rawlings et al. [2017]).
Moreover, this technique is capable to provide stability, ro-
bustness, and tractable computation for linear and nonlinear
systems (Rawlings and Mayne [2009]). Set invariance theory,
which is closely related to Lyapunov stability theory (Blan-
chini and Miani [2015]), has also shown to be a useful tool
for analyzing dynamical systems, which makes the set-based
MPC an appropriate strategy to undertake the control problem
(Anderson et al. [2018]).
The interest in MPC is growing also in the field of switched
systems, due to the particular nature of the control problem.
The switching law is in fact either considered as a perturba-
tion (Sun and Ge [2011]) or as part of the control inputs. In
this last case, conditions for stabilizability have been provided
by using a min-switching policy (Liberzon [2003]), and Lya-
punov–Metzler inequalities (C. Geromel and Colaneri [2006]).
In this context, stability analysis of switched systems is nei-
ther intuitive nor trivial: for instance, switching between un-
stable subsystems may yield a stable system, and vice versa.
(Liberzon [2003]). Because of its easy implementation and its
anticipatory nature, MPC seems an appropriate strategy for
computing switching laws, since it may anticipate the activation
of possible switching. Moreover, set-theory has been recently
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used in the context of stability of switching systems (Fiacchini
and Jungers [2014]), suggesting that set-based MPC approach
may be a promising tool for the analysis of stability, robustness
and constraint satisfaction of this kind of systems.
This paper presents a novel set-based MPC formulation for
discrete-time switched linear systems, which includes a study
of invariant regions for the closed-loop, when the control action
is the selection of a particular sub-system. The performance
is assessed by simulating the aforementioned viral mutation
problem, including results that prove the advantages of the new
strategy.

1.1 Notation

Z denotes the set of integer numbers and Z≥0 the set of non-
negative integers. Furthermore, Zq = {n ∈ Z : 0 ≤ n ≤ q}
and Zl:q = {n ∈ Z : l ≤ n ≤ q}. The Euclidean distance
between two points x, y, in Rn, is denoted as d(x, y), while
the distance from a point x ∈ Rn to a set Ω ⊂ Rn is denoted as
dΩ(x) := inf{d(x, y) : y ∈ Ω}.

2. OPTIMAL CONTROL FOR DISCRETE-TIME
SWITCHED LINEAR SYSTEM

Consider the discrete-time switched linear system described by
x(k + 1) = Aσ(k)x(k), (1)

where x(k) ∈ X ⊂ Rn is the system state at the k–th sampling
time, being X is closed. σ(k) ∈ Σ := {1, 2, · · · , q} is the
switching signal that, at any instant k, selects a transition matrix
Ai ∈ Rn×n with i ∈ Σ. Hereafter, the signal σ(·) is considered
as a control/manipulated variable.

In order to stabilize system (1) at the origin, we consider the
cost function

JN (x,σ) =

N−1∑
k=0

cσ(k)x(k) + cx(N) (2)

where x = x(0) is the current state; x(j + 1) = Aσ(j)x(j),
for j ∈ ZN−1; σ = {σ(0), · · · , σ(N − 1)} is a switching
discrete path, cσ(j) is a positive weight vector corresponding
to signal σ(j), and vector c is a positive final weight. The
cost function (2) must satisfy the Hamilton–Jacobi–Bellman
equation (Locatelli [2001]).

Let us define the optimal switching signal, the corresponding
trajectory and the optimal cost functional as σ0(k), x0(k) and
JN (x,σ0), respectively, where σ0 := {σ0(0), · · · , σ0(N −
1)}. Using the Hamilton–Jacobi–Bellman equation for discrete-
time case, we have:
V(x(k), k) = min

σ(k)∈Σ
{cσ(k)+V(x(k+1), k+1)}, for k ∈ Z0:N

The general solution for this system can be given by
V(x(k), k) = p(k)′x(k),

where p(k) denote the costate vector, with V (x(0), 0) =
Nx(0). Therefore, the following nonlinear system is obtained:

x0(k + 1) = Aσ0(k)x
0(k), x(0) = x0 (3)

p0(k) = A′σ0(k)p
0(k + 1) + cσ0(k), p(N) = c

σ0(k) = arg min
s
{p0(k + 1)′Asx

0(k) + csx
0(k).}

The state equation is solved forwards in time whereas the
costate equation must be integrated backward.

However, to obtain the aforementioned solution could be dif-
ficult, if not impossible, because of the computational com-
plexity. In the next section, a Receding Horizon (RHC) strat-
egy will be presented that - although sub-optimal - reasonably
approximates the optimal solution, at a significant smaller com-
putational cost. Furthermore, the proposed strategy includes a
complete cost function (penalizing the states all along a given
horizon) and considers full state and input constraints.

3. MPC FOR SWITCHED SYSTEM

In this section, the formal MPC for switched systems (SwMPC)
is introduced. The control objective is to steer the system to a
given invariant target set, as the natural generalization of a given
equilibrium target point. First, the concept of invariant sets for
switching systems is introduced.

3.1 Invariant sets for switched systems

Next, the concept of invariance for switched systems is pre-
sented.
Definition 1. (Switched Invariant Set). A set Ω ⊂ X is a
switched invariant set (SIS) for system (1) if for all x ∈ Ω,
there exists σ ∈ Σ such that Aσx ∈ Ω.
Proposition 2. Let I ⊆ Σ be a sub-index set such that Ai is
non-singular for all i ∈ I , and let Ω ⊂ X be a compact set such
that

Ω ⊆
⋃
i∈I

A−1
i Ω. (4)

Then, Ω is a SIS for system (1).

To see the above result, assume that Ω ⊆
⋃
i∈I A

−1
i Ω and let

x ∈ Ω. Then, there exists î ∈ I such that x ∈ A−1

î
Ω, or, the

same, Aîx ∈ Ω, which means that Ω is a SIS of system (1).

3.2 SwMPC formulation

Let us consider the following cost function

JN (x;σ) :=

N−1∑
j=0

cσ(j)dΩ(x(j)) + cdΩ(x(N)), (5)

where x = x(0) is the current state; x(j + 1) = Aσ(j)x(j),
j ∈ ZN , with N being the control/prediction horizon, are
the predicted system states; σ = {σ(0), · · · , σ(N − 1)} is
a switching path; cσ(j) is a positive weight corresponding to
signal σ(j), and vector c is a positive final weight.

Let us consider also the binary variables αji ∈ {0, 1}, for all
i ∈ Σ and j ∈ ZN−1, such that:

• αji = 1⇒ σ(j) = i

• αji = 0⇒ σ(j) 6= i.

α = {αji , i ∈ Σ, j ∈ ZN−1} is a set of integer optimization
variables from which the sequence of signals σ can be obtained.

Let Ω ∈ X be a SIS for system (1) and let x be the initial state
at time k. Then, the MPC optimization problem is defined as:
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min
α

JN (x;σ(α)) (6)

s.t. x(0) = x, (7)

x(j + 1) =

q∑
i=1

αjiAσ(j)x(j), j ∈ ZN−1, (8)

αji ∈ {0, 1}, j ∈ ZN−1, i ∈ Σ, (9)
q∑
i=1

αji = 1, j ∈ ZN−1, (10)

x(j) ∈ X , j ∈ ZN−1 (11)

σ(j) = {i : αji = 1}, j ∈ ZN−1 (12)
x(N) ∈ Ω. (13)

where constraint (7) equals the first predicted state with the
current system state x, which is an optimization parameter.
Constraint (8) accounts for the switched system evolution, in
terms of the optimization variable αji , while αji ∈ {0, 1} are
integer optimization variables. Constraint (10) implies that only
one signal is applied at each step j. Constraint (12) relates
signal σ(j) with the optimization variable αji , and constraint
(13) is a terminal condition forcing the predicted state at time
N to belong to the target set Ω (stability constraint).

The optimal value of the cost function is given by

J0
N (x) = JN (x,σ0(x)), (14)

where sequence σ0 is the solution to problem (6). The control
law, derived from the application of a receding horizon control
(RHC) policy, is given by κMPC(x) = σ0(0), where σ0(0) is
the first element of the optimal solution sequence σ0. This way,
the closed-loop system under the MPC law is given by:

x(k + 1) = AκMPC(x(k))x(k), (15)

The domain of attraction of the SwMPC controller derived
from problem in (6) (i.e., the set of states that can be feasibly
controlled by the SwMPC) is given by XN , i.e., the controllable
set, in N step, to the target set Ω.
Remark 3. Given that Ω is a SIS in XN , then the domain of
attraction of problem in 6, XN , is nonempty.
Remark 4. Under mild assumptions, it can be shown that the
closed-loop (15) is recursively feasible and stable.

3.3 SwMPC algorithm

The control algorithm executed at any k-th time instant is
presenting in Algorithm 1.

Algorithm 1
Require: N ∈ N, X ⊂ Rn and Ω ⊆ X

1: Read x(k)
2: Solve (6) subject to (7)-(13)
3: Inject σ0(0) into the system.
4: k ← k + 1
5: Go back to 1

The resulting optimization problem is a Mixed Integer
Quadratic Programming (MIQP), which can be solved by spe-
cific solvers. For the simulations of the next sections, Algo-
rithm 1 is implemented in YALMIP, a Toolbox for Modeling
and Optimization in MATLAB (Löfberg [2004]). The selected

optimizer is the Gurobi Optimizer (Version 8.1, Academic Li-
cense), which in turn relies on a branch-and-bound algorithm to
solve MIQP problems (Gurobi Optimization LLC [2019], Land
and Doig [1960]).

4. APPLICATION TO VIRAL MUTATION PROBLEM

Here, we focus on the problem of treatment scheduling to min-
imize the adverse effects of virus mutation in acute and chronic
infections. Acute infections are resolved by the immune system
in a short period, while in chronic infections the pathogen
persists. In both scenarios, a key issue is given by the rise to
drug resistance. To focus in virus mutation treatment scenario
we use the following model (Hernandez-Vargas et al. [2011]):

V̇i(t) =ρi,σ(t)Vi(t)− δVi(t) +
∑
i6=j

µmi,jVj(t), (16)

where parameter µ represents the mutation rate, δ is the decay
rate of all genotypes, and mi,j ∈ {0, 1} is the genetic con-
nections between genotypes (only if mi,j = 1 it is possible
for genotype j mutates to genotype i). Equation (16) can be
rewritten as

V̇ (t) =(Rσ(t) − δI)V (t) + µMV (t) (17)

where M := [mi,j ] and Rσ(t) := diag{ρi,σ(t)}, and every el-
ement of V (t) is a particular genotype. For illustrative reasons,
we take a model with four genetic variants and two possible
drug therapies, as shown in Figure 1.

Fig. 1. The virus V1 is susceptible to both therapies. V2 is
susceptible to therapy 2 while V3 is susceptible to therapy
1. There is a highly resistant genotype (V4) which is
resistant to therapy 1 and 2.

Figure 1 shows a mutation graph that is symmetric and circular,
only connections: V1(t) ↔ V2(t), V2(t) ↔ V4(t), V4(t) ↔
V3(t), V3(t) ↔ V1(t) are possible. This leads to the mutation
matrix:

M =

 0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 (18)

4.1 Simulations results

For simulation comparisons, we will introduce the definitions
of different therapeutic strategies that are recommended in
clinics:
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Scenario V1 V2 V3 V4
1 ρ1,1 = 0.05 ρ2,1 = 0.27 ρ3,1 = 0.05 ρ4,1 = 0.27

ρ1,2 = 0.05 ρ2,2 = 0.05 ρ3,2 = 0.27 ρ4,2 = 0.27

2 ρ1,1 = 0.05 ρ2,1 = 0.28 ρ3,1 = 0.01 ρ4,1 = 0.27
ρ1,2 = 0.05 ρ2,2 = 0.20 ρ3,2 = 0.25 ρ4,2 = 0.27

3 ρ1,1 = 0.05 ρ2,1 = 0.26 ρ3,1 = 0.01 ρ4,1 = 0.29
ρ1,2 = 0.01 ρ2,2 = 0.15 ρ3,2 = 0.25 ρ4,2 = 0.27

4 ρ1,1 = 0.05 ρ2,1 = 0.40 ρ3,1 = 0.05 ρ4,1 = 0.23
ρ1,2 = 0.05 ρ2,2 = 0.05 ρ3,2 = 0.40 ρ4,2 = 0.23

Table 1. Replication rates (Rσ) different therapy
combinations. Scenarios 1-3 represent chronic in-

fections and Scenario 4 is an acute one.

i. The switching on virologic failure (VF) strategy, recom-
mended by AIDSInfo [2013], suggest to introduce a new
regimen when there is detectable viremia (HIV RNA >
1000 copies/ml) and a drug-resistant genotype is identi-
fied.

ii. The SWATCH approach, recommended by Martinez-
Cajas and Wainberg [2008], is based on the possibility of
preempt virologic rebound; this strategy reduces the accu-
mulating drug-resistant genotypes by alternating between
the two regimes every three months while viral load is
suppressed.

The viral mutation model (17) is described in discrete-time with
a regular treatment interval τ = 28 days; during this time
interval the treatment is considered to be fixed. If k ∈ N denotes
the number of intervals, equation (17) can be described by
the following discrete-time switched linear system (1), where
x(k) = x(kτ) is the sampled state and Aσ = e(Rσ−δI+µM)τ .
The state is constrained to x(k) ∈ X := R≥0, and σ(k) ∈
{1, 2} for all k ∈ Z≥0.

Viral mutation rates are about µ = 10−4 and the connection
matrix by (18). We consider the initial condition

V1(0) = 1000 copies/ml, V2(0) = µV1(0),

V3(0) = µV1(0), V4(0)) = µV2(0) + µV3(0), (19)

and the viral clearance rate is δ = 0.24/day, which corresponds
to a half life less than 3 days. As we mentioned before, the
decision time is τ = 28 days, for a period of T = 336 days.

The rates of the viral replication under treatment σ, Rσ , can
illustrate hypothetical infection scenarios, among them the
chronic and the acute one. In Hernandez-Vargas [2019] three
chronic scenarios for replication rates are presented (1-3 of
Table 1). The first one is the ideal case and describes a complete
symmetry between genotypes V2 and V3: therapy 1 inhibits V3

with the same intensity as therapy 2 inhibits V2. In general, a
complete model should include asymmetry in the genetic tree
and a complex structure instead of a simple cycle. Scenario
two shows an asymmetry replication rate between genotype
V2 and V3, and both therapies induce the same replication in
genotypes V1 and V4. The third scenario is the more realistic
one, since each genotype experience different dynamics to a
new treatment. The three of them, however, represent chronic
infections. In this work we present a fourth scenario corre-
sponding to an acute infection (e.g. influenza), characterized
by a rapid increase of the viral load, which however may be
cleared in short time (see Table 1).

The total viral load at time instant k, Vtotal(k), is defined by
Vtotal(k) =

∑4
i=1 Vi(k), where Vi(k) is the viral load of the

variant i at time instant k.
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Fig. 2. Switching on virologic failure for Scenario 1 to 4.

The therapeutic strategies that we are going to test are the
switching on virologic failure (VF) and the SWATCH approach,
both presented above. On the other hand, for all scenarios
the optimal solution will be computed by the “brute force”
approach, which analyzes the best numerical solution of all
possible combinations for therapies 1 and 2 with decision time
τ = 28 days for a period of T = 336 days. That is,
2T/τ possible treatment combinations are evaluated and the
sequence of treatments that gives the least amount of total
viral load over the whole period of time is chosen (i.e., the
one that minimizes the cost (2)). Notice that this approach
has more computational complexity as the period of time is
incremented or the treatment interval is reduced, making it a
not implementable optimization. Figure 2 shows the switching
on virologic failure treatment for the 4 scenarios. The total viral
load initially drops rapidly for chronic infections. However, the
appearance of resistant genotype will drive a virologic failure
after 200 days making a new therapy necessary. Scenarios 1 and
2 exhibit a second drop in viral population, not as pronounced
as it was for therapy 1. For scenario 3, the viral escape is almost
not affected by the new therapy, which is because the highly
resistant genotype, V4, is directing the dynamics of the system
(see Figure 5). The acute infection has a very different behavior;
unlike the other cases, the system can be stabilized, i.e. the total
viral load can be driven to undetectable levels (Vtotal(T ) ≤
50 copies/ml). However, since the therapy changes regimen by
an exceeding of an upper bound, the total viral load does not
reach its minimum values and shows an oscillating behavior.
Figure 3 shows in more detail, where genotype 2 and 3 has
an asymmetric behavior resulting in the oscillating of the total
viral load.

The SWATCH strategy shows - as previously highlighted by
Hernandez-Vargas et al. [2011] - a better performance than the
switching on virologic failure. Figure 4 shows a lower concen-
tration in the total viral load over the year for chronic infections,
while the viral population is cleared in acute infection.

The optimal solution for chronic infections is given by “brute
force” approach, in order to compare performance of the pro-
posal with the best possible result. In chronic infection scenario
there is always a viral escape, because the high resistance geno-
type rises with resistance for the two regimens. For scenario 3,
the total viral load grows up to Vtotal(T ) = 83, 14 copies/ml
by the final time T = 336 days, but if the final time is extending
to T = 420 days the total viral load increases to Vtotal(T ) =
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Fig. 3. Switching on virologic failure for acute infection.
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Fig. 4. SWATCH treatment for Scenario 1 to 4.
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Fig. 5. Optimal solution for chronic infection of scenario 3 with
period of T = 420 days.

688, 29 copies/ml, which means that the viral escape does occur
(see Figure 5).

4.2 MPC-based scheduling method

The same scenarios studied above will be tackled by the MPC
proposed in this work. A prediction horizon of N = 5 is
considered - equivalent to 5τ days - with the decision time
τ = 28 days for a period of T = 336 days. The objective
of the controller is to drive the total viral load to undetectable
levels (Vtotal(T ) < 50 copies/ml). Since the objective can
not be maintained over time for chronic infections due to
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Fig. 6. SwMPC strategy for all scenarios.
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Fig. 7. Viral dynamics for Scenario 2 and treatment by the
SwMPC.

the promoting persistence of high resistance genotypes it is
expected that the proposed strategy delays the viral escape time.
Figure 6 shows the four scenarios under the proposed SwMPC.
As it can be seen, the controller suppresses the viral load, for
all cases. In chronic infection scenarios the total viral load
is maintained below to the virologic failure levels, while in
acute infections it is completely cleared. Figure 7, on the other
hand, shows the behavior of all genotypes only for Scenario 2,
together with the switching sequence provided by the SwMPC.
The sequence is not intuitive at all, since therapy 1 is used only
three times throughout the year of treatment, in the third, sixth
and eleventh month.
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Scenario SWATCH VF OPTIMAL SwMPC
1 1175.6 3483.9 1086.0 1087.0

2 1587.1 5277.9 1108.4 1123.3

3 6478.6 3169.4 1104.2 1156.2

4 1175.6 12075.0 1067.4 1067.6

Table 2. Performance index IT for all strategies.

Remark 5. It is important to highlight that in chronic infection
scenarios, where the system cannot be stabilized, the viral
escape cannot be avoided. However, the simulation results
suggest that the proposed MPC delays the escape time, which
is considerably beneficial in this context.

4.3 Performance comparison

In chronic infections the virus persists, promoting an unavoid-
able viral escape. This fact makes the switched system that
models the infection dynamic essentially non-stabilizable and,
so, it will not be possible to drive the system to the undetectable
virus zone and keep it there indefinitely. So, the following index
is proposed to compare the presented strategies:

IT =

T∑
k=0

Vtotal(k), (20)

where Vtotal(k) is the total viral load at time instant k

The best performance is obtained by the optimal solution com-
puted by “brute force” approach, according to Table 2. The
indexes in Table 2 reveal that the proactive switching strategies
may outperform the ’switched on virologic failure’ strategy,
as it was previously stated in Hernandez-Vargas et al. [2011].
Nevertheless, the proposed SwMPC provides better results than
SWATCH treatment, and exhibits almost the same performance
than the optimal solution, in all cases, which is a result to
be highlighted considering that the MPC is an implementable
strategy, which is robust to model-plant mismatches, explicitly
considers constraints and has a low computational burden.

5. CONCLUSIONS

The proposed controller is applied to a simplified viral mutation
model, proving that it can attenuate the effect of the viral
mutation in several challenging scenarios, containing chronic
and acute infection cases. The controller is compared with some
basic viral mutation treatments and with the optimal solution
of every posed scenario. In acute infections, the proposed
controller cleared the total viral population in a short period,
close to the optimal solution. In chronic infections, the results
suggest that the proposed MPC significantly extends the time
to viral escape.
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