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Abstract: The propagation of acoustic waves in a 2D geometrical domain under mixed
boundary control is here described by means of the port-Hamiltonian (pH) formalism. A finite
element based method is employed to obtain a consistently discretized model. To construct
a model with mixed boundary control, two different methodologies are detailed: one employs
Lagrange multipliers, the other relies on a virtual domain decomposition to interconnect models
with different causalities. The two approaches are assessed numerically, by comparing the
Hamiltonian and the state variables norm for progressively refined meshes.
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1. INTRODUCTION

The port-Hamiltonian (pH) formalism has demonstrated
to be a valuable modelling paradigm, capable of highlight-
ing important properties of dynamical systems (Duindam
et al. [2009]) and representing a huge class of systems,
either finite- or infinite-dimensional (van der Schaft and
Maschke [2002]). Obtaining finite-dimensional representa-
tions that preserve the proprieties of the continuous system
at a discrete level is not a trivial task. Many techniques
(e.g. Moulla et al. [2012]) are only applicable to one-
dimensional problems and cannot treat higher geometrical
dimensions. Finite differences (Trenchant et al. [2018])
can be used for 2D problems but the actual implemen-
tation cannot be automated easily. A finite element ap-
proach dealing with different boundary causality has been
proposed in Kotyczka et al. [2018]. The construction of
the necessary power-preserving mappings is, however, not
straightforward on arbitrary meshes.

The method of choice for this paper is detailed in Cardoso-
Ribeiro et al. [2019]. It represents the extension of the
mixed finite element method (Gatica [2014]) to pH systems
and as such it can be easily implemented using standard
finite elements libraries (e.g. Logg et al. [2012]). Because

? This work is supported by the project ANR-16-CE92-0028, en-
titled Interconnected Infinite-Dimensional systems for Heteroge-
neous Media, INFIDHEM, financed by the French National Re-
search Agency (ANR) and the Deutsche Forschungsgemeinschaft
(DFG). Further information is available at https://websites.

isae-supaero.fr/infidhem/the-project.

of the different treatment of the system equations, which
allows the choice of imposed boundary conditions, this
method is referred to as partitioned finite element method
(PFEM). Despite the many advantages of PFEM, the
inclusion of mixed causalities demands additional care.
The term causality describes which of the boundary port
variables is imposed as an input boundary condition in
the sense of automatic control. A system with different
(mixed) causalities contains several boundary ports im-
posed as input. This leads to a mixed boundary control
problem. A detailed discussion, both at a theoretical and
numerical level, on this kind of problems in 2D geometric
domains may be found in Grisvard [2011].

In this work, the propagation of acoustic waves in a cylin-
drical duct is considered. An analogous problem and its
discretization are studied in Wu et al. [2015]. To illustrate
how mixed boundary control are handled in PFEM, an
impedance boundary condition is taken over the lateral
surface of the cylinder, whereas on the remaining boundary
a constant flux is imposed at the inlet and the outlet.
Two different methodologies to treat the mixed boundary
causalities are detailed and numerically compared.

In Section 2 the problem under consideration is detailed.
The boundary and initial conditions are assumed to be
axis-symmetric. This allows reducing the problem from
a 3D to a 2D geometry. In Section 3 the partitioned
finite element method is recalled, under the hypothesis of
uniform boundary conditions. In Section 4 the treatment
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of mixed boundary conditions is described. One strategy
relies on the usage of Lagrange multipliers to enforce
the Dirichlet boundary condition. The other requires the
constructions of two models with different causality by
splitting the domain into two parts. These two models
are then interconnected to get a final system with mixed
boundary inputs. In Sections 5 the numerical simulations
provided by the two different methods are presented. By
progressively refining the mesh size, it is shown that, for
both methods, the states converge to the results of a
reference solution.

2. PROBLEM STATEMENT: MODEL DESCRIPTION

In this section we state the problem under consideration
by making use of a port-Hamiltonian model. The reader
can consult Jacob and Zwart [2012] for a comprehensive
introduction to 1D distributed parameter PH systems and
links towards classical PDE models. The canonical PH
representation of hyperbolic conservation laws in nD is
presented in van der Schaft and Maschke [2002].

The propagation of sound in air inside is modeled by
Trenchant et al. [2018]

∂

∂t

[
χsp
µ0v

]
= −

[
0 div

grad 0

] [
p
v

]
, (1)

on Ω ⊂ R3. p ∈ R and v ∈ R3 denote the variations of
pressure and velocity from a steady state, µ0 is the steady
state mass density, and χs represents a constant adiabatic
compressibility factor. A cylindrical duct of length L and
radius R is considered as physical domain, Ω = {x ∈
[0, L], r ∈ [0, R], θ = [0, 2π)}. Denoting by x, r, θ the axial,
radial and tangential coordinate, the following boundary
conditions are imposed

p(x,R, θ) = −Z(x, t) vr(x,R, θ), (2)

v · n(0, r, θ) = −vx(0, r, θ) = −f(r), (3)

v · n(L, r, θ) = +vx(L, r, θ) = +f(r), (4)

where n is the outward normal at the boundary. As the
main focus is the treatment of mixed boundary condi-
tions, it is assumed that the impedance operator Z is
non invertible. If it were invertible than the impedance
condition could be treated as a Robin condition. For the
initial boundary conditions, it is assumed

p0(x, r, θ) = 0,

v0
x(x, r, θ) = f(r),

v0
r(x, r, θ) = g(r),

v0
θ(x, r, θ) = 0.

(5)

The impedance and the axial and radial flows expressions
are the following

Z(x, t) = 1

{
1

3
L ≤ x ≤ 2

3
L, t ≥ 0.2 tfin

}
µ0 c0,

f(r) =

(
1− r2

R2

)
v0,

g(r) = 16
r2

R4
(R− r)2

v0.

This model describes the behavior of an axis-symmetrical
flow subjected to an impedance condition on the lateral
surface. Because of symmetry the model can be reduced
to a 2D problem in polar coordinates over the domain
Ωr = {x ∈ [0, L], r ∈ [0, R]}. The reduced system reads

∂

∂t

[
χsp
µ0vx
µ0vr

]
= −

[
0 ∂x ∂r + 1/r
∂x 0 0
∂r 0 0

][
p
vx
vr

]
. (6)

The boundary conditions must now account for the sym-
metry condition at r = 0, leading to the additional condi-
tion v ·n(x, 0) = vr(x, 0) = 0. System (6) can be rewritten
compactly as a pH system in co-energy variables

Q−1∂te = J e (7)

where Q−1 = diag([χs, µ0, µ0]) is a bounded, coercive
operator and e = [p, vx, vr] is the vector of the co-energy
variables. The Hamiltonian is then computed as

H =
1

2

(
e,Q−1e

)
Ωr

where (·, ·)Ωr
is the standard L2 inner product in polar

coordinates

(α, β)Ωr
=

∫
Ωr

α · β r dr dx =

∫
Ωr

α · β dΩr.

The power flow is obtained by application of the Stokes
theorem

Ḣ =

∫
∂Ωr

p v · n dΓr = −
∫ L

0

Z(x, t)v2
r R dx ≤ 0

where dΓr = r ds is the infinitesimal surface. The inter-
connection operator J can be decomposed into the sum
of J = Jdiv + Jgrad

Jdiv = −
[

0 ∂x ∂r + 1/r
0 0 0
0 0 0

]
, Jgrad = −

[
0 0 0
∂x 0 0
∂r 0 0

]
. (8)

Such a decomposition is meaningful as J ∗grad = −Jdiv,
where ∗ denote the formal adjoint operator and it is
especially useful to illustrate the partitioned finite element
method.

3. RECALL ON THE PARTITIONED FINITE
ELEMENT METHOD

In this section the partitioned finite element method
Cardoso-Ribeiro et al. [2019] is recalled by considering
uniform (either Neumann or Dirichlet in standard termi-
nology) boundary conditions. The idea boils down to three
simple steps:

(1) write the system in weak form;
(2) perform integration by parts to one part of the

equations to get the chosen boundary control;
(3) select the finite element spaces to achieve a finite-

dimensional system.

The second step is crucial as it determines which boundary
condition appears as input, defining the causality of the
system. The weak form is obtained by considering the
scalar product of system (7) against a test function w =
[wp, wvx, wvy] = [wp, wv](

w,Q−1∂te
)

Ωr
= (w,J e)Ωr

. (9)

As Q is coercive the inner product on the left hand side
corresponds to a symmetric and coercive bilinear form

m(w, ∂te) :=
(
w,Q−1∂te

)
Ωr
.

The integration by parts will define which boundary con-
trol will appear explicitly.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7648



3.1 Neumann boundary control

If the integration by parts is applied on Jdiv then the right
hand-side of Eq. (9) becomes

(w,J e)Ωr
= (w,Jgrad e)Ωr

− (Jgrad w, e)Ωr
+(wp, uN )∂Ωr

.

The skew-symmetric bilinear form

jgrad(w, e) := (w,Jgrad e)Ωr
− (Jgrad w, e)Ωr

may now be introduced, together with the boundary form

(wp, uN )∂Ωr
=

∫
∂Ωr

wpuN dΓr, (10)

where uN = v·n|∂Ωr
. The corresponding power conjugated

output is given by yN = p|∂Ωr
. The output is then

discretized considering the scalar test function wN defined
only over the boundary ∂Ωr. The system in weak form
under Neumann boundary control is then written as

m(w, ∂te) = jgrad(w, e) + (wp, uN )∂Ωr
.

(wN , yN )∂Ωr
= (wN , p)∂Ωr

,
(11)

3.2 Dirichlet boundary control

If the integration by parts is carried out on Jgrad then the
right hand-side of (9) becomes

(w,J e)Ωr
= (v,Jdiv e)Ωr

−(Jdiv w, e)Ωr
+(wv · n, uD)∂Ωr

.

The skew-symmetric bilinear form

jdiv(w, e) := (w,Jdiv e)Ωr
− (Jdiv w, e)Ωr

is introduced, together with the boundary form

(wv · n, uD)∂Ωr
=

∫
∂Ωr

wv · n uD dΓr, (12)

where uD = p |∂Ωr
. Adding the conjugated output yD =

v · n|∂Ωr
, the system in weak form under Dirichlet

boundary control is then written as

m(w, ∂te) = jdiv(w, e) + (wv · n, uD)∂Ωr
,

(wD, yD)∂Ωr
= (wD,v · n)∂Ωr

,
(13)

where wD are scalar test function defined only over the
boundary ∂Ωr.

4. EXTENSION FOR MIXED BOUNDARY
CONDITIONS

In this section we consider the case in which Neumann
and Dirichlet boundary control co-exist. The partitioned
finite element method allows to treat this case by means
of two different approaches. One relies on a differential-
algebraic formulation, the other on a purely differential
formulation by exploiting a classical interconnection of pH
systems together with a domain decomposition.

4.1 Lagrange multipliers

This approach can equivalently use Eq. (11) or Eq. (13)
as a starting point. The weak form (11) will be used
both for the illustration of the method and for numerical
computations. The boundary is split in two partition (see
Fig. 1). For the time being generic inputs uD, uN for the
Dirichlet and Neumann conditions are considered. First of
all, the boundary term in Eq. (10) needs to be revisited.
The quantity v·n|∂Ωr

is known only ΓN . On ΓD a Lagrange

Fig. 1. Boundary partition for the problem.

multiplier λD has to be introduced to enforce the Dirichlet
boundary condition. This leads to∫
∂Ωr

wpv ·n dΓr =

∫
ΓN

wpuN dΓr +

∫
ΓD

wpλD dΓr. (14)

The constraint associated with the Lagrange multiplier is
the non-homogeneous Dirichlet condition∫

ΓD

wλ(p− uD) dΓr = 0, (15)

where wλ is the test function associated with the Lagrange
multiplier. The system in weak form is obtained by using
Eqs. (11), (10), (14) and (15), together with the power
conjugated outputs (yN = p|ΓN

, yN = λD|ΓD
= v · n|ΓD

)

m(w, ∂te) = jgrad(w, e) + (wp, λD)ΓD
+ (wp, uN )ΓN

,

0 = − (wλ, p)ΓD
+ (wλ, uD)ΓD

,

(wN , yN )ΓN
= (wN , p)ΓN

,

(wD, yD)ΓD
= (wD, λD)ΓD

,

(16)
where wN , wD are the test functions associated to the
output discretization and (·, ·)Γ∗

is the L2 inner product
on boundary Γ∗. A Galerkin method can now be applied to
retrieve a finite dimensional pH system. This means that
corresponding test and trial functions are discretized using
the same basis

p ≈
np∑
i=1

φip(x, r)p
i,

v ≈
nv∑
i=1

φiv(x, r)v
i,

∗D ≈
nD∑
i=1

φiΓ(s)∗iD, (∗ = {u, y, λ}),

∗N ≈
nN∑
i=1

φiΓ(s)∗iN , (∗ = {u, y}).

(17)
The shape functions φip(x, r),φ

i
v(x, r) are defined over the

domain, whereas φiΓ(s) (s is the curvilinear abscissa) is de-
fined on the boundary only. Plugging the approximations
(17) into (16), a pHDAE (Beattie et al. [2018]) is obtained:[
M 0
0 0

]
d

dt

[
e
λD

]
=

[
J GD

−GT
D 0

] [
e
λD

]
+

[
BN 0
0 BD

] [
uN
uD

]
,[

yN
yD

]
=

[
BT
N 0
0 BT

D

] [
e
λD

]
,

(18)
where M = diag(Mp,Mv) and

J =

[
0 Agrad

−AT
grad 0

]
, GD =

[
GD,p

0

]
, BN =

[
BN,p

0

]
.

The matrices elements are computed as follows:

Mij
p = (φip, χsφ

j
p)Ωr

,

Mij
v = (φiv, µ0φ

j
v)Ωr

,

Aij
grad = (∇φip, φjv)Ωr ,

Gij
D,p = (φip, φ

j
Γ)ΓD

,

Bij
N,p = (φip, φ

j
Γ)ΓN

,

Bij
D = (φiΓ, φ

j
Γ)ΓD

.
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Fig. 2. Virtual decomposition of the domain.

Remark 1. The output vector yN ,yD does not correspond
to the actual degrees of freedom. In fact it has been defined
incorporating the boundary mass matrix MΓN

, MΓD
. The

actual degrees of freedom corresponding to the output are
found by solving[

MΓN
0

0 MΓD

] [
ŷN
ŷD

]
=

[
yN
yD

]
, M∂Ωr ŷ = y, (19)

where

MΓN
= (φiΓ, φ

j
Γ)ΓN

, MΓD
= (φiΓ, φ

j
Γ)ΓD

. (20)

However, this definition of output is in accordance with the
classical power balance for finite-dimensional pH systems

Ḣ =

∫
ΓN

uNyN dΓN +

∫
ΓD

uDyD dΓD

≈ uTNMΓN
ŷN + uTDMΓD

ŷD = uTNyN + uTDyD.

The actual degrees of freedom will be used in §4.2 to get
the proper interconnection when connecting systems with
different causality.

Concerning the actual boundary conditions, on ΓD the
impedance condition (2) is applied while on ΓN the inlet
and outlet flow condition (3), (4) hold on the left and right
side of the rectangle. The impedance boundary conditions
is imposed by putting into weak form the expression
uD = −ZλD = −ZyD:

MΓD
uD = −MΓD,Z ŷD,

where MΓD,Z corresponds to the mass matrix associ-
ated to the weighted inner product (wD,ZyD)ΓD

, namely

Mij
ΓD,Z =

(
φiΓ,ZφjΓ

)
ΓD

. This amounts to applying to

system (21) the control law

uD = −M−1
ΓD

MΓD,ZM−1
ΓD

yD = −ZyD.

The Neumann boundary condition is imposed by projec-
tion on the uN space. The boundary controlled system
becomes[

M 0
0 0

]
d

dt

[
e
λD

]
=

[
J GD

−GT
D −R

] [
e
λD

]
+

[
bN
0

]
, (21)

with R = BDZBT
D a symmetric positive definite matrix.

4.2 Virtual domain decomposition

In order to apply this methodology the domain has to
be split into two sub-domains. The shared boundary
connecting the two sub-domains can be freely chosen. For
the given geometry, the separation line that provide the
most regular simplicial meshes is the trapezoidal one given
in Fig. 2. Starting from the PDE (7) two weak formulations
are constructed: one integrating over ΩN , the other over
ΩD:

(
w,Q−1∂te

)
ΩN

= (w,J e)ΩN
, (22)(

w,Q−1∂te
)

ΩD
= (w,J e)ΩD

, (23)

Then, Eqs. (22), (23) are manipulated according to §3.1,
§3.2, respectively:

mΩN (w, ∂te) = jΩN

grad(w, e) + (wp, uN )∂ΩN
,

mΩD (w, ∂te) = jΩD

div (w, e) + (wv · n, uD)∂ΩD
,

(24)

where ∂ΩN/D denotes the boundary of each sub-domain
and the superscript ΩN,D denote that the bilinear forms
are obtained by integration over each sub-domain

mΩN (w, ∂te) :=
(
w,Q−1e

)
ΩN

,

mΩD (w, ∂te) :=
(
w,Q−1e

)
ΩD

,

jΩN

grad(w, e) := (w,Jgrad e)ΩN
− (Jgrad w, e)ΩN

,

jΩD

div (w, e) := (w,Jdiv e)ΩD
− (Jdiv w, e)ΩD

.

The boundary terms in (24) are then split into two
contributions ∂ΩN = ΓN ∪ Γint, ∂ΩD = ΓD ∪ Γint so that
the common boundary is highlighted

(wp, uN )∂ΩN
= (wp, uN )ΓN

+ (wp, uN )Γint
,

(wv · n, uD)∂ΩD
= (wv · n, uD)ΓD

+ (wv · n, uD)Γint
.

After introducing a Galerkin finite dimensional approxi-
mation of the variables as in 17, two finite dimensional pH
systems are obtained

MN
deN
dt

= JNeN + BNuN + Bint
N uint

N ,

yN = MΓN
ŷN = BT

NeN ,

yint
N = MΓint

ŷint
N = BintT

N eN ,

(25)

and

MD
deD
dt

= JDeD + BDuD + Bint
D uint

D ,

yD = MΓD
ŷD = BT

D eD,

yint
D = MΓint

ŷint
D = BintT

D eD.

(26)

The matrices structure is given by

MN = Diag(MN,p, MN,v),

JN =

[
0 AN,grad

−AT
N,grad 0

]
,

BN =

[
BN,p

0

]
,

Bint
N =

[
Bint
N,p

0

]
,

MD = Diag(MD,p, MD,v),

JD =

[
0 −AT

D,div

AD,div 0

]
,

BD =

[
0

BD,v

]
,

Bint
D =

[
0

Bint
D,v

]
.

The matrices elements are computed as follows:

Mij
N,p = (φip, χsφ

j
p)ΩN

,

Mij
N,v = (φiv, µ0φ

j
v)ΩN

,

Aij
N,grad = (∇φip, φjv)ΩN

,

Bij
N,p = (φip, φ

j
Γ)ΓN

,

Bint,ij
N,p = (φip, φ

j
Γ)Γint

.

Mij
D,p = (φip, χsφ

j
p)ΩD

,

Mij
D,v = (φiv, µ0φ

j
v)ΩD

,

Aij
D,div = (div(φiv), φ

j
p)ΩD

,

Bij
D,v = (φiv · n, φjΓ)ΓD

,

Bint,ij
D,v = (φiv · n, φjΓ)Γint

.

Furthermore, MΓN
, MΓD

are defined in (20), and MΓint
=

(φiΓ, φ
j
Γ)Γint . In order to get a system with mixed causality,

systems (25) and (26) have to be interconnected using
a classical gyrator interconnection. Considering that the
pressure field is continuous at Γint, the outward normal
verifies nD|Γint = −nN |Γint and the corresponding degrees
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Physical Parameters

L 2 [m]
R 1 [m]
µ0 1.225 [kg/m3]
c0 340 [m/s]
χs 7.061 [µPa]−1

v0 1 [m/s]

Simulation Settings

ODE Integrator RK 45
DAE Integrator IDA

tfin 0.1[s]

Table 1. Simulation settings and parameters.

of freedom have to be matched, the correct interconnection
reads

uint
N = −ŷint

D = −M−1
Γint

yint
D ,

uint
D = ŷint

N = M−1
Γint

yint
N .

(27)

This interconnection establishes that the power is ex-
changed without loss between the two systems

uintT
D yint

D + uintT
N yint

N = 0. (28)

The resulting interconnected system is written as

MND
deND

dt
= JND eND + BND uND,

yND = BT
NDeND.

(29)

The interconnection matrix exhibits a coupling between
the two sub-domains

JND =

[
JN −C
CT JD

]
,

where C = Bint
N M−1

Γint
BintT
D . The other matrices and

vectors are simply given by the concatenation of each sub-
domain part

MND = diag(MN ,MD),

eND = [eN , eD],

BND = diag(BN ,ND),

uND = [uN , uD].

Now that a model with different causality has been ob-
tained, the actual boundary condition (2) can be plugged
into the system as it was done in §4.1. This leads to the
final system

MND
deND
dt

= (JND −RND) eND + bND, (30)

where RND = diag(0,RD) and RD = BDZBT
D.

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section a numerical illustration of the two method-
ologies is presented. The Hamiltonian and the state vari-
ables trends given by the DAE (obtained from the La-
grange’s multiplier method) and the ODE (obtained from
the virtual domain decomposition method) are compared
with respect to a reference solution. The reference is set
to the DAE solution on a very fine mesh.

The physical parameters are provided in Tab. 1. The initial
condition are selected according to (5):

p0(x, r) = 0, v0
x(x, r) = f(r), v0

r(x, r) = g(r).

A radial component of the velocity allows highlighting
the effect of the impedance. The velocity profile satisfies
some regularity conditions so that the transition between
Neumann and Dirichlet boundary conditions is smooth.
In order to get a finite dimensional discretization the
fields are approximated using the following finite element
families for both approaches:

• φp(x, r) is interpolated using order 1 Lagrange poly-
nomials;

• φv(x, r) is interpolated using order 2 Raviart-Thomas
polynomials;

• φΓ(s) is approximated by Lagrange polynomial of
order 1 defined on the boundary ΓD (for λD, uD, yD)
or ΓN (for uN , yN ).

Such a choice guarantees the conformity with respect to
the operator J . The matrices are obtained by using Fenics
(Logg et al. [2012]). The reference solution, obtained by
using the DAE approach on a very fine mesh, is plotted in
Fig. 3a, where the two contribution to the total energy

Hp =
1

2
χsp

2 ≈ 1

2
pTMpp, Hv =

1

2
µ0 ||v||2 ≈

1

2
vTMvv,

are highlighted. The Dirichlet condition induces a con-
tinuous transfer from radial kinetic energy into pressure
potential. The impedance acts by dissipating the radial
component of the velocity so that only the axial flow
contribution is left. The total energy at the initial time
of the simulation is given only by the kinetic energy

H0
v = H0

vx +H0
vr =

1

2

∫ L

0

∫ R

0

µ0

[
(v0
x)2 + (v0

r)2
]
r dr dx.

Given the physical parameters in Tab. 1, the numerical
values of the energy contribution are readily found

H0
v = 0.453[J ], H0

vx = 0.204[J ], H0
vr = 0.249[J ].
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Fig. 3. Reference Hamiltonian and L2 error.

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

0.20

0.25

0.30

0.35

0.40

0.45

H
D
A
E

Hamiltonian given by DAE

h = R/4

h = R/5

h = R/6

h = R/7

h = R/8

h = R/9

h = R/10

hREF = R/15

(a) DAE system (21).

0.00 0.02 0.04 0.06 0.08 0.10

Time (s)

0.20

0.25

0.30

0.35

0.40

0.45

H
O
D
E

Hamiltonian given by ODE

h = R/4

h = R/5

h = R/6

h = R/7

h = R/8

h = R/9

h = R/10

hREF = R/15

(b) ODE system (30).

Fig. 4. Hamiltonian trend for different mesh size.
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Fig. 5. Error on the state variables for different mesh size.
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h mesh ∆tDAE[s] ∆tODE[s]

Rext/4 98.95 124.43
Rext/5 415.99 255.54
Rext/6 798.24 893.63
Rext/7 1408.76 1120.69
Rext/8 3054.78 2271.28
Rext/9 6929.24 5792.89
Rext/10 12648.15 8835.09

Table 2. Elapsed simulation time.

In order to demonstrate the consistency of the two pro-
posed approaches the following measures are adopted

εHODE/DAE =
||HREF −HODE/DAE||L2

||HREF||L2

,

εpODE/DAE =
||pREF − pODE/DAE||L2

||pREF||L2

,

εvODE/DAE =
||vREF − vODE/DAE||L2

||vREF||L2

.

The total energy obtained with several meshes is shown in
Figs. 4a, 4b for the DAE and ODE approach respectively.
It can be noticed that the Hamiltonian tends to the value
H0
vx as expected. The overall Hamiltonian trend is well

captured and even for coarse meshes the relative error
does not exceed 6% (see Fig. 3b). Both methods converge
monotonically to the reference solution, as illustrated in
Figs. 5a, 5b. The faster convergence of one method on the
other cannot be established. Anyway, each methodology
possesses advantages and drawbacks. The DAE approach
(21) guarantees the overall continuity of the variables
and does not require the construction of two compatibles
meshes. However, the introduction of Lagrange multiplier
requires the verification of the inf-sup condition. The ODE
approach (30) requires the construction of two separate
mesh and the selection of an appropriate interface bound-
ary Γint. This may lead to deformed mesh elements and
hence less accurate solutions. Furthermore, it does not
guarantee the continuity of the fields at the interface.
For what concerns the computational cost, in Tab. 2 the
simulation time required by each solver is shown. The ODE
approach is less time consuming for mesh size sufficiently
small. It is important to remark that if the problem is
already differential-algebraic Serhani et al. [2019a,b] the
domain decomposition technique loses its advantages as
the final system will anyway be differential algebraic.

6. CONCLUSIONS AND FURTHER WORK

In this work a vibroacoustic application with non-uniform
boundary inputs has been addressed. Two different method-
ologies capable of considering different causalities have
been illustrated and compared. Future developments in-
clude the employment of theses techniques to more compli-
cated models arising from structural and fluid mechanics.
Another valuable contribution would be to reformulate
this work in terms of differential forms. This would provide
a coordinate free representation and a natural generaliza-
tion to more complex geometries. A numerical analysis
of the optimal choice for the underlying finite elements
is still to be done. Another interesting topic would be
the application of the domain decomposition technique to
parallelize simulations of large-scale models.
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