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Abstract: In this work, we investigate a Deep Learning (DL) approach to fish segmentation
in a small dataset of noisy low-resolution images generated by a forward-looking multibeam
echosounder (MBES). We build on recent advances in DL and Convolutional Neural Networks
(CNNs) for semantic segmentation and demonstrate an end-to-end approach for a fish/non-fish
probability prediction for all range-azimuth positions projected by an imaging sonar. We use
self-collected datasets from the Danish Sound and the Faroe Islands to train and test our model
and present techniques to obtain satisfying performance and generalization even with a low-
volume dataset. We show that our model proves the desired performance and has learned to
harness the importance of semantic context and take this into account to separate noise and
non-targets from real targets. Furthermore, we present techniques to deploy models on low-cost
embedded platforms to obtain higher performance fit for edge environments – where compute
and power are restricted by size/cost – for testing and prototyping.

Keywords: Autonomous Underwater Vehicle (AUV), Deep Learning, Semantic Segmentation,
Sonar Imaging, Multibeam Echosounder (MBES) Imaging, Fish Monitoring.

1. INTRODUCTION

In many circumstances, the preferred choice of an imaging
device is an optical sensor. This produces high quality,
high-resolution images with plenty of information on de-
tailed content, colors, shapes, and textures. However, in
certain environments, optical sensors are not well suited.
In underwater imaging, optics are highly affected by tur-
bidity in water which reduces visibility. This is both in
terms of obscuring line of sight with particles and other
organic detritus (marine snow) and in terms of illumina-
tion, which is attenuated with the amount of turbidity and
depth.
As such, a multibeam echosounder (MBES) is often pre-
ferred for underwater imaging. In terms of imaging in-
formation, it hardly compares with optics; however, the
robustness to underwater conditions and extended range
while maintaining a somewhat high resolution of contours
makes MBES ideal. Even compact sonars integrable on
small autonomous underwater vehicles (AUVs) or remotely
operated vehicles (ROVs) offer ranges up to more than
100m with range and angular resolution dependent on
application, model, and price. Sonar images do, however,
suffer from distortion, noise and contain low-level detail
and visual information only and do as such still pose a
challenging task when processing sonar data for vision
purposes.
In certain marine applications such as subsea monitoring,
inspection tasks, or fisheries, it may be useful to have a

small easy-portable system capable of simultaneously col-
lecting and utilizing sonar data for autonomy or meta-data
purposes. By using semantic-based segmentation masks,
fish instances can be identified and measured in size and
numbers. Fish schools can be identified at range, and
absolute position can automatically be mapped, or relative
position can feed into a navigation system. For databases
with meta-data generated by such a model, queries can be
made to specific situations and thus save hours and days
of labor-intensive manual work of reviewing and labeling
sonar data in extensive datasets.
The architectural choices for our segmentation model
leverage recent advances in Deep Learning (DL) and Con-
volutional Neural Networks (CNNs) within segmentation
for medical imaging (Ronneberger et al. (2015)) and scene
understanding (Long et al. (2014); Badrinarayanan et al.
(2017); Chen et al. (2018)). Our proposed model allows
for end-to-end training and processing from input sonar
image to binary output mask.
As this work is highly application-oriented, we further
demonstrate how we prepare our model for deployment
in an edge environment, i.e., on-board online processing
right where the data is created. Here size, power, and cost
often limit the options for compute. We present tools to
accomplish this and report performance on two typically
used low-cost embedded platforms.
The contributions in this work comprise a novel appli-
cation proposal to obtain a target/non-target probability
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prediction for all range-azimuth positions as projected by
a MBES on a pixel-based coordinate space using DL on
the edge. Along with model architecture, techniques for
training and obtaining high accuracy models with low data
volumes are demonstrated. We also note that the proposed
work does not limit itself within the application of fish
segmentation but could potentially be expanded to any
target or multi-class segmentation models.
The remainder of this paper is organized as follows. Sec-
tion 2 provides a short literature survey of related work.
Section 3 describes the datasets and the collection of these.
Section 4 describes our method for fish segmentation.
Section 5 provides details of experiments. Section 6 demon-
strates deployment and performance on the edge. Finally,
in Section 7, we present our conclusion.

2. RELATED WORK

Deep Learning In line with CNNs revolutionizing the
area of visual perception above water, increasing efforts
are being made to apply such methods for underwater
optical and acoustical sensing as well. One key challenge
for applying such methods in the maritime domain is data
availability. For autonomous driving and related fields,
large annotated datasets containing millions of images are
openly available, such as ImageNet (Russakovsky et al.
(2014)), Kitti (Geiger et al. (2012)), BDD100K (Yu et al.
(2018)) and Cityscapes (Cordts et al. (2016)) to name a
few. Sadly this is not yet the case in our field and thus in
the case of a small dataset (<5.000 samples) techniques
such as data augmentation (Perez and Wang (2017)) and
transfer learning (Yosinski et al. (2014)) may be used.
In Christensen et al. (2018), an object detection model,
using both before mentioned techniques, has been trained
to detect, localize and classify fish and fish species in
optical images. Valdenegro-Toro (2017); Fuchs et al. (2018)
applies transfer learning to perform image classification
on specific cropped regions of sonar images. Similarly,
Horimoto et al. (2018) train an object detection model
to predict the presence and location of sea turtles in sonar
images.

Sonar Image Segmentation In Sture et al. (2018), a
naïve form of segmentation is achieved on high-resolution
synthetic aperture sonar images for mapping corals in the
data. This is carried out by dividing sonar trajectories
into smaller segments and then perform a per-segment
classification and reassemble the map to get a pseudo
segmentation of the traversed area. Dos Santos et al.

Fig. 1. Photo of the ATLAS MARIDAN man-portable
AUV used for collecting training data.

(2017) obtain a segmentation of sonar images by first
identifying blobs or regions of interest in the image using
traditional image processing techniques. Second, detected
blobs are classified using linear machine learning models
such as support vector machines, decision trees, and K-
nearest neighbors.

3. DATA

We introduce two separate datasets for training and test-
ing our model. The data is collected using the same sen-
sor but with two different vehicles at different locations
and fish species. Although the visual appearance of the
two datasets is similar, completely separated datasets for
training and testing are a prerequisite in order to validate
the generalization of the model rather than only testing
the fit to the training data.

3.1 Training data details

Our training set is collected autonomously in the Danish
Sound off the coast of our offices in Rungsted (DK). This
is carried out using our man-portable AUV shown in
Fig. 1. The MBES data is collected using a forward-looking
BluePrint Oculus m750d multibeam imaging sonar. Data
is recorded with a range interval of [0, 20]m, an aperture of
130◦ horizontal and 20◦ vertical at an operating frequency
of 750 kHz.
The labeled training set contains in total 50 images,
which include more than 5000 targets (Herring) along
with non-fish data such as surface reflections, surface

(a) (b) (c)

Fig. 2. Training set MBES data samples: (a) school of Herring, (b) surface vessel, (c) school of Herring.
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vessels, and bottom returns. The dataset is annotated
using the LabelBox 1 annotation tool. Three samples from
the training set are shown in Fig. 2. Far from all fish in
every image have been annotated due to the extensive
process of manually drawing segmentation masks.

3.2 Test data details

Our test set is collected in the fjords of the Faroe Islands.
This is carried out using our ROV sensor test rig shown
in Fig. 3(a). The sensor and settings are similar to those
described in Section 3.1. The recordings differ with varying
range settings, which scales the visual appearance. The
targets of the Faroe Islands are of the fish specie Wittling,
which slightly differs from Herring in size, numbers, and
behavior. The setup and a sample are shown in Fig. 3.

4. METHOD

Our network architecture is shown in Fig. 4 and builds
upon typical convolutional encoder-decoder style net-
works. Here we embed our input in a latent feature
space and then seek to reconstruct the input as semantic
classes. We employ skip connections to fully recover the
fine-grained spatial information lost in pooling or down-
sampling layers. This is as proposed by Long et al. (2014)
and used in nearly all following work on segmentation.
Table 1 and the following describes the architecture and
dimensions in more detail.
Input dimensions are 1 × 320 × 128 corresponding to the
1-channel MBES data at half resolution represented in a
Cartesian coordinate space. As most targets are not more
than a few pixels in height, this is the borderline resolution
without losing too much information.
Each Conv Layer combines a sequence of a convolution,
batch normalization, dropout, convolution, and batch nor-
malization. This seeks to obtain an efficient and regular-
ized training progress. The ReLU non-linearity is used as
activation function for each Conv Layer. Each convolution
is furthermore padded in order to keep input and output
dimensions consistent.
1 https://labelbox.com/

(a)

(b)

(c)

Fig. 3. Test data collection at the Faroe Islands: (a) Our
ROV test rig for sensors, (b) Sonar image sample, (c)
Optical image sample.
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Fig. 4. The encoder-decoder style network architecture for fish segmentation in sonar images. Input/output resolution
is 320× 128 and lowest resolution (in the bottleneck) is 20× 8.
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Table 1. Architecture of fish segmentation net-
work.

Name Feat maps
(input)

Feat maps
(output)

Encoding
path

Conv Layer 1 1× 320× 128 16× 320× 128
Max-pooling 1 16× 320× 128 16× 160× 64
Conv Layer 2 16× 160× 64 32× 160× 64
Max-pooling 2 32× 160× 64 32× 80× 32
Conv Layer 3 32× 80× 32 64× 80× 32
Max-pooling 3 64× 80× 32 64× 40× 16
Conv Layer 4 64× 40× 16 128× 40× 16
Max-pooling 4 128× 40× 16 128× 20× 8

Bottleneck 128× 20× 8 256× 20× 8

Decoding
path

Up-sample 1 256× 20× 8 256× 40× 16
Conv Layer 5 256× 40× 16 128× 40× 16
Up-sample 2 128× 40× 16 128× 80× 32
Conv Layer 6 128× 80× 32 64× 80× 32
Up-sample 3 64× 80× 32 64× 160× 64
Conv Layer 7 64× 160× 64 32× 160× 64
Up-sample 4 32× 160× 64 32× 320× 128
Conv Layer 8 32× 320× 128 16× 320× 128
Sigmoid Layer 16× 320× 128 1× 320× 128

Up-sample combine transpose convolutions and a fusion
with the corresponding feature map in the encoding path.
Finally, a Sigmoid Layer is applied. This combines a 1×1
convolution to down-sample the channel dimension to a
single output channel and a sigmoid activation to reach the
final output as a probability for each pixel. The sigmoid
output is then threshold at 0.5 to produce either 1 or 0 as
the final output for the two segmentation classes; fish and
non-fish.
Since we have two classes only (fish, non-fish), we can learn
the mapping from input sonar images to output masks
using binary cross-entropy loss:

LBCE(M) = −
C=2∑
i=1

yi log [M(xi)]

= −y1 log [M(x1)]− (1− y1) log [1−M(x1)]
(1)

where M is our model, C is our two classes, i represents
each class in C, y is the ground truth pixel value, and x is
the input data.
Our objective therefore is:

min
M

LBCE(M). (2)

5. EXPERIMENTS

The model is trained using one NVIDIA Tesla K80 GPU.
As the architecture is fairly light-weight in terms of pa-
rameters, time to reach convergence is less than 1 h. The
model is implemented in the TensorFlow DL framework
using the Keras frontend for Python. During training, we
use a batch size of 4 and all weights are initialized using
the He normal initializer (He et al. (2015)). All ReLUs are
leaky with slope 0.2. The loss function is minimized using
the recently introduced RAdam solver (Liu et al. (2019))
with initial learning rate η = 0.5 × 10−4 and parameters
β1 and β2 set to 0.9 and 0.999 respectively.
With these hyperparameters, the model converges within
100 epochs to a validation loss and an accuracy of 0.059
and 97%, respectively. Additionally, the precision, recall,

Table 2. Edge performance.

Default
(non-optimized)

TFLite
(RPi3)

TFLite
(RPi4)

TensorRT
(Nano)

FPS 0.37 / 0.76 / 11 0.45 1.43 33
Speedup - 1.2x 1.88x 3x
Model size 22.5 MB 2.4 MB 2.4 MB 11.5 MB
Size reduction - 9.375x 9.375x 1.96x

and F1-score for the fish-class (the content we are inter-
ested in) are 69%, 81%, and 75%, respectively. The final
model size is 22 MB.
To overcome issues with low data volume, the data is
heavily augmented at training time. This is done by ran-
domly applying horizontal and vertical flipping, rotations
in range [−20, 20] ◦, width and height shifts in range
[−20, 20]%, and random cropping.
We test our model on the dataset obtained in the fjords of
the Faroe Islands. This allows for a qualitative assessment
only, as we have no ground-truth data due to the labor-
intensive work going into creating this. It will, however,
indicate the performance, robustness, and generalization
achieved by the model. Fig. 6 shows nine samples of sonar
images and the predicted output mask from the trained
model. The samples clearly show that the model has
learned to discriminate between fish and non-fish and thus
predicts noise, surface reflections, bottom returns, and the
like as non-fish.
As explained in Section 3.2, the targets in the test data
are no longer Herring, but a bigger fish specie named
Wittling. The visual (sonar image) appearance of these
fish is similar at an instance-level. However, the schooling
behavior is unlike Herring, and for much of the obtained
data Wittlings are notably more scattered and at a closer
range than Herring in the training data.

6. EDGE IMPLEMENTATION

Operating at the edge refers to a setting where data
is processed at the location of the sensor. Typically for
small submersible systems, the budget for cost, compute,
power, and size for processing platforms is restricted. Two
popular choices are a Raspberry Pi and an NVIDIA Jetson
Nano. Table 2 summarizes performance measures on post-
training optimized models on a single CPU core on a
Raspberry Pi and on an NVIDIA Jetson Nano using its
embedded GPU. Details are presented in the following.
As this work is highly application-oriented and part of on-
going work at ATLAS MARIDAN, the success of a model
relies not only on results achieved of the model but also
on its ability to be running in an embedded environment
on the edge. Here we demonstrate how models quick and
straightforward can be prepared for such environments
while still maintaining a Python environment for conve-
nient prototyping during inference. We report performance
on two common and popular embedded boards without
requirements for external accelerators such as the Intel
Movidius Neural Compute Stickor the Google Coral USB
Accelerator.
Raspberry Pi 3/4 Using the TensorFlow framework,
we first save the model as a static inference graph and
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Fig. 6. Test images from the Faroe Islands dataset. Sonar image is on top, predicted mask on bottom.

second quantize the weights of the graph to 8-bit precision
rather than 64-bit. The quantization is performed using
the TensorFlow Lite framework for on-device inference.
The post-quantization model size is 2.4 MB and does
inference at 1.3 FPS using a single core only (out of 4).

This is a more than ×9 reduction in model size and a
nearly ×2 speedup.
NVIDIA Jetson Nano Using the high-performance
inference platform TensorRT from NVIDIA, we can use
in-build support in TensorFlow to convert our model to a
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post-training quantized 16-bit TensorRT graph. As above,
we first save our model as a static inference graph and then
convert the graph to a quantized TensorRT graph.
The TensorRT model size is 11.5 MB and does inference
at 33 FPS using the embedded GPU on the Jetson Nano.
This is a ×2 reduction in model size and a ×3 speedup.

7. CONCLUSION

Our model converges on the validation dataset with 97%
accuracy. The precision, recall, and F1-score for fish tar-
gets are 69%, 81%, and 75%, respectively. Additionally,
the results presented from the test dataset in Fig. 6 clearly
show that our model has learned the desired function-
ality of segmenting fish-like targets from noise, surface
reflections, and other non-fish objects in sonar images.
Some targets remain to be recognized, and the model may
be affected by the low data volume or bias caused by
incomplete annotations. Possible improvements could be
achieved by retraining with new data processed by the
model in a semi-supervised manner.
From the performance summary in Table 2, it is shown
that the model is capable of performing inference at
suitable processing times on low-cost embedded devices.
We obtain 33 FPS on a Jetson Nano and more than
1 FPS using only one core (out of 4), and nearly no
memory on a Raspberry Pi 4. 1 FPS is deemed sufficient
for most monitoring and long-range tracking applications
at ATLAS MARIDAN.
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