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Abstract: The operating conditions have an important impact on system degradation. This paper uses the 

Input-Output Hidden Markov Model to represent the system degradation having multiple operating 

conditions. In this paper the bootstrap method is applied to estimate the model parameters and to 

diagnostic the system health. Parameters of the model are computed with 95% confidence intervals. The 

uncertainty about multiple data sequences and degradation speed is handled according to the operating 

conditions. A numerical application is given to explain the methodologies used to estimate the model 

parameters and diagnostic the system health. 
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1. INTRODUCTION 

Diagnostics play a very important role in prognostic and 

health managing (PHM) of systems. Health diagnosis ensures 

the level of system degradation. Based on the estimated 

diagnosis, remaining useful life (RUL) of the system is 

evaluated which is an essential part of the next generation of 

maintenance. Maintenance is very crucial for trouble-free 

production, as the system must not be shut down during the 

operation. It is necessary to predict the health states of the 

system during the operation leading to the system for 

repairing or replacing before the unplanned shutdown. In this 

case, it is very important that the system is correctly 

diagnosed, otherwise, effective RUL prediction is not 

possible. Therefore, this will be worth the wrong estimate, 

and the system will be failed before maintenance. Thus, the 

production speed will decrease, and the production cost will 

increase. To solve this problem, many scientific works are 

proposed on diagnostic applications based on degradation 

identification. Degradation is not easy to assess because it is a 

hidden and unknown process. It is impossible to know the 

evolution of degradation until the system is stopped and 

observed directly inside, which is completely contrary to our 

goal. However, as the system ages, it gets damaged. If the 

system operates at higher pressures, it decomposes quickly, 

otherwise, the process is slow for the lower pressures. This 

means that the lifetime of the system very much depends on 

the operating conditions of the system. This document takes 

into account the impact of operating conditions on the 

degradation and offers a model for identifying the system’s 

degradation under several operating conditions and assessing 

the state of the system (diagnostics). There are many models 

available in PHM applications that can be classified into three 

approaches: model-based, data-based, and hybrid. The 

purpose of this paper requires a parametric and non-

supervised model, that is why the data-driven model is ideal 

for the solution. The aim is to have a stochastic system in 

which states are unknown and their evolution is random. In 

this case, the Hidden Markov Model (HMM) can be an 

excellent choice. HMM was first introduced by Baum in the 

early 1970s [Baum 1966], and [Rabiner 1989] used it for the 

first time in an application for recognition of speech. It was 

later used in PHM challenges. For example [Kumar 2019, 

Tobon 2011, Baruah 2005] proposed HMM-based 

applications for diagnostics, but without regard to operating 

conditions. Some other researchers have used the "Hidden 

Semi-Markov models" [Dong 2007], "Mixture of Gaussian 

Hidden Markov Models" [Tobon 2012], "Hidden Markovian 

Hierarchical Models" [Camci 2006] in various diagnostic 

applications. They have tried different versions of HMMs to 

produce better results, but no one integrates the operating 

conditions as inputs. These models cannot be used to 

consider the operating condition because HMMs mentioned 

above do not allow any input. However, the Input-Output 

Hidden Markov Model (IOHMM) which is another advanced 

version of HMM, an interesting model in which operating 

conditions can be considered as input conditions. Similar 

work is being done in [Le 2015], where a Multi-Branch 

HSMM (MBHSMM) is proposed. This is a motivating work, 

but there are also some limitations. The author divided the 

dataset into different parts for different models that 

correspond to the operating conditions. They fixed one 

operating condition while applying the matching model. In 

reality, it is not the same because operating conditions may 

change at any time during the operation. On the other hand, 

IOHMM trains several models simultaneously without 

separating the data sequence and allows us to switch the 

models at given input sequences. Thus, IOHMM assesses a 

more realistic degradation of the system with the effect of 

operating conditions. 
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IOHMM was introduced in [Bengio 1995] for the first time. 

Then, it is used in diagnostic and prognostic applications 

[Shahin 2019a, Shahin 2019b]. First, a training approach to 

the model parameters has been proposed. Estimating model 

parameters from data through the algorithm proposed in 

[Shahin 2019b] does not give the confidence intervals in 

results. To solve this problem the bootstrap-IOHMM method 

is applied to the model and estimated the model parameters 

with a 95% confidence interval. A statistical exposition of the 

bootstrap is given by [Efron and Gong 1983]. The bootstrap 

Hidden Markov Model (HMM) is used in several 

applications, such as clustering time series [Oates 2000] and 

quality of synthetic speech [Kim 2002], etc. Inspired by this 

work we designed the bootstrap-IOHMM method to achieve 

the goal of this paper. The basic idea of the bootstrap 

involves the variability in an unknown distribution from 

which the data are drawn by resampling with replacement 

from the dataset [Felsenstein 1985]. It is most useful when a 

set of estimates has a distribution that approximates the 

distribution of the actual estimate. The bootstrap method is 

used to estimate model parameters with the confidence 

interval, average sample, standard error, lower limit, and 

upper limit. IOHMM uses three adapted algorithms: the 

Baum Welch algorithm which is a class of EM (Expectation-

Maximization) algorithm based on the forward-backward 

algorithm in the training and adapted Viterbi algorithm in the 

diagnostic application. The adaptation of the algorithms for 

IOHMM is described in [Shahin 2019b]. 

This paper is organized as follows: Section 2 defines the 

basis of model structure, training, and diagnostic 

methodologies. Then, a brief discussion of bootstrap and 

confidence intervals are given in section 3. After that, section 

4 shows a numerical application and corresponding results. 

Finally, a conclusion and perspectives are developed in 

section 5. 

2.  PROPOSED MODEL 

IOHMM is a class of HMM. It is a stochastic model where 

the state probability depends on its previous state, 

observation, and the input condition. This model can be used 

to represent systems with multiple operating conditions and 

multiple outputs. An IOHMM is presented (Fig1) as in 

Dynamic Bayesian Network (DBN) [Salem 2007]. 

 

Fig. 1. DBN representation of 3-States IOHMM. 

2.1  Model Structure 

2.1.1 Transition Probability 

IOHMM evolves in a sequence of the variable which holds 

one of the hidden states  at each time instant 

  is discrete time).  represents the 

transition matrix where  is a 

transition from state  to state  ( 

. The summation of  for each state  is 1. 

Multiple transition matrices are represented as  , 

where  is the operating conditions number.  

2.1.2 Emission probability 

The set of possible emitted symbols of the output variable  

are assumed as .  denotes 

the state emission probability matrix, where 

 is the emission probabilities of 

state . The summation of  for each state  is 1. 

Multiple output-observations are represented as  , 

where  is the number of outputs of the system. 

2.1.3 Input Condition 

In this model, the input sequence is presented as , and 

the transition probabilities are computed as follows 

. All the sequences are not length 

sensitive and sequences could come with any length.   

If the initial state probability distribution is 

 and the model denoted by , then the 

triplet  completely defines the model 

structure.  

2.2 Method: Model Training 

The Baum Welch and the Forward-Backward algorithms are 

commonly used in HMM which does not allow us to consider 

the input condition nor the multiple output case. That is why 

the adapted algorithms are used which able to consider 

multiple inputs and outputs during the training session. The 

detail adaptation is discussed in [Shahin 2019b]. The 

forward-backward algorithm is given in (1) and (2). 

• Forward algorithm:  

Basis:   

Recursion: 

   (1) 

here   , and  presents multiple 

sequences where  is the number of outputs of the system. 
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• Backward algorithm:  

Basis:  

 is the length of the sequence. 

 

Recursion: 

 

                 (2) 

here . 

The Baum-Welch algorithm takes  and , 

applies the Baum Welch algorithm to update the parameter in 

an iterative process. 

• The Baum Welch algorithm: 

The probability of being in state  at time  given the 

observed sequences and the parameters of  is given 

below by (3):  

 

 

(3) 

The probability of being in state  and  at time  and  

given the observed sequences of  the input operating 

conditions  and the parameters of  is given by (4):   

 

 

(4) 

 

Parameters update: 

o Initial state probability: 

 , where , where N is the 

number of hidden states.                      (5) 

o Transition probabilities: 

 

 

 (6) 

here   

o Emission probabilities: 

 

 

 (7) 

here  

Now, these steps are repeated iteratively until the changes 

between two consecutive results fall into a given tolerance 

and fixed the parameters of the model as , 

which is used in diagnostic of the system.  

2.3 Method: Diagnostic 

The Viterbi algorithm is used to diagnostic the system using 

the trained model . It is an interesting 

algorithm that estimates the maximum path using (8). This 

algorithm is also adapted to IOHMM [Shahin 2019b]. It 

computes the maximum likelihood state sequence 

considering operating conditions as input.  

The Viterbi algorithm: 

Basis:  

Recursion:  

              (8) 

here . 

Based on this set of algorithms the next section explains the 

confidence interval and the bootstrap method. 

3. BOOTSTRAP-IOHMM 

The bootstrap-IOHMM method is a sampling technique used 

to estimate IOHMM parameters statistic by sampling a 

dataset with replacement. It can be used to estimate measures 

of accuracy, such as confidence intervals, the sample mean, 

standard deviation, variance, etc. Resampling with 

replacement selects some random dataset from the original 

sample and put those back into the sample again for another 

selection. Resampling size should be equal to the sampling 

size which may have some repeated dataset. This technique 

maintains data structure but reshuffles values, extrapolating 

to the data population. This repeated process uses the new 

sample to generate the sampling distribution of the mean. 

Some important definitions are needed to understand for 

understanding the bootstrapping.  

Confidence interval (CI): Confidence interval estimated 

from observed statistical data, which may contain an 

unknown population parameter. The CI communicates the 

accuracy of a probabilistic estimate. It expresses a range in 

which it is fairly certain that the population parameter is 

present. The range-width depends on the variation within the 

population of interest and the sample size. [Efron 1986] 

Population variation: If all values in a large data population 

are almost the same, then the sample also has a small 

variation. It gives a small confidence interval. On the other 

hand, more varied data will lead to more varied samples, 

which makes less sure that the sample average is close to the 

population mean. That means the CI is large in this case. The 

greater variation of the data leads to a wider CI. 

Sample size: The sample size also affects the width of a 

confidence interval. Small samples differ more from each 

other and have less information. There is more variation due 

to a sampling error. The CI may be larger. On the other hand, 

larger samples will be more similar. The effect of the 

sampling error is less, and the information is more. The 

confidence interval may be smaller in this case. [Efron 1986] 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10434



 

 

     

 

Calculating confidence intervals: The confidence interval 

calculation for a mean uses formula (9). 

 
 

(9) 

where  is the sample mean,  is the t-distribution which 

depends on the sample size and the chosen level of 

confidence,  is the sample standard deviation and  is the 

sample size.  

Sample: A sample is a selection of observations from the 

population of interest. Different selection criterion is simple, 

random, convenient, systematic, clustered, layered, etc. 

Sampling error: A sample is only a selection of objects from 

the population. It will never be a perfect representation of the 

population. Different samples of the same population will 

yield different results. This is called sampling error or 

sampling variation. There will always be a sampling error. 

[Efron 1986] 

The sample means: Defined as the average of observations 

in the sample of the population. The sample mean is 

considered as the estimate of the population mean.  

Sample standard deviation: It is the average distance of the 

sample data from the sample mean. 

Useful:  

• Bootstrapping is useful for modelling non-normal data  

• It provides unknown statistic properties (e.g. PCA 

results)  

• It has unknown statistic properties and shows the 

standard calculation such as a 95% confidence interval. 

• Easy to measure result accuracy or compute standard 

error, sample mean, standard deviation, variance etc.  

4. NUMERICAL APPLICATION 

A system has represented in this application which has two 

outputs to be observed applying an operating condition with 

two different modes. The operating modes provide two 

different transition matrices. The degradation of the system 

assumed to have three hidden states (good, moderate, bad) for 

easy and simple computation. Each of the states emits two 

outputs with two probabilities which are represented by two 

emission matrices. There are three discrete symbols 

considered in the emitted observation sequences. 

The proposed model is designed to use the sensor data as a 

unit. The system temperature and the system vibration are 

used as two observations, and the speed of the system is 

considered as an input where the speed has two modes (high 

and low). The goal is divided into two steps: 

1. Synchronize the system with IOHMM and training the 

model using the available data sets.  

a. Use (1) to (7) for parameter estimation. 

b. Provide a confidence interval for each of the 

estimate parameters of the model using the 

bootstrap-IOHMM method (9). 

2. Use the trained up IOHMM to estimate the system 

diagnostic according to a given data set. 

a. Use the Viterbi algorithm to compute the 

system health condition at any time given a new 

data set. 

b. Provide a comparison between the model 

trained with bootstrap method and without 

bootstrap method. 

The goal is to show how the bootstrap method is useful 

when a small data-amount can be used to estimate 

parameters of a big data population.  

4.1  Data Generating 

To validate the procedure, we have generated the data 

sequences using a given model structure. Later, this (original) 

model is compared with the estimated model in the result 

section.  

 

Model architecture: 

• Data unit is discrete: continuous signal data could be 
converted into discrete unit. 

• Model type is left-right: a system cannot comeback 
from the bad health to good health.  

• Hidden states are three (could be more). 

• Observation symbols are three for each output 
(could be more). 

• Transition matrices are two according to two input 
modes. The matrices have zero on the lower 
parameters of the diagonal because of the left-right 
property. Switching model is illustrated in Fig. 2. 

 
 

 
 

 
Fig. 2. Model switching by input  
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• Emission matrices: two for two outputs 

 

 
• Initial state distribution: (assumed as in good health) 

 
A set of 1000 data is generated using a simulator following 

this given model architecture. This data sequences are used in 

IOHMM training to estimate the parameters with 95% 

confidence intervals. The bootstrap approach is applied 

where the 30 data sets are randomly selected with data 

replacement for multiple times. The iteration was about 1000 

times.  

4.3  Results 

4.3.1 Training results 

Fig. 3 shows the confidence interval for a total of 36 

parameters of the transition and emission matrices. The X-

axis of each rectangle represents the probabilities and the Y-

axis represents the boot execution number. 

 

 

Fig. 3. Distribution of matrices parameters 

Both the transition matrices are having some zeros on 

corresponding parameters. These parameters did not get any 

transition probability during the training following the nature 

of the system. The left-right model is used in data simulation 

as mentioned earlier. This is the reason the transition matrices 

have zeros on (2,1), (3,1), (3,2) position (highlight in Fig. 4). 

The green circle on the position (3,3) presents the absorbent 

state with a 100% probability. Besides these four, all the 

other parameters are estimated with a 95% confidence 

interval (see Table 1).  

 

Fig. 4. Parameter distribution for the first transition matrix. 

Table 1 shows 31 parameters of transition matrices, emission 

matrices, and the initial state distributions. Each row 

represents different information (lower bound, upper bound, 

mean, standard error) about a parameter. Parameters having 

zero value are ignored in the table. 

Table 1.  Bootstrap parameters 

Para-

meter 

Lower 

bound 

Higher 

bound 

Mean 

value 

Standard 

Error 

Transition Matrix  

 
0.9783 0.9791 0.9787 1.96   

 
0.0209 0.0217 0.0213 1.96   

 
0.9508 0.9523 0.9515 3.91   

 
0.0477 0.0492 0.0485 3.91   

 
1 1 1 0 

Transition Matrix  

 
0.8428 0.8477 0.8453 0.0012 

 
0.1523 0.1572 0.1547 0.0012 

 
0.7861 0.7916 0.7889 0.0014 

 
0.2084 0.2139 0.2111 0.0014 

 
1 1 1 0 

Emission Matrix  

 
0.8970 0.8984 0.8977 3.70   

 
0.0506 0.0517 0.0512 2.82   

 
0.0506 0.0517 0.0511 2.80   

 
0.0524 0.0591 0.0557 17  

 
0.8929 0.8999 0.8964 18  

 
0.0470 0.0487 0.0479 4.32   

 
0.0498 0.0501 0.0500 0.894   

 
0.0503 0.0507 0.0505 1.07   

 
0.8993 0.8998 0.8995 1.29   
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Emission Matrix  

 
0.7966 0.7988 0.7977 5.57   

 
0.1513 0.1533 0.1523 5.25   

 
0.0496 0.0505 0.0500 2.33   

 
0.2011 0.2065 0.2038 14  

 
0.7444 0.7497 0.7470 14  

 
0.0486 0.0498 0.0492 3.05   

 
0.1003 0.1009 0.1006 1.47   

 
0.0493 0.0496 0.0494 0.869   

 
0.8096 0.8502 0.8499 1.60   

Initial state distribution 

 (1) 0.9761 0.9917 0.9839 0.0040 

 (2) 0.0083 0.0239 0.0161 0.0040 

 (3) 0 0 0 0 

 

Total standard error in matrix  is  matrix 

 is  matrix  is , matrix  

is  and initial state distribution is 

. The matrix  comparably has a larger standard 

error than the matrix  because the amount of training data 

dedicated to each matrix.  is trained with about 20% data 

while 80% data are used to train matrix   

Now, if the matrices organized with the mean value then we 

find the estimated parameters of IOHMM as following: 

• Estimated transition parameters:  

 

 is the low stressed (e.g. low speed) model transitions 

where the mean transition probability from the first state to 

the last state is  . 

 

 is the high stressed (e.g. high speed) model transitions 

where the mean transition probability from the first state to 

the last state is  . 

• Estimated emission parameters: 

 presents emission probabilities for the first output 

sequences (e.g. temperature) and is for second output 

(e.g. vibration). 

 

 
• Initial state distribution: (estimated as good health) 

 

Fig. 5 presents the distance between the estimated parameters 

and the original parameters used in data simulation. The 

parameters estimated twice: the first one is with the 

bootstrap-IOHMM method where the model uses the data 

with replacement technique from the simulated for training 

and the second one is the classical method without bootstrap 

which uses all the data samples.  

 

 

Fig. 5. Parameter distance between learned and original 

model parameters  

The figure presents transition and emission parameter 

distances where only the diagonal probabilities except the 

absorbent states are compared. The blue box represents the 

CI bounds, the red line inside the box represents the CI mean 

and the star symbol represents the original parameters. The 

CI mean is the estimated parameters using the bootstrap-

IOHMM method. There is another circle is inside each box 

which represents the second estimated parameters (without 

bootstrap). This time the IOHMM trained by all the simulated 

data (1000 sequences) while the bootstrap-IOHMM uses a 

selective approach. However, both the estimated parameters 

are very close to the original parameters. Therefore, we can 

say that the bootstrap method-IOHMM is very crucial and 

effective while a small data amount is available to estimate 

the parameters of a big data population. 

The next section diagnostic the system health by using both 

the estimated parameters and explains the difference between 

them. 

4.3.2 Diagnostic results 

A new data set is given to the model to estimate the health 

state of the system. The diagnostic method uses the Viterbi 

algorithm and calculates the state distribution from the 

starting point to the breakdown point of the system. The 

method shows the estimated time about the system 

degradation stays in each state (Fig. 6).   
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Fig. 6. Diagnostic over the time from start to end. 

The first two parts of the figure are the estimated diagnostic 

using the models with and without bootstrap given two data 

sequences (in third part). Two diagnostic results show a 

similar transition from one state to another state, but 

distribution is not the same. Despite the fact, their 

distributions are not same they still give the same max path 

shown in fourth part of the figure. Degradation level of the 

system health can be found in this max path given by the 

Viterbi algorithm, which fulfils the objective of this paper.  

This method could be very handy while the data sequence 

from health degradation is not easy to get, because 

degradation is a slow process that needs a long time to 

produce the data. So, the bootstrap-IOHMM can be used to 

estimate an effective diagnostic of system health.  

5. CONCLUSIONS 

This paper proposed a bootstrap-IOHMM method 

considering multiple operating conditions. 95% confidence 

intervals are given for each of the parameters of the IOHMM 

model. The estimated parameters used in the diagnostic 

application and show the results with and without applying 

the bootstrap method. The comparison between the results is 

explained to show the importance of the proposed method. 

This contribution could be used in the PHM domain to 

estimate different RUL considering the operating condition 

and control the system operation.    
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