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Abstract: This paper proposes a discrete-time, distributed algorithm for multi-agent networks
to achieve the minimum l1-norm solution to a group of linear equations known to possess a
family of solutions. We assume each agent in the network knows only one equation and can
communicate with only its neighbors. The algorithm is developed based on a combination
of the projection-consensus idea and the sub-gradient descent method. Given the underlying
network graph to be directed and strongly connected, we prove that the algorithm enables all
agents to achieve a common minimum l1-norm solution. The major difficulty to be dealt with
is the non-smooth nature of the norm and the lack of strict convexity of the associated relevant
performance index.
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1. INTRODUCTION

Distributed algorithms proposed by Mou et al. (2015);
Shi et al. (2016); Wang et al. (2019b) solve linear equa-
tions via multi-agent networks, in which each agent knows
one private equation and can only communicate with its
nearby neighbors. The key idea of these distributed algo-
rithms is a so-called “agreement principle” Mou and Morse
(2013) or “projection-consensus flow” Shi et al. (2016)
, in which each agent limits the update of its state to
satisfy its own equation while trying to reach a consensus
with its nearby neighbors’ states. Various extensions have
been made: these include elimination of the initialization
step Wang et al. (2019a), reduction of state vector size
Mou et al. (2016), computing solutions with the minimum
Euclidean norm Wang et al. (2017, 2018) and achieving
least-squares solutions of an over-determined equation set
Wang et al. (2019c). These algorithms are however not
applicable to achieve a sparse (minimum l0-norm) solution
of an under-determined equation set, which is of partic-
ular interest in many engineering applications including
earthquake location detection Shearer (1997), analysis of
statistical data Dodge (2012), solving biomagnetic inverse
problems Beucker and Schlitt (1996), compressive sensing
Baron et al. (2009), and so on. Challenged by the fact
that the l0-norm minimization problem is NP-hard Ge
et al. (2011), researchers usually turn to achieve solutions
with minimum l1-norm instead, for which the function to
be minimized is convex; the obtained solution, is almost
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surely unique and equals the sparse (minimum l0-norm) so-
lution Candes and Tao (2005). Existing results for achiev-
ing minimum l1-norm solutions are usually based on the
idea of LASSO Tibshirani (1996), and they usually require
a centralized coordinator and are not easily generalized
to the distributed case. Existing results in distributed
optimization are also not directly applicable since they
either assume all agents hold the same constraints Nedic
et al. (2010) or different but compact constraints Lin et al.
(2016), and they typically require the weighting matrix
associated with the network graph to be doubly stochastic
Nedic et al. (2010); Nedić et al. (2018); Lin et al. (2016) or
at least weighted balanced Gharesifard and Cortés (2013).
However, when solving under-determined equation sets
via multi-agent networks, the local equations known by
different agents can not be the same; the solution set to
the local equation constraint is an affine subspace which
is not compact; and as illustrated in Dominguez-Garcia
and Hadjicostis (2013), for a directed graph, additional
cooperations among agents are usually required to guaran-
tee its weighting matrix is doubly stochastic. Further, the
non-smooth nature of the l1-norm can be problematic; to
handle these issues in continuous-time, we have developed
a distributed algorithm for minimum l1-norm solution
Zhou et al. (2018) based on Fillipov Set Value maps, which
is a considerable technical complication. In this paper, we
achieve further progress by devising a discrete-time algo-
rithm based on a combination of the projection-consensus
flow and the sub-gradient method. Moreover, compared
with the results in Nedic et al. (2010); Nedić et al. (2018);
Lin et al. (2016), we remove the requirement for the
weighting matrix associated with the network graph to
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be doubly stochastic, so that the algorithm is applicable
to any directed network that is strongly connected.

The organization of the paper is as follows. We formulate
the problem of interest in Section II. In section III, we
present a discrete-time, distributed algorithm for achieving
the minimum l1-norm solution. The effectiveness of this
algorithm is theoretically proved in Section IV, which is
further validated by a simulation in Section V. Concluding
remarks are made in Section VI. Proofs of all Lemmas are
given in the Appendix.

Notation: Let 1r denote the vector in Rr with all entries
equal to 1. Let Ir denote the r× r identity matrix. We let
col {A1, A2, · · · , Ar} be a stack of matrices Ai possessing
the same number of columns with the index in a top-down
ascending order, i = 1, 2, · · · , r. Let diag {A1, A2, · · · , Ar}
denote a block diagonal matrix with Ai the ith diagonal
block entry, i = 1, 2, · · · , r. By M > 0 and M ≥ 0 are
meant that the square matrix M is positive definite and
positive semi-definite, respectively. By M> is meant the
transpose of a matrix M . Let kerM and image M denote
the kernel and image of a matrix M , respectively. Let ⊗
denote the Kronecker product. Let ‖·‖1 denote the l1-norm
of a vector, and [ · ]j denote the jth entry of a vector.

2. PROBLEM FORMULATION

Consider a network of m agents, i = 1, 2, · · · ,m, where
each agent in the network is able to receive information
from certain other agents called its neighbors. Let Ni
denote the set of agent i’s neighbors. The neighbor relation
can be characterized by a directed graph G, where we
assume G is strongly connected. Let S ∈ Rm×m denote a
row stochastic weighted adjacency matrix associated with
G, namely, for i, j = 1, 2, ...,m, the entries of S satisfy∑m
j=1 sij = 1, where sij > 0 if j ∈ Ni, and sij = 0

otherwise. Note that for any strongly connected G, one
such S can be simply constructed in a distributed manner
by letting sij = 1

di
, for ∀ j ∈ Ni, where di = |Ni| is

the number of agent i’s neighbors. Suppose each agent i
knows Ai ∈ Rni×n and bi ∈ Rni , and controls a state
vector xi(t) ∈ Rn. For an underlying under-determined
linear equation Ax = b, let x∗ denote a minimum l1-norm
solution such that

x∗ = arg min
Ax=b

‖x‖1, (1)

where

A =

A1

...
Am

 , b =

 b1...
bm

 . (2)

Assumption 1. The equation

Ax = b (3)

is under-determined and it has a unique minimum l1-norm
solution.

According to the applications Shearer (1997); Beucker
and Schlitt (1996), most under-determined linear equation
sets found in practice have a unique minimum l1-norm
solution. Our assumption does not lead to a degradation
on generality.

The problem of interest is to develop an iterative update
to each agent’s state vector by only using its neighbors’

states such that all xi(t) converges to a common value, viz
the minimum l1 solution x∗ of equation (3).

3. THE UPDATE

A distributed update for achieving a solution to Ax = b
is developed in Mou et al. (2015) based on the projection-
consensus flow as follows:

xi(t+1)=xi(t)−Pi

xi(t)−sij∑
j∈Ni

xj(t)

 , i = 1, 2, ...,m

(4)

where Aixi(0) = bi and Pi ∈ Rn×n is the projection matrix
to kerAi. The above update enables all xi(t) to reach a
consensus value exponentially fast which is a solution to
Ax = b. This procedure imposes an a priori requirement
on existence of a solution, or possibly a family of solutions.
To further guide this consensus value to be the minimum
l1-norm solution, we add the subgradient of ‖x‖1 subject
to Aix = bi, namely, Pisgn (xi(t)), to (4) and have the
following

xi(t+1)=xi(t)−Pi

xi(t)−sij∑
j∈Ni

xj(t)

− Pi
t+1

sgn (xi(t))

(5)

with Aixi(0) = bi, i = 1, 2, ...,m.

Remark 1. Because Aixi(0) = bi, and image Pi = kerAi,
under the distributed update (5), one has Aixi(t) = bi for
∀t > 0. Note that 1

t+1 is introduced to adjust impact of

the term Pisgn (xi(t)) to the original update (4), a device
which is commonly used in many distributed optimization
algorithms Nedic et al. (2010). This takes care of the fact
that Pisgn (xi(t)) cannot be expected to tend to zero.
Without such adjusted term 1

t+1 , we could never secure a

consensus steady state solution xi(t) = x∗ with Ax∗ = b.

Remark 2. The update (5) is different from the algorithms
proposed in Nedic et al. (2010); Lin et al. (2016). In update
(5), the gradient term 1

t+1Pisgn (xi(t)) is computed with

respect to the current state xi(t) of agent i, thus, it is
independent of the current round of communication. In
Nedic et al. (2010); Lin et al. (2016), the gradient follows
the form of 1

t+1Pisgn (sij
∑
j∈Ni xj(t)), which is computed

using a weighted average of agent i’s neighbors states.

4. MAIN RESULT

In this section, we will present our main result under
the distributed update (5), for the problem identified in
Section 2.

Theorem 1. Suppose the equation Ax = b is under-
determined with a unique minimum l1-norm solution. Sup-
pose the graph G of an associated m-agent network is di-
rected and strongly connected, and its associated weighted
adjacency matrix is row stochastic. Let each agent knows
Ai and bi, defined in the partition (2). Initialize xi(0) such
that Aixi(0) = bi. Then, under the distributed update
(5), all xi(t) converge asymptotically to a constant given
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by x∗, which is the unique minimum l1-norm solution 1 to
equation Ax = b.

For the convenience of establishing Theorem 1, let x(t) =
col {x1(t), · · · , xm(t)} denote a stack of all xi(t); let P̄ =
diag {P1, · · · , Pm} denote a block-diagonal matrix with
the ith diagonal block equal to Pi. Further let S̄ = S⊗ In,
where S ∈ Rm×m is a weighted adjacency matrix of the
graph G. Then based on equation (5), the evolution of all
the states in the network can be rewritten in a compact
form as

x(t+ 1) = Q̄x(t)− 1

t+ 1
P̄ sgn (x(t)) (6)

where
Q̄ = I − P̄ + P̄ S̄.

To prove Theorem 1, it is sufficient to show that x(t) →
x∗, where x∗ , 1⊗ x∗. Towards this end, our proof is di-
vided into three steps, which progressively lead to the fact
that x(t) → x∗. Firstly, for the purposes of proving the
correctness of the algorithm, but not something computed
in the course of executing the algorithm, we introduce a
trajectory z(t) linked in a certain way to x(t). Then based
on this z(t), we show that x(t) → z(t). Finally, we show
that z(t)→ x∗. The details of these steps are provided in
the following subsections.

4.1 Introducing a trajectory z(t).

For each time step t, define

z(t, k) , Q̄kx(t). (7)

Then the following Proposition holds.

Proposition 1. For each fixed t, as k → ∞, the following
limit of z(t, k) exists,

z(t) , lim
k→∞

z(t, k) = lim
k→∞

Q̄kx(t). (8)

Moreover, Q̄z(t) = z(t) and for ∀t, there holds z(t) =
1m ⊗ z(t) where z(t) ∈ Rn is a solution to Ax = b.

To prove Proposition 1, we propose the following lemma,
for which we provide the proof in the Appendix.

Lemma 1. The following statements hold:

(a) All eigenvalues of P̄ S̄ have magnitude less than or
equal to 1.

(b) λ? = 1 is the only eigenvalue of P̄ S̄ with magnitude 1.
It is non-defective and any corresponding eigenvector
satisfies P̄ S̄u = S̄u = u where u = 1m ⊗ u and
u ∈ kerA.

Proof of Proposition 1: Let t be arbitrary but fixed. By
definition (7), one has

z(t, k + 1) = Q̄z(t, k) = (I − P̄ + P̄ S̄)z(t, k) (9)

with z(t, 0) = x(t). Since P̄ = diag {P1, · · · , Pm}, and
setting z = col {z1, · · · , zm}, then update (9) can be
rewritten as

zi(t, k + 1) = zi(t, k)− Pi

zi(t, k)− sij
∑
j∈Ni

zj(t, k)

 .

(10)

1 Note that if the minimum l1-norm solution is non-unique, the
algorithm will converge to one of the minimum l1-norm solutions.

From update (10) and the fact that Pi is a projection
matrix to kerAi, one has Aizi(t, k + 1) = Aizi(t, k). Since
also zi(t, 0) = xi(t) is a solution to Aixi = bi, one has for
∀t, k, zi(t, k) is a solution to Aizi = bi.

To continue, define z∗ , 1m ⊗ z∗, where z∗ ∈ Rn is an
arbitrary solution to Ax = b. Since S is row stochastic, for
any z∗ ∈ Rn, one has S̄z∗ = (S ⊗ In)(1m ⊗ z∗) = z∗.

Further, define η(t, k) , z(t, k) − z∗, where η(t, k) =
col {η1(t, k), · · · , ηm(t, k)} and ηi(t, k) = zi(t, k) − z∗ for
all i = 1, · · · ,m. Recall that both zi(t, k) and z∗ are
solutions to Aizi = bi; then ηi(t, k) ∈ kerAi. Because Pi is
a projection matrix to kerAi, one has Piηi(t, k) = ηi(t, k),
that is P̄η(t, k) = η(t, k). Then, by subtracting z∗ on both
sides of (9), one has

η(t, k + 1) = η(t, k)− (P̄ − P̄ S̄)η(t, k)− (P̄ − P̄ S̄)z∗

= η(t, k)− (P̄ − P̄ S̄)η(t, k)

= P̄ S̄η(t, k) (11)

By Lemma 1, there exists a non-singular matrix T such
that

P̄ S̄ = T

[
I 0
0 R

]
T−1 (12)

where all the eigenvalues of R are the eigenvalues of P̄ S̄
with magnitude less than 1. Let

M = lim
k→∞

(
P̄ S̄
)k

= T

[
I 0
0 0

]
T−1 (13)

Define η(t)∗ = limk→∞ η(t, k); then by update (11),

η(t)∗ = lim
k→∞

(P̄ S̄)kη(t, 0) = T

[
I 0
0 0

]
T−1η(t, 0) (14)

Further, by the definition of η, one has

lim
k→∞

z(t, k) = lim
k→∞

η(t, k) + z∗ = η(t)∗ + z∗ (15)

Equation (15) verifies the existence of limk→∞ z(t, k),
namely z(t) as defined in (8). As a consequence, Q̄z(t) =
limk→∞ Q̄k+1x(t) = z(t). To further show that z(t) =
1m ⊗ z(t) and for ∀t, z(t) is a solution to Ax = b, recall
from equations (12) and (14) that

P̄ S̄η(t)∗ = T

[
I 0
0 R

] [
I 0
0 0

]
T−1η(t, 0) = η(t)∗ (16)

Thus, by Lemma 1 (b), one has η(t)∗ = 1m ⊗ η(t) and
for ∀t, η(t) ∈ kerA. This, along with the definition of z∗

yields

z(t) = η(t)∗ + z∗ = 1m ⊗ (η(t) + z∗) = 1m ⊗ z(t) (17)

Because z∗ ∈ Rn is a solution to Ax = b and η(t) ∈ kerA,
it follows that z(t) is also a solution to Ax = b. This
completes the proof.

4.2 Proof of x(t)→ z(t).

Proposition 2. For update (6), given any initial x(0) and
the z(t) defined in (8), there always exists a positive
constant β independent ot t such that

‖x(t)− z(t)‖2 ≤
β

t+1
(18)

Proof of Proposition 2: Pre-multiply equation (6) on
the left by Q̄k, leading to

Q̄kx(t+ 1) = Q̄k+1x(t)− 1

t+1
Q̄kP̄ sgn (x(t)) (19)
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By taking k → ∞ and recalling from definition (8) that
z(t) = limk→∞ Q̄kx(t) = limk→∞ Q̄k+1x(t), one has

z(t+ 1) = z(t)− 1

t+1
lim
k→∞

Q̄kP̄ sgn (x(t)) (20)

Recall that Q̄ = I − P̄ + P̄ S̄ and P̄ 2 = P̄ (a property of
projection matrices); then

lim
k→∞

Q̄kP̄ = lim
k→∞

(I − P̄ + P̄ S̄)tP̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−1)(I − P̄ + P̄ S̄)P̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−1)P̄ S̄P̄

= lim
k→∞

(I − P̄ + P̄ S̄)(k−2)(P̄ S̄)2P̄

= lim
k→∞

(P̄ S̄)kP̄ = MP̄ (21)

where M is defined in (13). Using this, equation (20) can
be further written as

z(t+ 1) = Q̄z(t)− 1

t+1
MP̄ sgn (x(t)) (22)

Define e(t) = x(t)−z(t). Subtracting (22) from (6) yields

e(t+ 1) = Q̄e(t)− 1

t+1
(I −M)P̄ sgn (x(t)) (23)

Now, recall from Remark 1 and Proposition 1 that xi(t)
and z(t) are solutions to Aixi = bi, which implies that
Pi(xi(t)− z(t)) = xi(t)− z(t), that is, P̄e(t) = e(t). Thus,
by using (21) in reverse,

Me(t) = MP̄e(t) = lim
k→∞

Q̄kP̄e(t)

= lim
k→∞

Q̄ke(t) = lim
k→∞

Q̄k(x(t)− z(t))

= z(t)− z(t) = 0

Bringing this, equations (12) and (13) into update (23),
yields

e(t+1) = (I − P̄ + P̄ S̄ −M)e(t)− I−M
t+1

P̄ sgn (x(t))

= P̄ S̄e(t)− 1

t+1
(I −M)P̄ sgn (x(t))

= T

[
0 0
0 R

]
T−1e(t)− I−M

t+1
P̄ sgn (x(t)) (24)

Since all eigenvalues of R have magnitude strictly less than
one, there must exist a scalar 0 < ρ < 1 such that

‖e(t+ 1)‖2 ≤ ρ‖e(t)‖2 +
ce
t+1

(25)

where ce > 0 is the upper bound of ‖(I−M)P̄ sgn (x(t))‖2.

Now, given equation (25), for t = 2τ , τ = 0, 1, 2, · · · , one
has

‖e(2τ)‖2 ≤ ρ2τ‖e(0)‖2 + ce

2τ∑
j=1

ρ2τ−j

j + 1

= ρ2τ‖e(0)‖2 + ceρ
τ

τ∑
j=1

ρτ−j

j+1
+ce

2τ∑
j=τ+1

ρ2τ−j

j+1

≤ ρ2τ‖e(0)‖2 + ce
ρτ

1− ρ
+ ce

1

τ + 2

1

1− ρ
(26)

For t = 2τ + 1, τ = 0, 1, 2, · · · , one has

‖e(2τ + 1)‖2 ≤ ρ‖e(2τ)‖2 +
ce

2τ + 2

≤ ρ2k+1‖e(0)‖2 + ce
ρτ+1

1− ρ
+ ρce

1

τ + 2

1

1− ρ
+ ce

1

2τ + 2
(27)

Since e(t) = x(t)− z(t), by combining equations (26) and
(27), for ∀t > 0, it is evident there must exist a positive
constant β such that (18) is true. This completes the proof.

4.3 Proof of z(t)→ x∗.

Proposition 3. Suppose the minimum l1-norm solution x∗

to problem (1) is unique. Let x∗ , 1⊗x∗. Then for update
(6), given any initial x(0), and the z(t) defined in (8), one
has

‖z(t)− x∗‖2 → 0 as t→∞ (28)

Before proving Proposition 3, we define x∗ = 1m ⊗
x∗ where x∗ is the unique minimum l1-norm solution
defined in (1). Let ε(t) = z(t) − x∗ and define a function

V (ε(t)) , ε(t)>ε(t). Let Π̄ , Π ⊗ In ∈ Rmn×mn be
a diagonal matrix, where Π = diag {π1, · · · , πm} and
[π1 π2 · · · πm] = π> = limk→∞

(
1>mS

k
)
∈ R1×m. Then,

we introduce the following two lemmas to summarize some
useful results with proofs provided in the Appendix.

Lemma 2. The following statements hold:

(a) The row vector π> is a left eigenvector of S corre-
sponding to eigenvalue 1, Π̄ is positive definite and

ε(t)>MP̄ sgn (x(t)) = ε(t)>Π̄ sgn (x(t))

(b) [sgn (x(t))]
>

Π̄(x(t)− x∗) ≥ ‖Π̄x(t)‖1 − ‖Π̄x∗‖1.

(c) ‖Π̄z(t)‖1 =
1>mπ

m
‖z(t)‖1 and ‖Π̄x∗‖1 =

1>
mπ
m ‖x

∗‖1.

(d) |‖Π̄x(t)‖1 − ‖Π̄z(t)‖1| ≤ max{πi}
√
mnβ

t+1
,

where mn is the dimension of x(t) and z(t), with m
the number of agents in the network, n the dimension
of each xi(t), zi(t).

Lemma 3. Suppose the minimum l1-norm solution x∗ of
the linear equation Ax = b is unique. Further, suppose
‖ε(t)‖2 ≤ ∆ is bounded, where ε(t) = z(t) − x∗, then
there exists a positive constant α such that ∀t > 0,

‖z(t)‖1 − ‖x∗‖1 ≥ αε(t)>ε(t) = αV (ε(t)). (29)

Proof of Proposition 3: By (21), subtracting x∗ from
both sides of equation (20) yields

ε(t+ 1) = ε(t)− 1

t+1
MP̄ sgn (x(t)). (30)

Based on (a) of Lemma 2, one has
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V (ε(t+ 1))

=

[
ε(t)−

1

t+1
MP̄ sgn (x(t))

]> [
ε(t)−

1

t+1
MP̄ sgn (x(t))

]
=V (ε(t))−

2

t+1
ε(t)>MP̄ sgn (x(t)) +

1

(t+1)2
‖MP̄ sgn (x(t))‖22

≤V (ε(t))−
2

t+1
ε(t)>Π̄sgn (x(t)) +

ψ

(t+1)2

=V (ε(t))−
2

t+1
sgn (x(t))>Π̄(z(t)− x∗) +

ψ

(t+1)2

=V (ε(t))−
2

t+1
sgn (x(t))>Π̄(x(t)− x∗)

−
2

t+1
sgn (x(t))>Π̄(z(t)− x(t)) +

ψ

(t+1)2

≤V (ε(t))−
2

t+1
sgn (x(t))>Π̄(x(t)− x∗) +

2γ̄β

(t+1)2
+

ψ

(t+1)2

(31)

where ψ and γ̄ are positive constants such that for all
∀x(t), ‖MP̄ sgn (x(t))‖22 ≤ ψ and ‖Π̄sgn (x(t))‖2 ≤ γ̄ (the
last inequality in (31) results from (18) of Proposition
2). Then, by bringing (b), (c) and (d) of Lemma 2 into
equation (31), one has

V (ε(t+ 1))− V (ε(t))

≤ −
2

t+1

(
‖Π̄x(t)‖1 − ‖Π̄x∗‖1

)
+

2γ̄β

(t+1)2
+

ψ

(t+1)2

=−
2

t+1

(
‖Π̄z(t)‖1−‖Π̄x∗‖1−

(
‖Π̄z(t)‖1−‖Π̄x(t)‖1

))
+

2γ̄β + ψ

(t+1)2

≤ −
2

t+1

(
‖Π̄z(t)‖1 − ‖Π̄x∗‖1 −max{πi}

√
mnβ

t

)
+

2γ̄β + ψ

t2

≤ −
2

t+1

1>mπ

m
(‖z(t)‖1−‖x∗‖1) + max{πi}

2
√
mnβ

(t+1)2
+

2γ̄β + ψ

(t+1)2

= −
2γ

t+1
(‖z(t)‖1 − ‖x∗‖1) +

ψ̄

(t+1)2
(32)

where γ =
1>
mπ
m and ψ̄ = 2 max{πi}

√
mnβ + 2γ̄β + ψ.

To continue, since z(t) = 1m ⊗ z(t) and x∗ = 1m ⊗ x∗,
where z(t) is a solution to Ax = b and x∗ is the unique
minimum l1-norm solution to Ax = b, one has ‖z(t)‖1 −
‖x∗‖1 ≥ 0. This taken with (32) implies

V (ε(t+ 1)) ≤ V (ε(t)) +
ψ̄

(t+1)2
(33)

Since ψ̄ is a constant, and

∞∑
t=1

1

t2
<∞, then V (ε(t)) must

be bounded. Therefore, there exists a constant ∆ such that
‖ε(t)‖2 ≤ ∆. Then, based on Lemma 3, by introducing
(29) to (32), one has :

V (ε(t+ 1)) ≤ (1− 2γα

t+1
)V (ε(t)) +

ψ̄

(t+1)2
(34)

The inequality (34) can be ‘solved’ by writing it in sum-
mation form:

V (ε(t+ 1)) ≤ ψ̄

(t+1)2
+

t∑
τ=2

[
ψ̄

(τ − 1)2

t∏
k=τ

(1− 2γα

k
)

]
(35)

Define F (τ0, t) =

t∏
k=τ0

(1 − 2γα

k
), where τ0 is sufficiently

large such that 0 < 1− 2γα
k < 1 for ∀k ≥ τ0. Then

logF (τ0, t) =

t∑
k=τ0

log(1− 2γα

k
)

Since 0 < 1 − 2γα
k < 1 for ∀k ≥ τ0, it follows that

log(1− 2γα
k ) ≤ − 2γα

k . Thus,

logF (τ0, t) ≤ −2γα

t∑
k=τ0

1

k
< −2γα

∫ t

k=τ0

1

k + 1

= −2γα log

(
t+ 1

τ0 + 1

)
.

In addition, since τ ≥ 2 and

τ0−1∏
k=τ

(1− 2γα

k
) is a product of

finite terms, with each term being bounded by [1−γα, 1],
this product must be also bounded by a certain φ > 0;
then,

t∏
k=τ

(1− 2γα

k
) =

τ0−1∏
k=τ

(1− 2γα

k
)F (τ0, t)

< φe−2γα log( t+1
τ0+2 ) = φ

(
τ0 + 2

t+ 1

)2γα

(36)

Using equation (36) in (35), one has

V (ε(t+ 1)) <
ψ̄

t2
+

t∑
τ=2

[
ψ̄

(τ − 1)2
φ

(
τ0 + 2

t+ 1

)2γα
]

=
ψ̄

t2
+

(
τ0 + 2

t+ 1

)2γα

· φ
t∑

τ=2

ψ

(τ − 1)2
(37)

Since α, γ, φ and ψ̄ are positive constants, as t→∞, one

has
ψ̄

t2
→ 0,

(
τ0+2
t+1

)2α
→ 0 and φ

t∑
τ=2

ψ̄

(τ − 1)2
is bounded.

Thus,
V (ε(t+ 1))→ 0 as t→∞.

That is, ε(t) = (z(t)− x∗)→ 0 as t→∞. This completes
the proof.

4.4 Proof of Theorem 1.

Based on the Proportion 2 and 3, one has for any initial
x(0), update (6) will drive x(t) → x∗ as t → ∞.
Equivalently, by update (5), the states xi(t), i = 1, · · · ,m
in all agents will converge to x∗. This completes the proof.

5. SIMULATIONS

In this section, we describe the numerical simulations in
MATLAB to validate the main result, noting a particular
representative example. The simulations were conducted
for a number of randomly generated networks with ran-
domly generated linear equations. More precisely, we em-
ploy a directed, strongly connected network of m = 16
agents, where any two agents are connected with a prob-
ability of 0.4. Let sij = 1

di
. Let each agent knows a

Ai ∈ R2×33 and bi ∈ R2 with entries randomly selected
from the interval [0, 1]. The equation set Aix = bi,
i = 1, · · · , 16 has a unique minimum l1 norm solution x∗

with probability 1. Define V (t) , ‖x(t) − x∗‖22, where
x(t) = col {x1(t), · · · , xm(t)} and x∗ = 1⊗ x∗.
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Fig. 1. Convergence of the distributed update (5) under a
directed, strongly connected network of 16 agents.

The curves shown in Figure 1 are generally representa-
tive of the convergence behavior in the vast majority of
simulations we undertook but depict just one example.
Comparisons are given for the algorithm proposed in this
paper and the one proposed in Mou et al. (2015), as
revealed by the results, the distributed update (5) is able to
drive the states xi(t) in all agents to the unique minimum
l1 norm solution x∗ of the equation set, which validates
Theorem 1. On the contrary, the algorithm introduced
in Mou et al. (2015) for solving linear equations is not
guaranteed to achieve x∗.

6. CONCLUSION

By combining the projection-consensus and sub-gradient
descent aspects, we have developed a discrete-time dis-
tributed algorithm for achieving the minimum l1-norm
solutions to under-determined linear equations. Given the
network is directed and strongly connected, it has been
theoretically proved that the proposed algorithm can drive
the states in all agents to the minimum l1-norm solution
of the linear equation. In future, we will focus on the mod-
ification of the algorithm to achieve a better convergence
rate.

APPENDIX

Proof of Lemma 1
(a) Since S is a row stochastic matrix corresponding to
the weighted adjacency matrix of a strongly connected
graph, by the Perron-Frobenius theorem Perron (1907),
S has a simple eigenvalue equal to 1 and all the other
eigenvalues of S have magnitude strictly less than 1. Now
let ω> = [ω1, · · · , ωm] 6= 0 be a normalized left Perron-
Frobenius eigenvector 2 of S. Let Ω = diag {ω1, · · · , ωm}
and H = Ω−S>ΩS. Since Ω is diagonal and positive; and
all elements of S are non-negative, then all the off-diagonal
elements of H are non-positive. Further note that the row
sums of H have the property:

H · 1m = (Ω− S>ΩS)1m

= π − S>Ω1m

= π − S>π = 0

Thus, H must be a Laplacian matrix of a certain graph
so that H = Ω − S>ΩS ≥ 0. Recall that the graph G for
2 A Perron-Frobenius eigenvector is an eigenvector of S correspond-
ing to the 1 eigenvalue, furthermore it is positive with entries sum-
ming to 1.

our problem is strongly connected, which means πi > 0,
thus, Ω is positive. By left/right multiplying by Ω−1/2 in
the expression for H, one has

Ω−1/2S>ΩSΩ−1/2 ≤ Im. (38)

It follows that

σmax(Ω̄−1/2S̄>Ω̄S̄Ω̄−1/2) ≤ 1 (39)

where Ω̄ = Ω ⊗ In, S̄ = S ⊗ In and σmax(·) denotes the
largest singular value of a matrix. Note that Pi is the
projection to kerAi and P̄ = diag {P1, · · · , Pm}, then one
must have σmax(P ) ≤ 1. This, along with (39), leads to

σmax(P̄ Ω̄−1/2S̄>Ω̄S̄Ω̄−1/2P̄ ) ≤ 1

Furthermore, since Ω̄ = Ω ⊗ In where Ω is a diagonal
matrix and P̄ is a block-diagonal matrix with each block
Pi ∈ Rn×n, then one has P̄ Ω̄−1/2 = Ω̄−1/2P̄ . That is

σmax

(
(Ω̄−1/2P̄ S̄>Ω̄1/2)(Ω̄1/2S̄P̄ Ω̄−1/2)

)
≤ 1 (40)

This indicates that all the eigenvalues of Ω̄1/2S̄P̄ Ω̄−1/2

has magnitude less than or equal to one. Since for all the
eigenvalues, we have λ(P̄ S̄) = λ(S̄P̄ ) = λ(Ω̄1/2S̄P̄ Ω̄−1/2)
Horn and Johnson (2012) , this completes the proof of
statement (a).

(b) Note that the equality |λ(P̄ S̄)| = 1 holds if and only
if there exist a vector u 6= 0 such that

P̄ S̄u = λ?u with |λ?| = 1 (41)

Thus, S̄u 6= 0 and

Ω̄1/2S̄P̄ Ω̄−1/2Ω̄1/2S̄u = λ?Ω̄1/2S̄u. (42)

Let q = Ω̄1/2S̄u, since P̄ Ω̄−1/2 = Ω̄−1/2P̄ , then (42) can
be rewritten as

Ω̄1/2S̄Ω̄−1/2P̄q = λ?q (43)

The equality of (43) holds only if

‖Ω̄1/2S̄Ω̄−1/2P̄q‖ = ‖λ?q‖ = |λ?| · ‖q‖ = ‖q‖ (44)

Recall that σmax(P̄ ) ≤ 1 and σmax(Ω̄1/2S̄Ω̄−1/2) ≤ 1, thus,

‖Ω̄1/2S̄Ω̄−1/2P̄q‖ ≤ ‖P̄q‖ ≤ ‖q‖. (45)

Then, (44) holds if and only if ‖P̄q‖ = ‖q‖. Further, recall
that P̄ is a projection matrix; then additionally

P̄q = q (46)

Bringing (46) into (43) leads to

Ω̄1/2S̄Ω̄−1/2q = λ?q, with |λ?| = 1. (47)

Note that Ω̄1/2S̄Ω̄−1/2 and S̄ are similar matrices with
identical eigenvalues. Further, recall the definition of S̄ =
S⊗In and the fact that |λ(S)| = 1 if and only if λ(S) = 1,
thus, one has λ? = 1. Bringing this into equation (41) leads
to

P̄ S̄u = u (48)

To continue, recall that q = Ω̄1/2S̄u and P̄ Ω̄1/2 = Ω̄1/2P̄ .
Then equation (46) implies

Ω̄1/2P̄ S̄u = P̄ Ω̄1/2S̄u = Ω̄1/2S̄u (49)

Since Ω̄1/2 is positive definite, one has

P̄ S̄u = S̄u (50)

Equations (48) and (50) implies

S̄u = u. (51)

Thus, u = 1m ⊗ u, u ∈ Rn. Bringing (51) back to (48)
yields P̄u = u. This, along with u = 1m ⊗ u implies
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that u ∈
⋂m
i=1 kerAi = kerA. Since Ax = b is under-

determined, kerA 6= ∅ and such u exists. Till now, we have
validated that |λ(P̄ S̄)| = 1, which happens if and only if
P̄ S̄u = λ?u with u = 1m ⊗ u, u ∈ kerA, and λ? = 1.

Now, we prove that the eigenvalues of P̄ S̄ equal to 1 must
be non-defective by contradiction. Suppose the matrix
P̄ S̄ has defective eigenvalues equal to 1. Then so must
the matrix Ω̄1/2S̄P̄ Ω̄−1/2 since they are similar. From
the definition of defective eigenvalues Horn and Johnson
(2012), there always exist vectors v1 6= v2, with ‖v1‖ =
‖v2‖ = 1, and v>1 v2 ≥ 0 such that

(Ω̄1/2S̄P̄ Ω̄−1/2 − I)v1 = 0 (52)

(Ω̄1/2S̄P̄ Ω̄−1/2 − I)v2 = v1 (53)

Since ‖v1‖ = ‖v2‖ = 1 and v1 6= v2, one can always find a
vector ‖v̂‖ = 1 such that v̂ = r1v1 +r2v2 with r1 +r2 > 1.
Then one has

‖Ω̄1/2S̄P̄ Ω̄−1/2v̂‖
‖v̂‖

= ‖Ω̄1/2S̄P̄ Ω̄−1/2(r1v1 + r2v2)‖

= ‖(r1 + r2)v1 + r2v2‖ (54)

Recall that r1 > 0, r2 > 0 and v>1 v2 ≥ 0, then

‖(r1 + r2)v1 + r2v2‖ ≥ ‖(r1 + r2)v1‖ = r1 + r2 > 1.

This indicates σmax

(
Ω̄1/2S̄P̄ Ω̄−1/2

)
> 1, which contra-

dicts with equation (40). Thus, the eigenvalues of P̄ S̄ equal
to 1 must be non-defective. This completes the proof.

Proof of Lemma 2
(a) Since the matrix S is row stochastic, it has an eigen-
value equal to 1. Let π> = limk→∞

(
1>mS

k
)
; then one

has π>S = limk→∞
(
1>mS

k+1
)

= π>. Thus, π> is a left
eigenvector of S corresponding to eigenvalue 1. Further
since S is primitive (due to the strong connectedness of
the graph), then by the Perron-Frobenius theorem Perron
(1907) , all entries of π are positive and the corresponding
eigenvalue at 1 is simple.

Now, recall that z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗,
thus, ε(t) = z(t) − x∗ = 1m ⊗ (z(t) − x∗) = 1m ⊗
ε(t). Furthermore, since both z(t) and x∗ are solutions to
Ax = b, one has Piε(t) = ε(t), that is,

(
v> ⊗ ε(t)>

)
P̄ =(

v> ⊗ ε(t)>
)
, for any v ∈ Rm. With this in mind, by the

definition of M in (13), one has,

ε(t)>MP̄ sgn (x(t))

= lim
k→∞

(
1>m ⊗ ε(t)>

)
(P̄ S̄)kP̄ sgn (x(t))

= lim
k→∞

(
1>m ⊗ ε(t)>

)
(S ⊗ In)(P̄ S̄)(k−1)P̄ sgn (x(t))

= lim
k→∞

(
1>mS ⊗ ε(t)>

)
(P̄ S̄)(k−1)P̄ sgn (x(t)>)

= lim
k→∞

(
1>mS

k ⊗ ε(t)>
)
P̄ sgn (x(t))

=
(
π> ⊗ ε(t)>

)
sgn (x(t))

= ε(t)>Π̄ sgn (x(t)) (55)

This completes the proof.

(b) Consider a function G(ξ) = ‖Π̄ξ‖1, where ξ ∈ Rmn.
G(ξ) is convex because the l1-norm is convex. It follows
that

[
sgn (Π̄ξ1)

]>
Π̄(ξ1 − ξ2) =

[
∂G(ξ)

∂ξ

∣∣∣∣
ξ=ξ1

]>
(ξ1 − ξ2)

≥ G(ξ1)−G(ξ2) = ‖Π̄ξ1‖1 − ‖Π̄ξ2‖1
Recall that Π̄ is a diagonal matrix with all entries being
positive, which means sgn (Π̄ξ1) = sgn (ξ1); then by
letting x(t) = ξ1 and x∗ = ξ2 one has

[sgn (x(t))]
>

Π̄(x(t)− x∗) ≥ ‖Π̄x(t)‖1 − ‖Π̄x∗‖1 (56)

This completes the proof.

(c) Since z(t) = 1m⊗z(t), x∗ = 1m⊗x∗, by the definition
of Π̄, one has

‖Π̄z(t)‖1 = ‖ (diag {π1, π2, · · · , πm} ⊗ In) (1m ⊗ z(t)) ‖1
= ‖col {π1, π2, · · · , πm} ⊗ z(t)‖1 = ‖π ⊗ z(t)‖1

= 1>mπ‖z(t)‖1 =
1>mπ

m
‖z(t)‖1 (57)

Similarly,

‖Π̄x∗‖1 =
1>mπ

m
‖x∗‖1 (58)

This completes the proof.

(d) Let [ · ]j denote the jth entry of a vector. Using the
Cauchy-Schwarz inequality, one has

|‖Π̄x(t)‖1 − ‖Π̄z(t)‖1| =

∣∣∣∣∣
mn∑
j=1

|[Π̄x(t)]j | −
mn∑
j=1

|[Π̄z(t)]j |

∣∣∣∣∣
=

mn∑
j=1

∣∣|[Π̄x(t)]j | − |[Π̄z(t)]j |
∣∣ ≤ mn∑

j=1

∣∣[Π̄x(t)]j − [Π̄z(t)]j
∣∣

=

mn∑
j=1

∣∣[Π̄e(t)]j
∣∣ ≤ max{πi}

mn∑
j=1

∣∣[e(t)]j
∣∣ · 1

≤max{πi}

(
mn∑
j=1

∣∣[e(t)]j
∣∣2) 1

2
(

mn∑
j=1

12

) 1
2

= max{πi}
√
mn‖e(t)‖2 = max{πi}

√
mnβ

t+1

This completes the proof.

Proof of Lemma 3
If z(t)−x∗ = ε(t) = 0, then V (ε(t)) = 0. Thus, (29) holds.
If ε(t) 6= 0, recall that z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗,
then, ε(t) = z(t) − x∗ = 1m ⊗ (z(t) − x∗) = 1m ⊗ ε(t).
Since both z(t) and x∗ are solutions to Ax = b, one has
ε(t) ∈ kerA. Let κ be a positive scalar whose value can be
made arbitrarily small. Let

h , κ · ε(t)

‖ε(t)‖1
, (59)

obviously, ‖h‖1 = κ and h ∈ kerA. Since ‖ · ‖1 is piece-
wise linear, and given that x∗ is fixed, then κ can always
be chosen small enough such that for any h in the form of
(59), the function value of ‖x‖1 varies linearly along the
line segment {x∗ + µh | µ ∈ (0, 1]}. That is, for y = µh
with µ ∈ (0, 1], one has sgn (x∗ + y) = sgn (x∗ + h) and

‖x∗ + y‖1 − ‖x∗‖1 = sgn (x∗ + h)>y. (60)

Recall that y
‖y‖1 = h

‖h‖1 , then equation (60) can be further

written as

‖x∗ + y‖1 − ‖x∗‖1 = η(x∗, h)‖y‖1. (61)
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where

η(x∗, h) =
sgn (x∗ + h)>h

‖h‖1
∈ R. (62)

Since y ∈ kerA and x∗ is the unique minimum l1-norm
solution to Ax = b, from (61), one has η(x∗, h) > 0.
Further since the h in (62) is chosen from a compact set
such that h ∈ kerA and ‖h‖1 = κ, the values of η(x∗, h)
must have a lower bound η̂, which is strictly positive. Thus,
from (61), one has

‖x∗ + y‖1 − ‖x∗‖1 ≥ η̂‖y‖1. (63)

Based on inequality (63), we will consider two possibilities,
depending on the magnitude of ‖ε(t)‖1. First, if ‖ε(t)‖1 ≤
κ, that is ‖ε(t)‖1κ ≤ 1, we let µ = ‖ε(t)‖1

κ , which leads to

y = µh = ‖ε(t)‖1
κ · κ ε(t)

‖ε(t)‖1 = ε(t). Then from (63), one has

‖z(t)‖1 − ‖x∗‖1 = ‖x∗ + ε(t)‖1 − ‖x
∗‖1 ≥ η̂‖ε(t)‖1. (64)

Second, if ‖ε(t)‖1 > κ, it follows (because of (59) and

y = µh) that ε(t) = ‖ε(t)‖1
µκ y, where ‖ε(t)‖1µκ > 1. Then due

to the convexity of ‖ · ‖1, one has

‖z(t)‖1 − ‖x∗‖1 =

∥∥∥∥x∗ +
‖ε(t)‖1
µκ

y

∥∥∥∥
1

− ‖x∗‖1

≥ ‖ε(t)‖1
µκ

(‖x∗ + y‖1 − ‖x
∗‖1) ≥ ‖ε(t)‖1

µκ
η̂‖y‖1

= η̂‖ε(t)‖1. (65)

where the last equality follows because y = µh and ‖h‖1 =
κ. Then equations (64) and (65), along with the fact that
z(t) = 1m ⊗ z(t), x∗ = 1m ⊗ x∗, lead to

‖z(t)‖1 − ‖x∗‖1 ≥ η̂‖ε(t)‖1.
Recall that ‖ε(t)‖1 ≥ ‖ε(t)‖2 Horn and Johnson (2012)
and ‖ε(t)‖2 ≤ ∆, then

‖z(t)‖1 − ‖x∗‖1 ≥ η̂
‖ε(t)‖22
‖ε(t)‖2

≥ η̂

∆
V (t)

Let α =
η̂

∆
. This completes the proof.

REFERENCES

Baron, D., Duarte, M.F., Wakin, M.B., Sarvotham, S., and
Baraniuk, R.G. (2009). Distributed compressive sensing.
arXiv preprint arXiv:0901.3403.

Beucker, R. and Schlitt, H. (1996). On minimal lp-norm
solutions of the biomagnetic inverse problem. Technical
report, Zentralinstitut für Angewandte Mathematik.

Candes, E.J. and Tao, T. (2005). Decoding by linear pro-
gramming. IEEE Transactions on Information Theory,
51(12), 4203–4215.

Dodge, Y. (2012). Statistical data analysis based on the
L1-norm and related methods. Birkhäuser.
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