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Abstract: Many complex systems can be more accurately described by fractional-order models. In this 

paper, a leader-following consensus problem of fractional-order multi-agent systems (FOMASs) is firstly 

formulated and then an event-trigger consensus control is proposed for each agent. Under the assumption 

that the interconnection network topology has a spanning tree, consensus of the closed-loop FOMAS is 

analyzed with the help of the Mittag-Leffler functions and stability theory of fractional-order differential 

equations. It is shown that Zeno behavior can be avoided. Simulation results are presented to demonstrate 

the effectiveness of the theoretical results. 
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1. INTRODUCTION 

In recent years, coordinate control of multi-agent systems 

(MASs) has been a hot topic due to its wide application in 

formation control, distributed sensor filtering, robotic 

cooperation, and so on. A particular objective of multi-agent 

coordination is to reach consensus, which requires all agents 

to achieve a desired common goal using only neighboring 

information. The consensus problem was firstly concerned in 

the fields of management science by Degroot (1974) and 

statistical physics by Vicsek et al. (1995). The consensus 

problem and its application have been studied in distributed 

decision-making system by Borkar et al.(1982) and Tsitsiklis et 

al.(1986). So far, a large number of the consensus problems of  

first-order, second-order and high-order MASs have been 

extensively studied by Tian et al. (2008); Li et al. (2016); 

Zhang et al.(2015); He et al. (2017); Wan et al.(2016). 

Many works about consensus problems of MASs are 

investigated in the framework of integer-order dynamics, 

however, many complex phenomena such as macromolecule 

fluids, porous media and electro-magnetic waves, cannot be 

accurately described by integer-order models. It has been 

found that many complex behaviors of agents are more 

suitably modeled by fractional-order dynamics. Distributed 

coordination of MASs with fractional-order dynamics was 

early studied by Cao et al. (2008-2010) and Ren et al. (2011). 

Sufficient conditions were derived by Yin et al.(2013) to 

ensure the consensus of heterogeneous fractional-order 

MASs in terms of linear matrix inequalities. Consensus of 

FOMASs with heterogeneous input delays and communicati-

on delays were studied by Shen et al. (2012), which showed 

that consensus conditions do not rely on communication 

delays, but depend on input delays when the fractional order 

belongs to (0, 1). A leader-following consensus problem of 

FOMASs with nonlinear dynamics was considered by Yu et 

al. (2015), and some sufficient conditions on consensus were 

presented. A consensus problem of FOMASs was addressed 

using adaptive pinning control method by Chai et al. (2012), 

and then was extended to the case with delay by Liang et al. 

(2016). The observer-based strategy for the consensus of 

FOMASs with input  delay was studied by Zhu et al. (2017). 

In many physical systems, due to the limited on-board res-

ources and capabilities of computation, communication and 

actuation, event-triggered control strategies guarantee that 

agents update their control protocols only at some event time 

instants and thus draw enthusiastic research interest. 

Guinaldo et al. (2011) considered a distributed event-based 

control strategy for a networked dynamical system consisting 

of N linear time-invariant subsystems with perfect decoupling 

conditions. The event-triggered conditions were given by 

some state-independent functions by Seyboth et al. (2013) 

and Guinaldo et al. (2011). However, up to now, there are 

rare literature considering consensus of FOMASs with event-

triggered control. Furthermore, some techniques employed in 

integer-order MASs cannot be straightly used to deal with 

consensus control of FOMASs. Even though a consensus 

problem of a FOMAS was addressed using sampled-data 

control by Yu et al. (2017), the sampling instants have fixed 

period, which is not flexible. Recently, a leader-following 

problem of  FOMASs with single input was investigated by 

Wang et al. (2017). An event-triggered leader-following con-

sensus problem of general linear FOMASs and the system 

with input delay has been investigated by Ye et al.(2018). 

Motivated by the above discussion,this paper studies a leader-

following consensus problem of a general linear FOMAS by 

employing a novel event-triggered control strategy and 
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function. The main contributions of this paper are summariz-

ed as follows: First, a novel event-triggered control strategy 

is developed for each agent without using real-time relative 

information from its neighboring agents. Second, a 

theoretical analysis is provided for both the consensus 

analysis of the FOMAS and Zeno behavior by using the 

Mittag-Leffler function method, which is more challenging 

for the consensus analysis of integer-order MASs. 

The rest of this paper is organized as follows. Section 2 

presents some preliminaries and formulates the leader-

following problem of a FOMAS. A distributed event-

triggered consensus control is proposed and some theoretical 

results are presented in Sections 3. Simulation results are 

given in Section 4 to illustrate the effectiveness of the 

theoretical results. Conclusions are given in Section 5. 

2. PRELIMINARIES AND PROBLEM FORMULATION 

This section presents some basic notations about the 

algebraic graph theory, the Caputo fractional-order 

derivatives and the fractional integral, and then formulates 

the leader-following consensus problem of a linear FOMAS. 

2.1 Graph Theory 

Let  1,2, ,V N be a set of nodes and  ( , ) | ,E j i i j V   

be a set of edges. A directed graph ( , )G V E  is used to 

model the communication network topology among a group 

of autonomous agents. The i th node represents the i th agent. 

The set of in-neighbors of agent i  is denoted by  |iN j V   

( , ) .j i E Thus
ij N means that agent i can receive the 

information of agent j . A path in a digraph is a sequence 

0 1, , , li i i of distinct nodes such that
1 11( , ) ,l li i E  1 1,2, ,l l . A 

directed tree is a digraph, where every node has exactly one 

parent except for the root. A directed spanning tree of a 

digraph is a directed tree formed by graph edges that 

connects all the nodes of the graph. 

Let ( )ij N Na  be the adjacency matrix, where 0ija  if 

( , )j i E and 0ija  , otherwise.  1 2, , , nD diag d d d is the 

degree matrix whose diagonal elements are defined 

by
i

i ij

j N

d a


  . The Laplacian matrix of the weighted 

digraph G is defined as L D  . It is well-known that L has 

exactly one zero eigenvalue and all the other eigenvalues 

have positive real parts if and only if the digraph G has a 

directed spanning tree. Furthermore, when the N  agents 

interact with a leader, we use a diagonal matrix 

1 2( , , , )ndiag b b b   to describe the interaction relationships 

among the agents and the leader. Let H L  . Then we 

have 

Lemma2.1. (Ren et al. 2011) All the eigenvalues of the 

matrix H  have positive real parts if and only if the 

interconnection network of the leader-follower system has a 

spanning tree with the leader being the root node. 

2.2 Caputo Fractional-order Operator 

Caputo and Riemann-Liouville (R-L) fractional-order deri-

vatives are commonly used in fractional-order dynamical 

systems. Since the initial conditions for fractional-order 

differential equations with Caputo fractional-order derivative 

have the same form with the traditional integer-order diff-

erential equations, we will adopt the Caputo fractional-order 

derivative to model the FOMAS in this paper .  

Definition2.1. The Caputo fractional-order derivative of a 

function ( )f t with order q is defined as follows: 

0

( )

1

1 ( )
( )

( ) ( )

n
t

q

q nt

f
D f t d

n q t




  

   , 

where n  is an integer,  q satisfies 1n q n   , and ( )  is the 

Gamma function defined as  

1

0
( ) t zz e t dt


    . 

Particularly, when 0 1q  , 

0

1 ( )
( )

(1 ) ( )

t
q

qt

f
D f t d

q t








   . 

Definition2.2. The fractional integral of order for a func-

tion ( )f x is defined as 

0

11
( ) ( ) ( )

( )

t

t
I f t t f d   



 
  . 

2.3 Problem Formulation 

In this paper, we consider a consensus problem of a FOMAS 

consisting of one leader and N following agents. The 

dynamics of the leader labeled by 0 and the followers are 

respectively described by the following fractional-order 

differential equations: 

0 0( ) ( )

( ) ( ) ( ), 1,2, ,

q

q

i i i

D x t Ax t

D x t Ax t Bu t i N

 


  

              (1) 

where ( )q

iD x t is the Caputo derivative of ( )ix t , (0,1]q is the 

fractional order, ( ) n

ix t R  and ( ) m

iu t R denote the state and 

control input of the i th agent, respectively, n nA R  and 
n mB R  are constant matrices with appropriate dimensions.  

Definition2.3. The FOMAS (1) is said to achieve leader-

following consensus if there is a state feedback ( )iu t  such 

that the closed-loop system satisfies 

0lim || ( ) ( ) || 0i
t

x t x t


  ,                          (2) 

for any initial condition 0( ), 1,2,ix t i N . 

In sequel, we need the following useful lemmas related with 

Mittag-Leffler functions. 

Lemma2.2. (De et al. 2011) For any matrix A  and a constant 

(0,1]q , there exist constants 1 2,M M such that  

,1 1 , 2( ) , ( ) ,q At q At

q q qE At M e E At M e   

where , ( )E z   is the Mittag-Leffler function defined by 

,

0

( ) , 0, 0
( )

k

k

z
E z

k
   

 





  
 

 . 

Lemma2.3. (Ye et al. 2007) Suppose ( )a t is a nonnegative 

locally integrable function during the time-interval [0, ]T   
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( )T   , and ( )g t  is a nonnegative, non-decreasing contin- 

uous function defined in [0, ],T ( )g t M (constant), and 

( )v t is nonnegative and locally integrable during the interval 

[0, ],T satisfying 
0

1( ) ( ) ( ) ( ) ( )
t

q

t
v t a t g t t s v s ds   for a posi-

tive constant q . Then we have 

0

1

0

1

( ( ) ( ))
( ) ( ) ( ) ( ) ( ) ,

( )

n
t

nq

t
n

g t q
v t a t g t t s a s ds t t T

nq






 
     

 
 . 

Furthermore, if ( )a t is a non-decreasing function during the 

interval [0, ),T then we have 

,1 0( ) ( ) ( ( ) ( )( ) )q

qv t a t E g t q t t   . 

Lemma2.4. (Podlubny I. 1998) Suppose 0 1q  and   is a 

constant. If there is a   such that
2

q
q


   , then we have 

1 1 2
, 1| | (1 | |) exp(Re( ))

1 | |
q q

q

C
E C z z

z




  


, 

where 
1 2,C C are positive constants, and | arg( ) |z  . 

Lemma2.5. (Kilbas et al. 2006) Let [0, ]b be an interval on 

the real axis ,R let [ ] 1n q  with [ ] max{ | }q m m q   for 

q or n q for q . If ( ) [0, ]ny t C b ,then we have 
( )1

0

(0)
( ) ( )

!

nn
q q k

k

y
I D y t y t t

k





  . 

Particularly, if 0 1q  and 1( ) [0, ]y t C b ,then 

( ) ( ) (0)q qI D y t y t y  . 

3. EVENT-BASED LEADER-FOLLOWING CONSENSUS 

OF FOMAS 

In this section, the design and analysis of a consensus control 

is considered for a general linear FOMAS and the rigorous 

analysis is also given for Zeno behavior. 

3.1 Event-triggered Consensus Control 

Let us consider the latest broadcasted state of agent i  given 

by ( )i

i kx t  at the event-triggered time instant i

kt . Define a rela-  

tive state information from the neighboring agents for agent 

i  as follows: 

   0

1

( ) ( ) ( ) ( ) ( ) .
N

i ij i j i i

j

p t a x t x t b x t x t


     

Then an event-triggered control is proposed for agent i  as 

follows: 

( ) ( )i

i i ku t K p t  , 1[ , )i i

k kt t t   ,                     (3) 

where m nK R  is the control gain matrix to be determined. 

Define the relative measurement error for agent i  as 

( ) ( ) ( )i

i i k ie t p t p t  . The triggering time sequence  ikt for 

agent i  is defined by 

     1 inf , ( ) 0 ,i i

k k it t t t f t                          (4) 

where the event-triggered function is given by 

                0( )

1 2( ) || ( ) || || ( ) ||
t ti

i i i kf t e t p t e    
   ,                (5) 

for some parameters 1 20, 0,    and 0  . When 

( ) 0if t  during , we can have the next  triggered time instant 

1

i

kt 
. In this distributed control strategy, we assume that each 

agent can obtain its neighbors’ information at its own 

triggered time i

kt . 

3.2 Consensus Analysis 

Let
0( ) ( ) ( ), 1,2, , .i it x t x t i N    From (1) and (3), we have 

   0

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) .
N

q

i i ij i j i i i

j

D t A t BK a x t x t b x t x t e t 


 
      

 


(6) 

Denote    1 1( ) ( ), , ( ) , ( ) ( ), , ( ) ,
T T

T T T T

N Nt t t e t e t e t     and A   

,NI A H BK   H BL  , then (6) can be rewritten in the 

following compact form 

 ( ) ( ) ( )q

ND t A t I BK e t    .                (7) 

Now we give a main result for the consensus analysis of the 

FOMAS (1) under the controller (3). 

Theorem 3.1.  Assume that ( , )A B is stabilizable and the 

communication network topology of the leader-follower 

system has a directed spanning tree with the leader as the root. 

Then the leader-following consensus can be achieved for the 

FOMAS under the controller (3) with the gain matrix K    

,ThB P P is positive definite solution of the following 

algebraic Riccati equation ( ) : 0T TARE A P PA PBB P Q    , 

Q is a positive definite matrix. 

Proof.  First, we show the existence of the control gain 

matrix K . Since ( , )A B is stabilizable, then the algebraic 

Riccati equation has a unique nonnegative definite solution  
TP P for any given positive definite matrix .TQ Q Moreover,  

all the eigenvalues of TA BB P have negative real parts. On 

the other hand, by Lemma 2.1, all the eigenvalues of H have 

positive real parts, which implies that there is a positive 

constant h such that Re ( ) 1.ih H  Thus, the gain matrix K   
ThB P can ensure that A is a Hurwitz matrix. 

Second, we can have the solution of (7) expressed by 

 

   
0

,1 0 0

1

,

( ) ( ) ( )

( ) ( ) ( ) .

q

q

t
q q

q q N
t

t E A t t t

t s E A t s I BK e s ds

 



 

    
     (8) 

Define a positive constant as  max Re ( )i
i

A    . Thus  is 

a positive constant. Furthermore, there exists a positive 

constant 3M such that 0 0( ) ( )

3|| || ,
A t t t t

e M e
  

  0.t t  Then, by 

Lemma 2.2 and (8) we have 

                                         (9) 

where
1 2 1 3max{ , }.M M M M M  

Now we consider the norm of ( )e t . The event-triggered 

function guarantees that  

0

0

0

,1 0 0

1

,

( )

0

1 ( )

|| ( ) || || ( ( ) ) || || ( ) ||

( ) || ( ( ) ) || || || || ( ) ||

|| ( ) || || ( ) ||

( ) || || || ( ) ||

q

q

t
q q

q q N
t

t t

t
q t s

N
t

t E A t t t

t s E A t s I BK e s ds

t Me t

M t s e I BK e s ds





 

 



 

  

  

     



   




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0

0

( )

1 2

( )

1 2

|| ( ) || || ( ) ||

|| ( ) ( ) ||

t ti

i i k

t t

i i

e t p t e

p t e t e





 

 

 

 

 

  
 

0( )

1 1 1 2

1

( ) || ( ) || || ( ) || || ( ) ||
N

t t

i i i ij j i

j

d b t a t e t e        



     (10) 

Then we have 

0( )1 2

1 1

( )
|| ( ) || || ( ) ||

1 1

t td Na N
e t t e  


 

 
 

 
   ,             (11) 

where
,

max{ }, max{ }i i ij
i i j

d d b a a   . From (9) and (11), we 

have
0

0

0

0

0 0

( )

0

( )1 ( ) 2

1

1 ( ) 1

1

( ) ( )2
0

1

|| ( ) || || ( ) ||

( ) || ||
1

( )
( ) || || || ( ) ||

1

( )
|| ( ) || || ||

1 ( )

(

t t

t
s tq t s

N
t

t
q t s

N
t

t t t t

N q

t Me t

N
M t s e I BK e ds

d Na
M t s e I BK s ds

N q
M e t I BK e

M t







 

 













  

 

   

  

   



   



   



 
    

  

 





0

1 ( ) 1

1

( )
) || || || ( ) || .

1

t
q t s

N
t

d Na
s e I BK s ds 




   
 



 

(12) 

Multiplying 0( )t te  on both sides of (12) leads to 

    

0 0

0

0

( ) ( )( )2
0

1

( )11

1

( )
|| ( ) || || ( ) || || ||

1 ( )

( )
|| || ( ) || ( ) || .

1

t t t t

N q

t
s tq

N
t

N q
t e M t I BK e

d Na
M I BK t s e s ds

  




 

  






  



 
    

  


   

 

(13)    

Let 0( )( )2
0

1

( )
( ) || ( ) || || ||

1 ( )

t t

N q

N q
a t M t I BK e  


  

  
    

  
, ( )g t   

1

1

( )
|| || ,

1
N

d Na
M I BK






 


0( )

( ) || ( ) ||
t t

v t e t
  

 , by Lemma 2.3, 

we have 

     

0 0( ) ( )( )2
0

1

1
,1 0

1

( )
|| ( ) || || ( ) || || ||

1 ( )

( )
|| || ( )( )

1

t t t t

N q

q

q N

N q
t e M t I BK e

d Na
E M I BK q t t

  
 

  





   
    

  

 
     

 

 

(14)         

For any
2

q
q


   , we have 

1
0

1

( )
arg || || ( )( )

1

q

N

d Na
M I BK q t t






 
     

 
. Invoking Lem- 

 ma2.4, there exist constants
1 2,C C such that 

0 0

1

1
0

1

( ) ( )( )2
0

1

( )
|| || ( ) ( )

1 2
1

1

( )
|| ( ) || || ( ) || || ||

1 ( )

q

N
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Next, the rigorous analysis of Zeno behavior is presented to 

guarantee the feasibility of the proposed distributed event-

triggered strategy. 
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The proof is thus completed. 

4. SIMULATION EXAMPLE 

In this section, a numerical example will be given to demo-

nstrate the effectiveness of the theoretical results. Consider a 
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interconnection topology graph of all agents is illustrated in 

Fig.1. 

 
Fig.1 Interconnection network topology 

The matrices A and B are given as follows: 

0 1 0 1

0 1 1 , 0
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For simplicity, we assume that 1ija   if 
ij N , otherwise, 

0ija  . There is a directed spanning tree with leader rooted in 

the node 0. Thus the Laplacian matrix L and H L B  are 

given as follows: 
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By simple computation, we have ( ) 1,1,2.618,0.32i H  . It is 

not difficult to see that ( , )A B is stabilizable. Select Q as the 

identity matrix. Then we solve the ARE and have 

4.2841 1.8156 2.0332
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Fig. 2 State evolution of the 1th component  
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Fig.3 State evolution of the 2th component 
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Fig.4 State evolution of the 3th component 
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Fig.5 Control input ( )iu t of all followers 
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Fig.6 Triggering instances of all agents 

The gain matrix is given by TK hB P  with 3h  . Let 

1 20.8, 0.5361, 0.0066, 10q       and the initial state is 

given by
0 1 2(0) [ 15;14; 13], (0) [12; 11;10], (0) [ 9;8; 7],x x x         

3(0) [6; 5;4],x   and 
4(0) [ 3;2; 1]x    . Let ( )ijx t denote the j th 

component of the i th agent. Fig. 2-4 illustrate the state 

trajectories of the leader and the four followers, which shows 

that the followers can follow the leader under the proposed 

event-triggered control strategy (3). Fig. 5 gives the evolution 

of the control inputs while Fig. 6 gives the event-triggered 

time instants of the four followers, which shows that Zeno 

behavior is avoided. 

6. CONCLUSIONS 

This paper has made a first attempt to study a consensus 

control of a general linear FOMAS over a directed interaction 

network. A distributed event-triggered state-feedback control 

strategy has been proposed to guarantee the consensus. With 

the help of the Mittag-Leffler function method, the leader-

following consensus of the FOMAS has been analyzed. 
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Additionally, a rigorous proof has also been provided for 

Zeno behavior.  
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