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Abstract: Difficult-to-obtain variables in industrial applications have led to the rise of soft
sensors, which use prior system information and measurements to estimate these difficult-to-
obtain variables. In real systems, the measurements that need to be estimated by a soft sensor
are often infrequently measured or delayed. Sometimes, these delays and sampling time are
variable in time. Though there are papers considering soft sensors in the presence of time delays
and different sampling times, the variation of those parameters has not been considered when
evaluating the adequacy of the soft sensors. Therefore, this paper will evaluate the impact of such
variations for a data-driven soft sensor and propose modifications of the soft sensor that increase
its robustness. The reliability of its estimate will be shown using the Bauer-Premaratne-Durán
Theorem. Furthermore, the soft sensor will be simulated applying it to a continuous stirred
tank reactor. Simulation showed that the modified soft sensor gives good estimates, whereas the
traditional soft sensor gives an unstable estimate.
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1. INTRODUCTION

Control and monitoring of a plant requires updated in-
formation, mostly obtained by measurements of system
variables. In the presence of high sampling times or time
delays, the measured information may not suffice for con-
trol purposes. Since it can be difficult and expensive to
install better hard sensors, soft sensors can be used to
provide estimates of variables without further expendi-
ture on hard sensors. Soft sensors use the available easily
measured information to provide estimates of the harder-
to-measure system variables. As well, if accurate, slowly-
sampled system measurements can be obtained, then they
can be combined into a bias update term to improve the
estimate provided by the system model.

The choice of the system model is essential for a soft
sensor. Depending on what model is used, soft sensors
are divided into data-driven soft sensors and model-driven
soft sensors (Fortuna et al., 2007; Kadlec et al., 2009).
Model-driven soft sensors use a first principle model of
the system to estimate the desired system variables. The
model is constructed based on the prior knowledge of
the system. Data-driven methods analyse the behaviour
of signals to provide estimates. Typical applications use
principal component analysis (PCA)(Flynn et al., 2005),
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partial least squares (PLS) (Flynn et al., 2005; Zamprogna
et al., 2005; Sharmin et al., 2006), or artificial neural
networks (ANN) (Shang et al., 2014) to provide estimates
of system variables.

A soft sensor providing reliable estimates is said to provide
good tracking. A soft sensor provides good tracking if
and only if the error of its estimate is bounded for a
bounded disturbance and the estimate converges to the
actual system value (Shardt and Huang, 2012a).

Assuming that some, slowly sampled measurements of
the desired system variables are available, adding a bias
update term to the soft sensor may significantly improve
the estimate. However, such a term may, especially in
the presence of time delay and high sampling times, lead
to an unreliable estimate. This issue was pointed out in
Shardt and Huang (2012a,b). Thus, a method to tune the
bias update term in a way that yields reliable estimates
was proposed. The method was shown to lead to good
estimates given exact, constant values of the time delay
and sampling time. In real application, the time delay or
sampling time may be variable. Variation of time delay was
only considered in Yang et al. (2019). However, variable
sampling time was not considered in previous publications.

Therefore, the first objective of the paper is to develop
a soft sensor system that can handle variable time delays
and sampling times. Then, its properties for the open-loop
case are analysed mathematically. The second objective
is to test the performance of the newly developed soft
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ŷt

+

Fig. 1. Open-loop soft sensor with bias update term

sensor in simulation using a continuous stirred tank reactor
(CSTR).

2. BACKGROUND THEORY

Figure 1 shows the soft sensor system considered in this
paper. The system is given by a transfer function Gp.
The system input ut can be assumed to be known. The
unknown disturbance is given by the error transfer func-
tion Gl and a disturbance et, being white noise with
mean µ and variance σ2. The variable to be estimated
is yt. A system model Ĝp is used and simulated with the

same input ut. Ideally, Ĝp = Gp holds; however in real
systems, this rarely occurs. Thus, the error term yt 6= yα,t.
Therefore, the bias update term yβ,t is used to correct
any estimation errors. It uses measurements of the variable
yt and compares them with the current estimate ŷt. This
estimation error is used as the input to the bias update
transfer function GB . Note that infrequent or delayed
measurement of yt will be considered in the bias update
transfer function GB .

Some mathematical relationships follow from Figure 1:

yt = Gput +Glet

yα,t = Ĝput
yβ,t = GB(ŷt − yt)
ŷt = yα,t + yβ,t (1)

Using basic algebraic operations, it follows that

ŷt =
Ĝp −GBGp

1−GB
ut +

−GBGl
1−GB

et. (2)

2.1 Form of the bias update term

In simulation, the bias update transfer function is used to
implement two aspects of the measurements yt.

(1) Sampling Time: If the measurements of yt can
only be taken infrequently, this can be interpreted
as sampling yt with a sampling time of N time steps.

(2) Time Delays: Time delays in the measurement can
be implemented as a time delay in the bias update
term.

For an adequate comparison between yt and ŷt, the re-
strictions on the availability of yt are imposed on ŷt, as

well. Therefore, the time delay and sampling on yt apply to
ŷt−yt in the same way. Therefore, GB can be decomposed
as shown in Figure 2.

ZOH z−d ĜB
ŷt − yt yβ,t

Fig. 2. GB (after (Shardt and Huang, 2012a))

Here, the time delay is a simple backshift operator z−d

and sampling with a sampling time N is a zero-order hold
ZOH.

2.2 Mathematical analysis of performance

The most important property of a soft sensor is its tracking
capability. A soft sensor provides good tracking if and
only if the error of its estimate is bounded for a bounded
disturbance and the estimate converges to the actual
system value.

Convergence will be determined by analysing the be-
haviour of the soft sensor as time approaches infinity. The
error will be shown to be bounded by analysing the stabil-
ity of the transfer functions of the soft sensor. Assuming
the stability of Ĝp, the output ŷ is bounded for a bounded
input. Thus, the estimate is bounded, if the output of the
bias update term GB is bounded.

The bias update term GB consists of the time delay z−d,
the sampling modelled by a zero order hold, and the bias
update transfer function ĜB . Since the time delay and
sampling time cannot be chosen in the construction of the
soft sensor, the relevant choice is ĜB . The performance
of the soft sensor in case of a constant bias update term
was discussed in Shardt and Huang (2012a). The following

structure of ĜB was proposed,

ĜB =

∑na
i=0 αiz

−i∑nb
i=0 βiz

−i (3)

This transfer function must be chosen in a way that the
estimate ŷt is stable and approaches yt.

The behaviour approaching steady state is described by
evaluating Equation (2).

Lemma 1. (Shardt and Huang, 2012a). The limit value of
the estimate of the soft sensor ŷt is equal to the limit value
of the system variable yt if the following two conditions
hold:

lim
z−1→1

ĜBz
−d

1− ĜBz−N
= −1

lim
z−1→1

1

1− ĜBz−N
= 0 (4)

The following structure for the bias update term was
proposed for a delay d in measurements, but no infrequent
sampling

ĜB = − 1

1− z−d (5)

In the case of infrequent sampling with sampling time N ,
and a delay d < N , the soft sensor is chosen as

ĜB = − 1

1− z−N (6)

The soft sensors were shown to provide good tracking.
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Proof. see Shardt and Huang (2012a) 2

2.3 Properties under assumption of variable parameters

This paper will give a soft sensor providing good estimates
in the presence of both time delay and infrequent mea-
surements. It is assumed that the time delay is smaller
than the sampling time at all times. The behaviour of the
estimate ŷ is analysed using the mathematical relation-
ships from Figure 1. Simple algebraic manipulations are
omitted in the re-organisation of the formulae. First, using
ŷt = Ĝput + ĜBet and et = ŷt − yt, we get

ŷt = Ĝput +GB(ŷt − yt) (7)

Since GB includes a time delay, the values (ŷt − yt) are
delayed by d steps. Thus, Equation (7) becomes

ŷt = Ĝput + ĜB(ŷt−d − yt−d). (8)

Note that ŷt = yα,t + yβ,t and the value yβ,t is part of
the feedback loop. Hence, it is sampled with a zero-order
hold. Since d < N at any point of time, sampling the
output every N steps implies that yβ,t−N = yβ,t−N+1 =
. . . = yβ,t−1, therefore, yβ,t−d = yβ,t−N . Thus, Equation
(8) becomes

yα,t + yβ,t = Ĝput + ĜB(yα,t−d + yβ,t−N − yt−d). (9)

Using yt = Gput +Glet and ut−d = utz
−d gives

yβ,t =
Ĝp − ĜBGpz−d

1− ĜBz−N
ut −

ĜBGlz
−d

1− ĜBz−N
et+

+
ĜBz

−d − 1

1− ĜBz−N
yα,t. (10)

Note that Equation (2), and thus, Lemma 1 still hold.
Furthermore, Equation (10) can be used for the proof of
stability.

Both stability and convergence will be proven for a general
case, where both the sampling time and the time delay are
variable in time. The time delay is an arbitrary d ∈ [dα, dΩ]
and the sampling time is an arbitrary N ∈ [Nα, NΩ]
in each time instance. To enforce d < N , the smallest
possible sampling time is chosen to be bigger than the
largest possible time delay dΩ < Nα. Lemma 1, equations
(2), (10), and consecutive statements hold for given d and
N . This includes a constant and variable time delay and
sampling time, which can be described as dα = dΩ ∧
Nα = NΩ.

The bias update transfer function proposed is

ĜB = − 1

NΩ −Nα + 1−∑NΩ

i=Nα
z−i

, (11)

where NΩ − Nα + 1 is the number of possible sampling
times.

The structure of the state-of-the-art soft sensors was
given. For infrequently sampled systems with delayed
measurements, the soft sensor provides good tracking
(Shardt and Huang, 2012a). This was proven assuming a
constant time delay and constant sampling. Since those
parameters are possibly time-variant, a modification of
said soft sensor was presented. This modification will

be shown to maintain the properties of the state-of-the-
art method. Furthermore, it will be shown to provide
good tracking for an system with an infrequent, variable
sampling and a variable delay on the measurements.

3. THEORETICAL RESULTS FOR THE TRACKING
OF THE SOFT SENSOR

To prove the tracking properties of the proposed soft
sensor design, the limit value and stability of the estimate
will be shown.

To show that the limit value of the estimate is the same
as the limit value of the output, Lemma 1 is used. Lemma
2 shows that Lemma 1 applies.

Lemma 2. For the bias update term GB taken from (11)
two equations hold:

lim
z−1→1

ĜBz
−d

1− ĜBz−N
= −1 (12)

lim
z−1→1

1

1− ĜBz−N
= 0 (13)

Proof.
To prove this, the bias update transfer function (11)
is inserted into Equation (12). Then, the equation is
simplified, leading to the desired result.

lim
z−1→1

 − z−d

NΩ−Nα+1−
∑NΩ

Nα
z−i

1 + z−N

NΩ−Nα+1−
∑NΩ

Nα
z−i


=

−1

NΩ −Nα + 1−NΩ +Nα − 1 + 1
= −1 (14)

The same simplification is done to show Equation (13).

lim
z−1→1

 1

1 + z−N

NΩ−Nα+1−
∑NΩ

Nα
z−i


=

0

NΩ −Nα + 1−NΩ −Nα + 1 + 1
= 0 2 (15)

To show the stability of the soft sensor, the Bauer-
Premaratne-Duran Theorem will be used (Lin and Antsak-
lis, 2009; Bauer et al., 1993).

Theorem 3. (Bauer-Premaratne-Durán Theorem).
A switched linear system xk+1 = Aσ(k)xk, where Aσ(k) ∈
{A1, A2, ..., AM}, is asymptotically stable under arbitrary
switching if and only if there exists a finite integer n such
that

||Ai1Ai2 . . . Ain||∞ < 1 (16)

for all n-tuple Aij ∈ {A1, A2, . . . , AM}, where j = 1, ..., n.

The Bauer-Premaratne-Durán Theorem uses the maxi-
mum norm (Bauer et al., 1993). The maximum norm of a
matrix A = (aij) is defined as ||A||∞ = maxi(maxj(aij)).

To show that the Bauer-Premaratne-Durán Theorem ap-
plies to the system, a state-space realisation of either the

transfer function ĜBz
−d

1−ĜBz−N
or 1

1−ĜBz−N
must be found,

since they can be described by the same state-space ma-

trix. Therefore, it is sufficient to analyse ĜBz
−d

1−ĜBz−N
. The

sampling time at the current sampling step is N0.
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To build a state-space representation of the bias update
transfer function, the following equation is defined:

ĜBz
−d

1− ĜBz−N0

=− z−d

NΩ −Nα + 1−∑NΩ

i=Nα
z−i + z−N0

=
yB
uB

(17)

which can be re-arranged to give

yB =

N0−1∑
i=Nα

z−i

NΩ −Nα + 1
yB+

+

NΩ∑
i=N0+1

z−i

NΩ −Nα + 1
yB − z−duB (18)

The bias update term is constructed using information
from the discrete sampling times. For any choice of NΩ

and Nα, Nα < NΩ ≤ 2Nα holds. If the current sampling
N0 < Nω, the current and the last measurement are used
for the estimate. Equation (18) is re-organised to take this
into account.

yB =

N−1∑
i=Nα

z−i

|S| yB +

NΩ∑
i=N+1

z−i

NΩ −Nα + 1
yB − z−duB

=(N0 −Nα)
z−N0

NΩ −Nα + 1
yB+

+ (NΩ −N0)
z−N0−N1

NΩ −Nα + 1
yB − z−duB . (19)

Given the state xT = (yB yBz
−1 . . . yBz

−(2NΩ−1)), a state-
space realisation is

xm+1 = Axm +Bum, (20)

where A is the state-space matrix and
B = −(0 · · · 0 1 0 · · · 0)T the input matrix, with 1 in the
dth row. The matrices C and D are irrelevant for stability.
A ∈ R(2NΩ−1)×(2NΩ−1) is constructed as

A = Λi +M0 =
0N0−1

N0 −Nα
NΩ −Nα + 1

0NΩ−1
NΩ −N0

NΩ −Nα + 1
0 . . . 0

0 . . . 0 0
...

. . .
...

...
0 . . . 0 0



+


0 . . . 0

0

I
...
0

 , (21)

where I is the identity matrix and 0k a row vector of length
k with all entries equal zero. Note that Λi only has entries
in the first row which are all positive and add up to less
than one. M0 is the subdiagonal shifting matrix. Lemma 4
gives that the left multiplication of Λi with another matrix
gives a matrix with a smaller largest entry.

Lemma 4. Given Λi as above. For any matrix X ∈
R(2NΩ−1)×(2NΩ−1) the following inequality holds

||ΛiX||∞ < ||X||∞. (22)

Proof.
The Lemma is proven by converting the general form of
||ΛiX||∞ to a form that is smaller than ||X||∞.

First, the matrices Λi and X are multiplied. The entries of
X are xi,j , where i is the number of the row of the entry
and j the number of the column.

ΛiX =
. . .

N0 −Nα
NΩ −Nα + 1

xN0,j +
NΩ −N0

NΩ −Nα + 1
x(N1+N2),j . . .

0 . . . 0
...

. . .
...

0 . . . 0


(23)

Now, the norm of this matrix is calculated. It is the
maximum of the absolute value of all entries. Since all
rows except the first are zero,

||ΛiX||∞ =

max
j

(∣∣∣∣ N0 −Nα
NΩ −Nα + 1

xN0,j +
(NΩ −N0

NΩ −Nα + 1
x(N0+N1),j

∣∣∣∣) .
(24)

By splitting the equation, the right hand side is greater
than or equal to ||ΛiX||∞. Then, all constant values are
put outside the maximum.

||ΛiX||∞ ≤
N0 −Nα

NΩ −Nα + 1
max
j

(|xN0,j |)+

+
NΩ −N0

NΩ −Nα + 1
max
j

(|x(N1+N2),j |) (25)

Since all entries in X are smaller than its maximum norm,
the right hand side of the inequality can be replaced by a
term greater than or equal to the previous term, that is

||ΛiX||∞ ≤
(

N0 −Nα
NΩ −Nα + 1

+
NΩ −N0

NΩ −Nα + 1

)
||X||∞.

(26)

The sum of the constant is calculated to give

||ΛiX||∞ ≤
NΩ −Nα

NΩ −Nα + 1
||X||∞ < ||X||∞ 2 (27)

Using Lemma 4, Theorem 5 shows the stability of the
estimate.

Theorem 5. The switched system with sampling time

N ∈ S, dα ≤ dΩ < Nα ≤ NΩ < 2Nα

ĜB = − 1

NΩ −Nα + 1−∑NΩ

i=Nα
z−i

(28)

is asymptotically stable for arbitrary switching N .

Proof.
Asymptotic stability of the system is shown using Theorem
3. To apply it, it is shown using Lemma 4, that the con-
sidered system has state matrices that have the property

||∏2NΩ−1
i=1 Aij ||∞ < 1 for any choice of Aij .

Given Aij , j = 1, ..., n being n matrices in the form de-
scribed by Equation (21). Choose n = 2NΩ−1. It is shown
by induction that the first k lines of the matrix product∏k
i=1Aij only consist of entries less than one and all other

values are less or equal to one.
k = 1: Holds per definition of Aij .
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k > 1:

k∏
i=1

Aik = Ai1

k∏
i=2

Aik

Since the matrices are arbitrary, new indices can be chosen.

Ai0

k−1∏
i=1

Aik = (M0 + Λ0)

k−1∏
i=1

Aik

= M0

k−1∏
i=1

Aik + Λ0

k−1∏
i=1

Aik. (29)

Any matrix multiplied with the shifting matrix from the
left is shifted one row down. Thus, due to the induction

hypothesis, M0

∏k−1
i=1 Aik has only values less than one in

the first k rows and values less or equal to one in the other
rows. Due to Lemma 4,

||Λ0

k−1∏
i=1

Aik||∞ < ||
k−1∏
i=1

Aik||∞ ≤ 1. (30)

Note that Λ0 only has entries in the first row and M0 no
entries in the first row. Hence, the induction hypothesis
holds.

By choosing k = n, it is shown that ||∏k
i=1Aik||∞ <

1. Thus, the Bauer-Premaratne-Durán Theorem can be
used and the system is asymptotically stable for arbitrary
switching. 2

This theorem is a generalisation of the results in (Shardt
and Huang, 2012a). This is shown by Corollary 6.

Corollary 6. The system with constant sampling time and
constant time delay

N ∈ N, d ∈ N

ĜB = − 1

1− z−N (31)

is asymptotically stable.

Proof. Choose S := N =⇒ Nα = NΩ = d, dα = dΩ = d.
By applying Theorem 3, ĜB = − 1

NΩ−Nα+1−
∑NΩ

i=Nα
z−i

re-

duces to ĜB = − 1
1−z−N . Asymptotic stability for arbitrary

switching implies asymptotic stability. 2

A soft sensor using a bias update transfer function as
given by Equation (11) was analysed with regard to the
convergence and stability of its estimates. The tracking
properties were shown for a system with an infrequent,
variable sampling and a variable delay on the measure-
ments. It was shown that the soft sensor estimate con-
verges to the correct estimate by calculating its limit value
and by showing that the estimation error approaches zero
asymptotically. These statements provide mathematical
proof for the good tracking of the soft sensor. To confirm
the quality of the tracking, the soft sensor is tested on a
simulated CSTR example.

4. SIMULATION

We test the generalised soft sensor to verify the results in
simulation and application on the continuous stirred tank
reactor (CSTR) proposed in Morningred et al. (1990).

The CSTR is a nonlinear system, modelling an irreversible,
exothermic reaction. There is a substrate A reacting to
a single product B. The following differential equations
model the reactor:

ĊA =
V̇

V
(CA0 − CA)− k0CAexp

(
− E

RT

)
Ṫ =

V̇

V
(T0 − T )− (−∆H)k0CA

ρcp
exp

(
− E

RT

)
+

ρccpc
ρcpV

V̇c

(
1− exp

(
− hA

V̇cρccpc

))
(TC0 − T ), (32)

where the nominal values are given in Table 1.

Table 1. Nominal CSTR parameter values

product concentration CA 0.1 mol/l
reactor temperature T 438.54 K
coolant flow rate V̇c 103.41 l/min
process flow rate V̇ 100 l/min
feed concentration CA0 1 mol/l
feed temperature T0 350 K
inlet coolant temperature TC0 350 K
CSTR volume V 100 l
heat transfer term hA 7× 105 cal/min/K
reaction rate constant k0 7.2× 1010min−1

activation energy term E/R 1× 104 K
heat of reaction ∆H −2× 105 cal/mol
liquid densities ρ, ρc 1× 103 g/l
specific heats cp, cpc 1 cal/g/K

The system is implemented in MATLAB/SIMULINK and
simulated. The value estimated with the soft sensor is
the substrate concentration CA. The coolant flow rate
V̇c is considered the input of the system and the inlet
flow rate V̇ is considered a disturbance. The input is a
step, the disturbance is coloured noise. The soft sensor
proposed with the bias update transfer function from
Equation (6) is used to estimate the concentration in the
reactor. For this purpose, an exact model of the reactor
is simulated, providing the nonlinear behaviour of CA.
The behaviour of this exact model will represent the
real system. The simulation is done over 100 steps with
each step representing one minute. The time delay in the
measurement varies between 1 minute and 2 minutes and
the sampling time between 3 minutes and 5 minutes.

The soft sensor uses two transfer functions. First, a linear
model of the CSTR to calculate a prior estimate of the
concentration CA. The transfer function is the discretised
model from Shardt and Huang (2012a)

Ĝp = − 0.112z−1

1− 0.8724z−1

0.001708z−1

1− 0.3578z−1
, (33)

Second, the bias update transfer function is used to correct
the estimate. It is ĜB = − 1

1−z−4 , as described by Equation

(6).

The behaviour of the concentration in the CSTR and its
estimate provided by the soft sensor is shown in Figure 3.

The estimate oscillates with increasing magnitude. Hence,
the soft sensor does not provide good tracking. Similar
behaviour is observed for ĜB = − 1

1−z−5 and ĜB =
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Fig. 3. (left) actual and (right) estimated concentration of
the CSTR as a function of time using the bias update
transfer function ĜB = − 1

1−z−N

Fig. 4. (left) actual and (right) estimated concentration of
the CSTR as a function of time using the bias update
transfer function ĜB = − 1

NΩ−Nα+1−
∑NΩ

i=Nα
z−i

− 1
1−z−3 . This instability is related to the poor estimate

of the sampling time. The sampling time and thus the
exact time of the measurement is unclear. Therefore,
the soft sensor frequently compares the estimate of the
soft sensor with the state of a different time. Using this
erroneous comparison, the bias update term can cause
instable estimates.

To provide a stable estimate of CA, the soft sensor is
implemented using ĜB = − 1

3−
∑5

i=3
z−i

, as described by

Equation (11).

Figure 4 shows the actual concentration CA and the
estimate of CA using this soft sensor.

The soft sensor provides good tracking of the measured
variable. The peak visible in the measurement is caused
by the initialisation.

5. CONCLUSION

A soft sensor design was proposed to estimate variables in
the presence of variable time delay d and variable sampling
time N . It was shown that the proposed soft sensor con-
verges to the correct limit and that it has asymptotically
stable behaviour. Furthermore, its performance was shown
in application and compared to a state-of-the-art soft
sensors.

It was proven that a soft sensor using a bias update
transfer function as ĜB = − 1

NΩ−Nα+1−
∑NΩ

i=Nα
z−i

provides

good tracking in the presence of variable time delay and
variable sampling time, as long as the delay does not
exceed the sampling time, and as long as the minimal
sampling time is at least half as large as the maximal
sampling time. If the delay and the sampling time are
constant, and if the delay is an integer multiple of the
sampling time, Shardt and Huang (2012a) stated that

ĜB = − 1
1−z−d provides good tracking. However, the gen-

eral case for d > N is still an open problem. Furthermore,
the case of arbitrarily switching sampling times can be
considered in future work. Finally, the proposed soft sensor
system should be tested in closed-loop applications.
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