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Abstract: The presence of downhole faults compromises the safety and also leads to increased
maintenance costs in complex geological drilling processes. In order to achieve timely and
accurate detection of downhole faults, a systematic fault detection method is proposed based
on the Multivariate Generalized Gaussian Distribution (MGGD) and the Kullback Leibler
Divergence (KLD). Uncorrelated components are obtained from the original drilling process
signals using the principle component analysis; then, the distribution of components is estimated
using the MGGD; afterwards, the KLD is calculated based on a deduced analytic formula; last,
the downhole faut is detected by comparing the calculated KLD with the alarm threshold
obtained from normal data. The effectiveness and practicality of the proposed method are
demonstrated by application to a real drilling process.

Keywords: Geological drilling processes, fault detection, Kullback Leibler Divergence,
multivariate generalized Gaussian distribution.

1. INTRODUCTION

Geological drilling is a complex process for geological
and energy exploration. However, conditions, such as the
small hole diameter, high pressure, and alternation of the
hard and soft formations, bring challenges to the drilling
processes, e.g., causing serious safety issues and increasing
drilling costs (Gan et al., 2019a). For instance, a blowout
or kick incident would lead to catastrophic consequences in
the offshore drilling (Sule et al., 2019; Nayeem et al., 2016).
Moreover, according to (Godhavn, 2010; Willersrud et al.,
2015b), non-productive time caused by downhole incidents
was more than 20% of the total project time. Therefore,
early downhole fault detection in drilling processes is in
great demand, so as to ensure drilling safety and reduce
costs. In practice, the drilling process monitoring relies on
proficient experiences and knowledge of drilling workers;
however, such a monitoring form is time and resource
intensive, and also lead to increased workload. In order to
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reduce the cost and the labor intensity, the fault detection
for drilling processes has received plentiful attentions.

Existing methods on downhole fault detection are divided
into two categories, namely the mechanism model-based
and data-driven methods. In the first category, a hydraulic
differential equation model was established to kick mitiga-
tion in a circulation system (Hauge et al., 2013). Willer-
srud et al. (2015a) presented a downhole fault detection
and isolation scheme by employing analytical redundancy
relations. However, the establishment of mancinism model-
s is difficult since the mechanism knowledge and measured
variables are usually limited. By contrast, the data driven
methods do not require any mechanism knowledge, making
it more feasible. Zhang et al. (2018) proposed a real-time
fault diagnosis method that extracted qualitative trends
first and then diagnosed faults using a multi-class SVM. Li
et al. (2020) presented a fault diagnosis method based on
multi-time scale features and probabilistic neural network-
s. Further, Tang et al. (2019) defined two indicators related
to the kick incident and conducted online calculation of the
probability of the kick. These results were demonstrated
to be effective by case studies. But how to further improve
the reliability and accuracy of fault detection is an on-
going hard problem, especially in view of the fact that the
abnormal data is usually very limited.

In the area of fault detection, the Kullback Leibler Diver-
gence (KLD) has received increasing attentions owing to
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its capability of detecting incipient faults Aggoune et al.
(2016). The analytical form of the KLD between two uni-
variate Gaussian Distributions (GDs) was deduced in (Xie
et al., 2015). The KLD was proven to follow the Chi-square
distribution, and then the threshold corresponding to the
normal operating region was calculated (Zeng et al., 2014).
Harmouche et al. (2014); Chen et al. (2018) extended the
KLD from the univariate GD to the Multivariate Gaus-
sian Distribution (MGD), where the Principal Component
Analysis (PCA) was exploited to obtain main components
of process variables; the fault detection problem was solved
by calculating the KLD between these components. How-
ever, not all process signals can be accurately described
by the GD. Therefore, the KLD for univariate zero mean
Generalized Gaussian Distribution (GGD) was proposed
in (Do and Vetterli, 2002). Xiong et al. (2019) presented
a detailed derivation of the analytic form of the KLD
between two univariate non-zero mean GGDs; the method
was demonstrated to be more effective compared to GD-
KLD based method.

The objective of this work is to achieve effective and timely
detection of downhole faults in geological drilling pro-
cesses. Motivated by the above discussions, a systematic
downhole fault detection is proposed based the Multivari-
ate Generalized Gaussian Distribution (MGGD) and the
Kullback Leibler Divergence. The method consists of four
major steps:

(1) Uncorrelated components are extracted from original
drilling process signals;

(2) MGGD is used to calculate the distribution of compo-
nents, and parameters of the MGGD are estimated;

(3) The analytic form of KLD between two MGGDs is
obtained;

(4) Downhole fault detection is achieved by comparing
the KLD with a threshold determined from normal
data.

An industrial case study with historical data from real
drilling processes is presented to demonstrate the effec-
tiveness of the proposed method.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the geological drilling process and the
problem. The method of downhole fault detection is pre-
sented in Section 3, including the extraction of uncorrelat-
ed components, estimation of the MGGD, calculation of
the KLD, and implementation procedures. The industrial
case study is given in Section 4, followed by conclusions in
the final section.

2. PRELIMINARIES

This section introduces the geological drilling process, dis-
cusses the process variables involving the drilling system,
and points out the fault detection problem.

2.1 Description of drilling systems

The schematic of a typical geological drilling process is
shown in Fig. 1, where the drill rig applies pressure on
the rotating drill bit, to break the downhole formation,
while the mud pump pumps the drilling fluid into the
bottom of the well to carry the broken rocks up to the

ground. The Weight On Bit (WOB), HooK Load (HKL),
Mud Flow In (MFI) and Stand Pipe Pressure (SPP) are
four key variables in geological drilling (Gan et al., 2019b);
the WOB and HKL determine the pressure on the drill
bit, and the MFI and SPP relate to the drilling fluid flow
and pressure. A real geological drilling system is shown in
Fig. 2. The ZKLG1 well is a geological exploration well
located in Shandong Province, China. The design depth
of the well is 3000 meters. The operating rig shown in
Fig. 2-(a) is the XY-9 spindle-type core drill. The mud pit
shown in Fig. 2-(b) is used to store drilling fluid. Faults
were found to occur in this drilling system. For example, a
lost circulation appeared when drilling at round the depth
of 1900 meters and seriously reduced the drilling efficiency.

MFI

Lost circulation

SPP

Mud 

pit

WOB

HKL

Fig. 1. Schematic of a geological drilling process. The blue
arrows represent flow directions of the drilling fluid.
The red arrows point to the lost circulation. Dashed
green rectangles highlight key process variables.

(a) Drilling rig (b) Mud pit

Fig. 2. A real drilling system for a geological exploration
well in Shandong Province, China.

In geological drilling processes, downhole incidents are
usually reflected by the changes of process signals, mainly
associated with variables in the rotational and circulation
subsystems. Due to the uncertainty in downhole forma-
tions and the nonlinearity of rock breaking processes,
signals in the rotational subsystem are involved with large
volatilities. By contrast, signals in the circulation subsys-
tem are relatively stationary during normal drilling. In ad-
dition, variables in the same subsystem are correlated, thus
the information redundancy exists in process measurement
signals. These characteristics pose a challenge to the signal
analysis and influence the performance of fault detection.
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2.2 Problem description

The fault detection problem is that the condition (normal
or faulty) of the drilling process is detected given measured
signals of key drilling process variables. A KLD based
fault detection method is proposed to solve this problem.
Two major phases are involved: In the training phase,
uncorrelated components are extracted from historical
data at first; then, the MGGD under normal condition is
obtained and the threshold of KLD is determined from
sufficient normal data. In the test phase, uncorrelated
components are extracted online from process signals in
a sliding window and the distribution is estimated using
the MGGD; then, the KLD between estimated MGGD and
the expected MGGD is used to measure the change. If the
KLD exceeds the threshold, an alarm is generated.

3. DOWNHOLE FAULT DETECTION METHOD

This section proposes a systematic downhole fault detec-
tion method based on the MGGD and KLD. Detailed
calculations in each step are presented in the following
subsections.

3.1 Extraction of uncorrelated components via PCA

In a drilling system, downhole fault detection requires a
comprehensive consideration of multiple process variables.
Since there are correlations between process variables of
drilling system, the PCA is adopted to obtain uncorrelated
principal components at first. The historical data under
the normal condition is prepared as a matrix X0 =
[x0,1,x0,2, · · · ,x0,n] ∈ Rm×n with n process variables and
m samples. In view of that different variables have different
volatilities, the matrix X0 is normalized to X1 ∈ Rm×n

with zero means. For each column in X0, the normalized
variable x1,ij is calculated as

x1,ij =
(x0,ij − xmin,i)

(xmax,i − xmin,i)
− 1

m

m∑
j=1

(x0,ij − xmin,i)

(xmax,i − xmin,i)
, (1)

where i ∈ {1, ..., n} and j ∈ {1, ...,m}. Variables xmax,i

and xmin,i denote the maximum and minimum of x0,i,
respectively.

Then, the covariance matrix S is calculated as (Bakdi
et al., 2017)

S =
1

m− 1
XT

1 X1. (2)

Using the singular value decomposition, S is rewritten as

S = PΛPT , (3)

where Λ represents a diagonal matrix composed by eigen-
values of S ordered in a magnitude decreasing manner,
and each columns of P ∈ Rn×n corresponds to an eigen-
vector of an eigenvalue. Since the PCA is used only to
multivariate decoupling, the number of retained principal
components is set tom. The data matrixX1 is transformed
as

X = X1PPT , (4)

where X ∈ Rm×n is a drilling process components matrix
containing uncorrelated columns.

3.2 Parameter estimation for MGGD

In order to describe the characteristics of drilling process
variables, the probability distributions of process signals
are needed under different conditions. The MGGD pro-
vides a suitable tool for signal processing and data analy-
sis. The Probability Density Function (PDF) of the MG-
GD is expressed as (Verdoolaege and Scheunders, 2012)

MGGD(m, d,Q, β) =
Γ(d2 )

π
d
2Γ( d

2β )2
( d
2β )

β

|Q| 12
·

exp

{
− [(x−m)′Q−1(x−m)]β

2

}
,

(5)
where d denotes the dimension of the probability space,
and Γ(.) represents the Gamma function. The other three
parameters β, m, and Q denote the shape parameter, the
mean vector, and the symmetric positive definite matrix
of the MGGD, respectively. Note that β = 1/2 results in
a Laplacian distribution and β = 1 yields to the MGD. In
this study, the mean value of each uncorrelated component
is zero, so only the zero-mean condition is considered and
therefore m in (5) can be omitted.

The parameters of MGGD can be obtained using the
moment based estimation or the maximum likelihood
estimation (Boubchir and Fadili, 2005; Verdoolaege and
Scheunders, 2012). In (5), there are two parameters Q and
β to be estimated. The input matrix X = [x1,x2, ...,xn] is
assumed to follow the zero mean MGGD. The symmetric
positive definite matrix Q is (Mardia et al., 1982)

Q =
dΓ( d

2β )

21/βΓ(d+2
2β )

Σ, (6)

where Σ is the covariance matrix. Since each column in
X is uncorrelated, Σ is a diagonal matrix comprised by
variances of each column as

Σ =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . . 0

0 0 0 σ2
d

 , (7)

where d = n. The variance σi is estimated as

σ̂i =
1

m

m∑
i=1

(xT
i xi). (8)

Another critical parameter of MGGD is the shape pa-
rameter β, which is estimated by the maximum likelihood
estimation. The likelihood function is given as follow

a(β) = L (x|Q, β) = ln
m∏
j=1

MGGD (xj |Q, β) . (9)

Then, β̂ is obtained by solving

a(β)|β=β̂ =
dn

2
∑n

i=1 u
β
i

n∑
i=1

[
uβ
i In(ui)

]
− dn

2β

[
Ψ(

d

2β
) + In2

]

− n− dn

2β
In

(
β

dn

n∑
i=1

uβ
i

)
= 0,

(10)
where ui = xT

i Q
−1xi, and Ψ(.) denotes the Diagamma

function. The (6) and (10) can be solved numerically
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by using a recursive solution of the maximum likelihood
equations (Boubchir and Fadili, 2005; Verdoolaege and
Scheunders, 2012).

3.3 Calculation of the KLD between MGGDs

The KLD is used to measure the distance between two
PDFs (Xie et al., 2015), and is adopted here to capture
statistical changes on distributions of uncorrelated compo-
nents in X̃. The KLD between the MGGD(Q, β) obtained
from historical data X under normal condition and the
MGGD(Q̂, β̂) of online data X̃ is given by

Dkl

(
MGGD(Q̂, β̂),MGGD(Q, β)

)
,
∫ +∞

−∞
MGGD(Q̂, β̂) ln

MGGD(Q̂, β̂)

MGGD(Q, β)
dx.

(11)

Based on the MGGD(Q, β) estimated from the normal
samples, the fault detection problem is to test if the

MGGD(Q̂, β̂) estimated from X̃ is normal, i.e.,{
Dkl < Dth : X̃ is under normal condition,

Dkl ≥ Dth : X̃ is not under normal condition,
(12)

where Dth is the alarm threshold to be determined.

According to (Xiong et al., 2019), the KLD for univariate
GGD is shown in Lemma 1.

Lemma 1. The KLD Dkl,β between GGD(σ2, β) and

GGD(σ̂2, β̂) under the assumption that β = β̂ has a
simplified form as

Dkl,β = ln
β̂σΓ(1/β)

√
Γ(1/β)Γ(3/β̂)

βσ̂Γ(1/β̂)

√
Γ(1/β̂)Γ(3/β)

− 1

β̂ σ̂

√
Γ(1/β̂)Γ(3/β)

σ

√
Γ(1/β)Γ(3/β̂)

β

Γ(β/β̂ + 1/β̂)

Γ(1/β̂)
.

(13)

Two methods were proposed in (Xiong et al., 2019) to de-
termine the thresholds, including a constant threshold and
an adaptive threshold. The main difference between the
two methods is whether to assume the shape parameters of
the two distributions are the same or not. In this work, β is

assumed to be not deterministic, i.e., β̂ = β. Generalizing
to the multivariate case, Lemma 2 is proposed as follows:

Lemma 2. Given d uncorrelated variables that follow the
MGGD, the KLD under the assumption that β = β̂ is
given by

Dkl,β =
d∑

i=1

[−1

2
In(

σ̂i

σi
) +

1

β
(
σ̂i

σi
)β − 1

β
], (14)

where σi ∈ {σ1, ..., σd}. Then, the KLD in (14) is to be
used as the test statistic, and the key step is to find the
PDF of Dkl,β to determine the Dth.

3.4 Determination of the alarm threshold using KDE

There are two ways to calculate the PDF of the KLD,
including the analytic calculation and the non-parametric

estimation. Kernel Density Estimation (KDE) is a non-
parametric method to calculate the PDF without any pre-
defined distribution (Gonzalez et al., 2015). Since it is hard
to calculate the analytical form of the PDF of Dkl in (11),
the KDE is used to estimate it under the normal condition.
Let y1, y2, ..., yN denote N i.i.d samples collected from the
real density function p(y) of Dkl,β in (14). The estimated
function p̂(y) is calculated by summing kernels for y, i.e.,

p̂(y) =
1

n

N∑
i=1

1

h
K(

y − yi
h

), (15)

whereK(·) represents the kernel function,N stands for the
number of KLD samples, yi denotes the ith point in Y , and
h indicates the bandwidth parameter. In this study, the
Gaussian kernel is adopted to achieve smooth estimation
of the PDF. A commonly used formula to determine the
bandwidth h of the Gaussian kernel is given by (Gonzalez
et al., 2015)

h =

(
4σ5

kl

3N

) 1
5

, (16)

where σkl is the variance of the KLD in normal condition
and N is the number of KLD samples. Based on the
PDF in (15) under the normal condition, a test under a
confidence level α is used to determine Dth in (12).

3.5 Performance assessment

The performance of the fault detection can be evaluated
by metrics, such as the detection delay, False Alarm
Rate (FAR), and Missed Alarm Rate (MAR). A detection
delay represents the time interval from when a fault
actually appears to when it is detected. FAR and MAR
are exploited to calculate the accuracy of fault detection.
The sample based calculations of FAR and MAR are given
by

FAR =
nan

ntn
× 100%, (17)

MAR = (1− naf

ntf
)× 100%, (18)

where nan is the number of alarm samples under the
normal condition, ntn gives the number of total samples
under the normal condition, naf denotes the number of
alarm samples under faulty conditions, and ntf indicates
the number of total samples under faulty conditions.

4. INDUSTRIAL CASE STUDY

To illustrate the effectiveness and practicality of the
MGGD-KLD based fault detection method in geological
drilling processes, the drilling data from the ZKLG1 well
was used in this case study. The sampling period of the real
drilling process was 1 s. The 4 involved drilling process sig-
nals are shown in Fig. 3. A lost circulation fault occurred at
t=2000 s after the drilling worker had changed the WOB.
Then, significant variations were shown in signals of WOB
and HKL, and slight changes were shown in the signal of
SPP. The MGGD-KLD based fault detection method was
applied. In the foremost step, uncorrelated components
were extracted using PCA from the four drilling signals.

For comparison, the distribution of the collected data
after PCA was approximated using the MGGD and MGD,
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Fig. 3. Signals of WOB, HKL, SPP, and MFI with the sam-
pling interval 1 s. The lost circulation fault occurred
at t=2000 s.

respectively. An example for a single variable under the
GD and GGD is presented in Fig. 4, where the histogram
was obtained from the normal training data. Because
the MGGD can adjust shapes of the top and the tail
by changing β, it can be seen that the solid red curve
with MGGD is more suitable to describe the histogram
compared to the dashed blue curve with MGD.
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Fig. 4. An exmaple of the estimated PDFs and the his-
togram. The dashed blue line represents the estimated
GD and the solid red line denotes the estimated GGD.

In this part, 2500 samples under the normal condition
were used as the training set to obtain the reference
MGGD(Q, β) and the alarm threshold Dth. The data was
divided into two parts, i.e., one part was used as a test
set while the rest served as a template. Then, the PDF
of the KLD under the normal condition was estimated
by the KDE in Section 3.4 with the kernel length h =
0.023. Accordingly, the alarm thresholds were calculated
for MGGD and MGD (shown as the dashed horizontal
lines in Figs. 5 and 6, respectively). Furthermore, the
sliding window with the length of 100 samples was adopted
to analyze online samples. The fault detection results
by MGGD-KLD and MGD-KLD are shown as the black
curves in Figs. 5 and 6, respectively. Samples on the right
of the blue vertical line indicate the faulty condition. The
dashed red horizontal line represents the alarm threshold
at the significance level of 0.05. The thresholds for MGGD-
KLD and MGD-KLD are 1.65 and 4.50, respectively. In
addition, the T 2 statistic and the SPE statistic (shown in
Fig. 7) in the classical PCA fault detection (Ding, 2014)
were calculated for comparison. The alarm thresholds at
the significance level of 0.05 were thresholds T 2

th = 7.85
and Qth = 5.79 for the T 2 and SPE statistics, respectively.
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Fig. 5. Fault detection result using the MGGD-KLD.
The horizontal red dashed line represents the alarm
threshold and the vertical dotted blue line stands for
the fault occurrence time instant.
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Fig. 6. Fault detection result using the MGD-KLD.
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Fig. 7. Fault detection results based on the T 2 statistic
and the SPE statistic.

To better understand the fault detection results, the FAR,
MAR, and detection delay were calculated to assess the
performance of the above 3 methods. Since the influence
of the fault on WOB and HKL signals was short, the
1400 samples before and 140 samples after the fault were
exploited in the calculation. As summarized in Table 1,
the MGGD-KLD has the lowest FAR and MAR compared
to all the other three methods. There is only 7 s detec-
tion delay using the MGGD-KLD. Even though not the
smallest, it is close to the detection delay using the PCA-
based method. It can also be found that the fault was not
detected over the studied period using the MGD-KLD.
This is probably because that the estimation of the data
distribution based on MGD has a large fitting error shown
in Fig. 4, causing the erroneous conclusion. In summary,
the fault was detected in time using either SPE or T 2

statistic, but FAR and MAR are relatively large. By con-
trast, the MGGD-KLD based method detected downhole
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fault with low FAR and MAR, as well as a small detection
delay. Based on the above 3 indices, it can be found that
the proposed method outperformed other methods with a
superior performance.

Table 1. Comparison of the results using dif-
ferent fault detection methods.

Method FAR(%) MAR(%) Detection delay(s)

SPE 8.56 11.43 6
T 2 2.05 13.33 6

MGD-KLD 1.10 100.00 -
MGGD-KLD 0.89 5.41 7

5. CONCLUSION

This work proposes a downhole fault detection method
for geological drilling processes based on the MGGD and
KLD. The MGGD is adapted to estimate the PDF of the
uncorrelated components obtained from original drilling
signals after PCA. The KLD between the MGGD esti-
mated from training data under the normal condition and
the MGGD of online data is calcuated to capture changes
of process signals. The PDF of the KLD under the normal
condition is estimated using the KDE, such that the alarm
threshold of the KLD is determined at a certain significant
level. According to the results from the industrial case
study, successful detection was achieved with low FAR and
MAR by the proposed method, which has significant better
performance compared to the conventional PCA based and
MGD-KLD based methods.
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