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Abstract: in recent years, growing penetration of renewable-energy-based distributed genera-
tion into power distribution grids has been compromising operational constraints. In this paper,
a model-based predictive control (MPC) strategy is proposed for demand/supply balance and
voltage regulation in a power distribution grid with prolific distributed generation using flexible
assets (water tower and biogas plant). Then, the impact that errors of photovoltaic (PV) power
generation and grid load forecasts have on its performance is examined. Results show that the
proposed control scheme is efficient and resilient to forecasting errors.
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1. INTRODUCTION

The mounting levels of renewable-energy-based distributed
generation in power distribution grids, especially PV
power generation, introduces new operational challenges
for grid operators. The inherently intermittent nature of
the solar resource due to its dependency on weather con-
ditions (Haupt et al. (2016)), coupled with the resulting
bidirectional flow in power distribution grids, hampers grid
stability and service quality (ENEDIS (2018)). For better
monitoring and control of power distribution grids, the
smart grid paradigm is born and rests on these building
blocks: the enhancement of grid observability, through an
advanced metering infrastructure (Mohassel et al. (2014))
and multi-horizon forecasting of grid load (Swan and Ugur-
sal (2009)) and distributed generation (Wan et al. (2015),
Gbémou et al. (2019)), the flexibility of power generation
and power consumption within the power distribution
grid, and smart management techniques to balance be-
tween supply and demand and comply with operational
constraints (Dkhili et al. (2020)). In a modern grid, several
distributed generation and storage device technologies co-
exist. The flexibility given by these devices can be used
for a better operation of the grid and a guarantee of its
stability (Pesaran et al. (2017), Sugihara et al. (2013)).
This is the premise of the control strategy developed in
the context of project Smart Occitania, whose objective
is to demonstrate the feasibility of the smart grid concept
for low-voltage power distribution grids with prolific dis-
tributed generation in rural and suburban areas.

In this paper, an application of MPC (Prodan and Zio
(2014), Bruni et al. (2015), Petrollese et al. (2016), Parisio

et al. (2017)) strategy for low-voltage power distribution
grids is proposed. For a review of MPC for renewable
energy applications, the reader is referred to Sultana et al.
(2017). In this paper, the discrete MPC strategy uses
third-party-owned distributed generators and storage sys-
tems (biogas plant and water tower) to balance supply and
demand and prevent cases of overvoltage and undervoltage
across the grid, in accordance with the assets’ operational
constraints. The water tower’s operation is subject to an
ON/OFF controller, making the problem a mixed-integer
non-linear programming (MINLP) one, which is still a
challenging active research field in applied mathematics.
While several techniques could be implemented and tested,
a relaxation of the problem, whether at the modelling stage
or the resolution stage, is always required (the interested
reader is referred to Lee and Leyffer (2012) for a mod-
ern survey of MINLP). The contribution of this paper is
two-fold. First, an alternate formulation of the problem
is proposed to bypass the MINLP framework without
relaxing the ON/OFF controller constraint of the water
tower. The proposed formulation treats the problem as a
classical smooth non-linear optimisation, a setting whose
theory and algorithms are known to be robustly developed
(Nocedal and Wright (2006)). Second, a study is carried
out of the MPC scheme’s resilience to forecasting errors,
with respect to the MPC scheme’s sliding window length.
Due to the non-convex nature of the problem, all presented
results are local.

The paper is organised as follows: in section 2, models
of the power distribution grid and the flexible assets
used in this approach are given. Section 3 introduces the
proposed control scheme, the optimisation problem, and
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the forecasting method. In section 4, the case study treated
throughout the paper is detailed. In section 5, results given
by the MPC scheme are presented and an analysis of
its resilience to forecasting errors is carried out. Finally,
section 6 concludes the paper.

2. POWER DISTRIBUTION GRID AND FLEXIBLE
ASSETS

Let H be the forecast horizon such that H = Hp · T , with
T = 10 min the time step and Hp the integer number of
timeslots within the forecast horizon. In the following, and
for all time-dependant quantities, t ∈ {1, . . . ,Hp}.

2.1 Power distribution grid scheme

The proposed approach deals with supply/demand balance
in a low-voltage power distribution grid equipped with dis-
tributed generation and power storage systems. Through-
out this study, the inductive and capacitive aspects of the
grid components are neglected. The data used in this study
shows that reactive power at the transformer level of a
suburban residential neighbourhood remains under 5% of
the apparent power, which validates this assumption. For
a given branch [qj], the voltage drop between nodes q and
j is given by Ohm’s law, ∀q, j ∈ {1, . . . , N}, with N the
number of nodes in the power distribution grid:

Uq(t)− Uj(t) = zqj(t) · Iqj(t) (1)
where zqj is the line impedance between nodes q and j and
Iqj is the current flowing between nodes q and j.

Under the assumption that reactive power is negligible, Uq

is the voltage at node q and is proportional to the active
power consumed or produced at that node (Pq):

Pq(t) = Uq(t) · Iq(t) (2)
where Iq is the current injected into/absorbed by node q.

Herein, we focus on voltage constraints, which stipulate
that the nominal voltage value be 230 V for single-phase
connections, and 400 V for 3-phase connections (ENEDIS
(2018)). Voltage means in a power distribution grid over
10 minutes must at all times remain within ± δU of the
nominal value, i.e.:

|Uq(t)− Un| 6 δU (3)
where Un (in V) is the nominal single-phase voltage value
for all grid nodes and δU is the acceptable margin of
voltage variations with respect to the nominal value (in
France, 5% for power sub-transmission grids and 10% for
power distribution grids).

2.2 Biogas plant

Biogas plants are renewable-energy-based distributed gen-
erators, connected to low-voltage power distribution grids.
A biogas plant is composed of a bioreactor producing
methane-filled biogas, a storage unit, and a power genera-
tor. The biogas volume in the storage unit (Vb) is expressed
in m3 and described as:

Vb(t+ 1) = Vb(t) +
T

60

(
Qb,in(t)−Qb,out(t)

)
(4)

with:

Qb,out(t) =
Pb(t)

ηLHV
(5)

where Qb,in and Qb,out (in m3 h−1) are the flow rates of
biogas production entering the storage unit and biogas
consumption by the power generator, respectively, Pb (in
W) is the plant’s active power output, η is the generator’s
efficiency, and LHV (in kWh m−3) is the lower heating
value of the stored biogas.

At each time step, the plant’s active power output is
subject to the following constraint:

Pb,min 6 Pb(t) 6 Pb,max (6)
where Pb,min and Pb,max are the minimal and maximal
power generation of the biogas plant, respectively.

Regarding the biogas volume in the storage unit, it is
subject, at each time step, to the following constraint:

Vb,min 6 Vb(t) 6 Vb,max (7)
where Vb,min and Vb,max are the minimal and maximal
biogas storage capacities of the biogas plant, respectively.

2.3 Water tower

Water towers provide pressurized potable water supply
and emergency water storage for fire protection. They are
connected to low-voltage power distribution grids. The
volume in the storage tank (Vw) is expressed in m3 and
described as follows:

Vw(t+ 1) = Vw(t) +
T

60

(
Qw,in(t)−Qw,out(t)

)
(8)

with:

Qw,in(t) =
Pw(t)ηw
ρgh

(9)

where Qw,in and Qw,out (in m3 h−1) are the flow rates
of water entering the storage tank and water consump-
tion, respectively, Pw (in W) is the water pump’s active
power consumption, ηw is the water pump’s efficiency,
ρ (in kg m−3) is the water density, g (in m s−2) is the
gravitational acceleration, and h (in m) is the water level
in the storage tank.

Let Pw,min and Pw,max be the minimum and maximum
power consumption values of the water tower, respectively.
Pw can only be set following ON/OFF commands, i.e. it
is subject to the following constraint:

Pw ∈ {Pw,min;Pw,max} (10)
At each time step, the water volume in the storage tank is
subject to the following constraint:

Vw,min 6 Vw(t) 6 Vw,max (11)
where Vw,min and Vw,max are the minimal and maximal
water storage capacities of the water tank, respectively.

3. SMART MANAGEMENT SCHEME

3.1 Optimisation problem

The optimisation problem at hand consists in reducing
the gap between power generation and consumption in
a power distribution grid. To do so, third-party-owned
biogas plant and water tower are used to balance out
the discrepancies in the grid’s supply/demand equilibrium.
Pcons ∈ RHp is the grid load (in W), and PPV ∈ RHp is
the PV power generation (in W). The control variables are
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Fig. 1. Example of flexible assets’ setpoints using the
switch control model.

Pb ∈ RHp and Pw ∈ RHp , which represent the active power
setpoints for the biogas plant generation and the water
tower consumption.

To outmanoeuvre the handicaps caused by the MINLP
setting, an alternate formulation of the optimisation prob-
lem is proposed, which rests on the introduction of a new
optimisation variable t̄ ∈ RHp . Between time steps ti and
ti+1, the water tower can switch between its two states
of operation (Pw,min and Pw,max), the instant at which
this switch occurs is denoted t̄i. Simultaneously, the biogas
plant setpoint may also switch from one value to another,
although the biogas plant setpoint does not have to change
between sampling times when that of the water tower does
if it is unnecessary. Therefore, setpoints of biogas plant
power generation and water tower power consumption are
no longer constant during a given time step. Only one state
switch is permitted within each time step.

Let us denote X = [Pb,ON Pb,OFF t̄ UON UOFF]
T, where

Pb,ON ∈ RHp and Pb,OFF ∈ RHp form the biogas plant
setpoint as follows, ∀i ∈ {1, . . . ,Hp}:

Pb(t) =

{
Pb,ON(i) t ∈ [ti, ti + t̄i]

Pb,OFF(i) t ∈ [ti + t̄i, ti+1]
(12)

For every grid node q ∈ {1, . . . , N}, UON ∈ RHp×N and
UOFF ∈ RHp×N form the voltages in the grid as follows,
∀i ∈ {1, . . . ,Hp}:

Uq(t) =

{
UON(i, q) t ∈ [ti, ti + t̄i]

UOFF(i, q) t ∈ [ti + t̄i, ti+1]
(13)

Without loss of generality, the problem can be solved
assuming that the first state of the water tower is always
ON, and at times t̄, it switches to OFF. Figure 1 gives an
example of what the flexible assets’ setpoints would look
like using the switch control model. In fact, we can see
that the transition between states doesn’t only occur at
the beginning of each time step. The proposed problem is
then formulated as follows:

X∗ = arg min
X

Hp−1∑
i=0[ ti+t̄i∫

ti

|PPV (t) + Pb(t)− Pcons(t)− Pw,max|2dt

+

ti+1∫
ti+t̄i

|PPV (t) + Pb(t)− Pcons(t)− Pw,min|2dt
]

(14)

subject to bounds and constraints formulated hereinafter,
∀i ∈ {1, . . . ,Hp}.
• Biogas plant power bounds:

Pb,min 6 Pb,ON(i) 6 Pb,max (15)
Pb,min 6 Pb,OFF(i) 6 Pb,max (16)

• Switch time bounds:
0 6 t̄i 6 T (17)

• Biogas volume constraints:
Vb,min 6 Vb(t) 6 Vb,max (18)

• Water volume constraints:
Vw,min 6 Vw(t) 6 Vw,max (19)

• Voltage constraints:
t̄i ·K(Pb,ON(i), Pw,max, UON(i)) = 0 (20)

(T − t̄i) ·K(Pb,OFF(i), Pw,min, UOFF(i)) = 0 (21)
|UON(i)− Un| 6 δU (22)
|UOFF(i)− Un| 6 δU (23)

K(Pb(t), Pw(t), υ(t)), with υ(t) = [U1(t) U2(t) · · ·UN (t)]
T,

represents the equation set derived from Kirchhoff’s laws,
describing voltage variations across the grid as a function
of the powers injected/absorbed at each node. The voltage
variation between nodes i and j follows Kirchhoff’s law
equations. Kirchhoff’s law constraints are presented as two
sets of constraints (20) and (21) which guarantee that
Kirchhoff’s laws are upheld in both sub-intervals of each
time step. Equation set (20) sees the equation set depicting
voltage variations multiplied by t̄i whereas equation set
(21) sees it multiplied by (T − t̄i), using appropriate values
of biogas plant and water tower setpoints for each interval,
to ensure that only one constraint is activated in case of
extreme values of t̄. In fact, in case t̄i = 0, equation set (20)
is eliminated. This reflects the fact that during time step i,
the water tower is turned off immediately at the beginning
of the time step. Similarly, in case t̄i = T , equation set
(21) is eliminated since the water tower remains on for
the duration of the time step. Voltage constraints are
also written as two sets of constraints (22) and (23) that
account for voltage variations in both states of the grid
within each time step.

3.2 Forecast module

For a better regulation of the power distribution grid,
variations of uncontrollable quantities which compromise
its stability must be forecasted. In this study, these quan-
tities are the grid load and PV power generation over the
scheme’s forecast horizon. At each time step, the MPC
scheme integrates the updated forecasts into the optimi-
sation problem.

In this study, both quantities are predicted using Gaus-
sian process regression (GPR) (Rasmussen and Williams
(2006)), a probabilistic non-parametric model completely
defined by its mean function and covariance function.
There exists previous works in the literature using GPR
for PV power generation forecasting (Rohani et al. (2018),
Gbémou et al. (2019)) as well as short-term grid load
forecasting (Mori and Ohmi (2005)). Kernel compositions
that take into account both the periodic component of
the quantities at hand and the added fluctuations are
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Fig. 2. Mean absolute error and standard deviation of PV
power generation forecasts (MAEpv, σpv) and grid
load forecasts (MAEgl, σgl) with respect to forecast
horizons ranging from 10 minutes to 24 hours.

used. For an in depth study of the kernel study performed
beforehand, the reader is referred to Tolba et al. (2019).
The mean absolute error (MAE) and standard deviation
(σ) of the forecasts for PV power generation and grid
load are displayed in Fig. 2, for forecast horizons ranging
from 10 minutes to 24 hours. For small forecast horizons,
forecasting errors increase as the horizon’s length does.
However, it is interesting to note that forecasting errors
for long horizons remain constant. This may seem counter-
intuitive but is indeed due to the structure of the GPR
model defined by the expression of its kernel (or herein,
kernel composition). In cases where the developed GPR
model is unable to provide reliable forecasts, as is the
case here for long forecast horizons, it gives forecasts that
resemble the basic shape of its kernel, hence the steady
error values.

4. CASE STUDY

From the medium-voltage/low-voltage (MV/LV) trans-
former point of view, a power distribution grid can be seen
as equivalent to the configuration given in Fig. 3, provided
that the power lines’ inductive and capacitive effects are
neglected. Here, Un = 230V and δU is set to be be 10% of
Un, that is δU = 23V. Since data used in this case study
comes from a small suburban residential neighbourhood
(approximately 1 km2), all line impedances are assumed
identical, i.e. zqj = z, ∀q, j ∈ {0, . . . , 5}. The study pre-
sented herein is carried out in a simulated low-voltage
power distribution grid, whose equivalent electrical circuit
is shown in Fig. 3. It contains the following elements.

• End-consumer: grid load data are provided by CAHORS
group, and correspond to transformer-level measure-
ments of power consumption in a suburban neighbour-
hood in the south of France (Fig. 4).
• Water tower with the following characteristics:
Vw,max = 400 m3, Vw,min = 0 m3, Pw,min = 0 kW, and
Pmax = 100 kW. The water pump’s “default operation”
is subject to an ON/OFF controller: when the water
level in the tank reaches its minimum Vw,min, the pump
is turned on at its nominal power (Pw,n = 100 kW) and
continues to fill the tank until the water reaches the
maximum level Vw,max.
• PV power generation: data used for the simulations cor-
respond to PV power generation from 50 household PV
panels based on global horizontal irradiance (GHI) data
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Fig. 3. Equivalent electrical circuit of the low-voltage
power distribution grid. Let z1, z2, z3, z4, and z5

be the line impedance, the impedances of the water
tower’s pump (node 2), the building (node 3), the
biogas plant’s generator (node 4), and the PV instal-
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are voltages throughout the power distribution grid.
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Fig. 4. Grid load and PV power generation data over a
November week.

given by a sensor placed on the roof of the laboratory
PROMES-CNRS (Fig. 4), a few kilometres away from
the same suburban neighbourhood.
• Biogas plant with the following characteristics:
Vb,max = 400 m3, Vb,min = 0 m3, Qb,in = 50 m3 h−1,
LHV = 5 kWh m−3, Pb,n = 100 kW (nominal power
generation), Pb,min = 0 kW, Pb,max = 200 kW, and η =
0.4. The biogas plant’s “default operation” sees a steady
stream of biogas production entering the storage unit
(Qb,in), and constant power generation (Pb,n = 100 kW)
injected into the power distribution grid.

Grid load and PV power generation data used in the case
study are presented in Fig. 4 hereinabove.

5. RESULTS AND ANALYSIS

In this section, simulation results are presented and anal-
ysed. Resolution of the optimisation problem is done
through nonlinear interior point algorithm in MATLAB.
The initial supply/demand gap before optimisation is an
evaluation of the objective function using grid load and
PV power generation data shown in Fig. 4 and flexible
assets’ “default operation” as explained in section 4. The
reference strategy is a weekly planning assuming “perfect”
forecasts, i.e. that uses data. This planning is based on
an optimisation problem where the ON/OFF constraint
of the water tower’s operation is relaxed.
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The performance of the MPC scheme using grid load and
PV power generation forecasts, updated at each sampling
time, is evaluated with respect to two criteria. The first
is the length of its sliding window, and therefore the
forecast horizon, and the second is results the scheme
provides when, instead of forecasts, measured data are
used throughout the simulation period.

The algorithm updates the forecasts injected into the op-
timisation problem at each time step. The final objective
function values given by the algorithm at various sliding
window sizes are shown in Fig. 5. The final objective
value’s lower bound is 1,360 kW, given by the reference
strategy. The algorithm approaches this bound as the
sliding window gets bigger since more information about
the system’s future behaviour and disturbances are incor-
porated. In both the scheme with “perfect” forecasts and
the one with GPR forecasts, the final objective function
value steadily decreases as the sliding window size gets
bigger, with values for both schemes remaining close to
one another and reaching their lowest at the 24-hour win-
dow for both schemes. For the former, the final objective
function value goes from 1,764.4kW for a 1-hour window to
1,424.9kW for a 24-hour window. For the latter, the final
objective function value goes from 1,788.4kWfor a 1-hour
window to 1466.8kW for a 24-hour window.
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Fig. 5. The final objective function value per sliding
window size. The initial supply/demand gap is 2,808
kW.

Although forecasting errors grow as the forecast horizon
gets longer, the closed-loop structure of MPC protects it
from substantial performance degradation as the sliding
window size gets bigger. The difference in objective func-
tion values created by forecasting errors is at its lowest for
a 23-hour window (-28.825kW) and at its highest for a 22-
hour window (95.673kW). As is illustrated by Fig. 6, the
mean number of function evaluations per window needed
for the algorithm to converge to a solution when using
GPR forecasts of grid load and PV power generation is
consistently bigger than that needed when the forecasts are
“perfect”, which infers a longer running time. On average,
the use of GPR forecasts adds 26.05% to the mean num-
ber of function evaluations per window. The additional
computational burden is at its maximum for the 20-hour
window, with an extra 47.83% of function evaluations with
respect to the scheme that uses “perfect” forecasts.

Another pertinent aspect to study is the constraint vi-
olation caused by forecasting errors. In all the simula-
tions studied herein, biogas volume and water volume
constraints are upheld. But, the algorithm is not always
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Fig. 6. The mean number of function evaluations the
algorithm needs to converge to a solution for each
sliding window size.

able to perfectly satisfy voltage constraints, namely the
Kirchhoff’s laws equation set depicting voltage variations
throughout the power distribution grid. This stems from
the fact that real PV power generation and grid load
values, over the following 10 minutes during which the first
setpoint is executed, are slightly different from the fore-
casted ones. Therefore, the real values might not satisfy
Kirchhoff’s laws even though the forecasted ones do. These
discrepancies result in violations of the voltage equality
constraints. The maximum voltage constraint violation
is much higher when using GPR forecasts, as evidenced
by Fig. 7. As a matter of fact, the maximum constraint
violation when using “perfect” forecasts do not exceed
0.01V. When using GPR forecasts, however, the maximum
voltage constraint violation averages at 0.10V, reaching its
highest value at hour 22 (0.40V).
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Fig. 7. Maximum voltage constraint violation per sliding
window size.

In a nutshell, results show that forecasting errors for
PV power generation and grid load cause an additional
computational burden to the control algorithm, which
already needs an increasing number of function evaluations
in order to reach a feasible solution as the sliding window
gets larger. In addition, these errors create instances of
voltage constraint violation which are higher than the
weekly planning, but remain small in amplitude. A slight
degradation of the final objective function value as a result
of forecasting errors is also observed. However, the control
scheme still proves itself resilient by improving its final
objective function value as the sliding window gets larger,
and this value remains within reasonable margin of the one
given by the scheme when using “perfect” forecasts.
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The choice of the sliding window size for the MPC scheme
is a compromise between the final objective function
value and the computational burden. In this study, a 14-
hour window is chosen. The temporal evolution of the
biogas plant’s power generation setpoints and the water
tower’s power consumption setpoints given by the various
schemes for this window size are tracked in Fig. 8 and
Fig. 9. The setpoints given by the MPC scheme show a
clear departure from both the initial setpoints and the
ones given by the weekly planning. Particularly in the
case of the biogas plant setpoint, a periodic behaviour
emerges. The temporal evolution of the gap between
supply and demand given by the various schemes using
a 14-hour window are presented in Fig. 10. For both MPC
schemes (with “perfect” or GPR forecasts), considerable
reduction of this gap is observed. Both schemes have
similar behaviour, as their values of supply/demand gap
fluctuate around the constant and minimal level achieved
by the weekly planning. These results show that, even
though the supply/demand gap obtained when the MPC
scheme uses GPR forecasts remains close to the one
obtained when it uses data, the setpoint in the case of
GPR forecasts are afflicted with significant fluctuations
which diminish their implementability.
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Fig. 8. Power generation setpoints given by the MPC
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hour sliding window, with respect to the initial gap
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6. CONCLUSION

In this paper, an MPC scheme for the smart management
of third-party-owned flexible assets in a low-voltage power
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Fig. 10. Supply/demand gaps given by the MPC strategy
with “perfect” or GPR forecasts using a 14-hour
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distribution grid with high penetration of PV power gen-
eration is proposed.

First, the paper proposes an alternate model of the prob-
lem to bypass the MINLP framework without relaxing the
ON/OFF controller constraint of the water tower. Second,
a study is carried out of the resilience of the MPC scheme
to forecasting errors of PV power generation and grid load,
with respect to the sliding window length and to a scheme
actual data. Forecasts are updated at each time step, 10
minutes herein. Simulation results show that the use of
forecasts degrades the final value of objective function
with respect to values obtained when “perfect” forecasts
are used. However, the gap between the two cases remains
contained and the scheme performs better as the sliding
window size gets bigger. The closed-loop structure of the
MPC scheme shields it from steep performance degrada-
tion due to increasing forecasting error as the forecast
horizon gets longer. With increasing sliding window size,
the computational cost of the control scheme increases as
well, with further cost added by the imperfection of grid
load and PV power generation forecasts. In addition, the
maximum amplitude of voltage constraint violation, when
it occurs, is higher than in the case where data are used.

The next step in this research is to use adjustable time
steps for the MPC scheme to alleviate the computational
burden. Future developments also include optimal dimen-
sioning of the flexible assets’ storage units (biogas storage
and volume storage) and adapting the optimisation prob-
lem to be robust to forecasting errors by using the forecast
confidence intervals provided by the GPR model.
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