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Abstract: Active learning is proposed for selection of the next operating points in the design of
experiments, for identifying linear parameter-varying systems. We extend existing approaches
found in literature to multiple-input multiple-output systems with a multivariate scheduling
parameter. Our approach is based on exploiting the probabilistic features of Gaussian process
regression to quantify the overall model uncertainty across locally identified models. This results
in a flexible framework which accommodates for various techniques to be applied for estimation
of local linear models and their corresponding uncertainty. We perform active learning in
application to the identification of a diesel engine air-path model, and demonstrate that measures
of model uncertainty can be successfully reduced using the proposed framework.

Keywords: Machine learning, System identification, Parameter estimation, Uncertainty, Diesel
engines

1. INTRODUCTION

Active learning, along with closely-related optimal exper-
imental design, are a subfields of machine learning and
statistics, that are concerned with the determination of
query points which to sample data (Settles, 2012). The
main rationale underpinning active learning is that data
collection is costly, so these query points should be selected
in a way such that it optimises some notion of accuracy
for a model being identified. Thus, active learning carries
the advantage of enabling either identification of a model
that is more accurate for a fixed data collection budget, or
identification to a specified accuracy within a smaller data
collection budget.

Optimal experimental design for dynamical systems has
been studied since the 1960s. Levin (1960) demonstrated
that a white noise input signal to a single-input single-
output (SISO) discrete-time linear system minimised the
A-optimality criterion (trace of the covariance matrix) for
the parameters of a finite impulse response model. Good-
win (1971) gave an A-optimality formulation for optimal
design of input signals for a general class of discrete-time
nonlinear systems. Due to limited computational resources
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at the time, the method was exemplified on simpler sys-
tems.

More recently, the use of linear parameter-varying (LPV)
systems (a class of nonlinear systems) have emerged as
an approach for model-based control of nonlinear systems,
whereby local linear controllers are designed for regions
of an operating space in a gain-scheduled manner (Toth,
2010). There are two broad approaches to the identifi-
cation of LPV systems. In the local approach, several
local linear models are identified at several fixed operating
points (also called scheduling points), which are then inter-
polated over the operating space. In the global approach,
an LPV model is identified from an experiment which
excites the operating space as well (dos Santos et al., 2012).
The optimal experimental design for local LPV identifica-
tion has previously been investigated, where in Khalate
et al. (2009), a technique was proposed to select new oper-
ating points to query for SISO systems with a univariate
operating point. Their approach minimised a measure of
anticipated overall accuracy, and assumed that each local
linear model could be identified perfectly. Motchon et al.
(2018) relaxes this assumption, and provides an algorithm
for the simultaneous selection of operating points and
design of input signals (although still only valid for the
class of SISO systems with univariate operating point).
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Their optimisation criterion is based on an A-optimality-
like criterion.

The main contribution of our work relates to a framework
of active learning for LPV system identification via a
local approach, which extends previous work since it
is applicable to multiple-input multiple-ouput (MIMO)
systems with multivariate operating point. The framework
also quantifies the uncertainty associated with the LPV
model in terms of the variance of the model parameters.

1.1 Notation

Throughout this paper, the set R refers to the real num-
bers, and the superscript > denotes the matrix transpose.
The operator diag {·} means to take a diagonal matrix
with diagonal elements equal to its arguments. The math-
ematical expectation operator is designated by E [·], and
variance by Var (·). A multivariate Gaussian distribution
with mean m and covariance C is denoted by N (m,C).

2. ACTIVE LEARNING FRAMEWORK

2.1 Linear Parameter-Varying Systems

We consider noisy discrete-time LPV systems of the fol-
lowing form:

xk+1 = A (θ)xk +B (θ)uk + wk, (1)

yk = Cxk, (2)

with state xk ∈ Rn, input uk ∈ Rm, output yk ∈ Rp
and with noise/unmodelled disturbance sequence wk. The
operating point θ ∈ Θ ⊂ Rd parametrises the system
matrices A (θ) and B (θ), the latter two which are the
objects of interest to be identified. For the identification
problem, we make the following assumptions.

Assumption 1. The operating space Θ ⊂ Rd is a compact
region.

Assumption 2. The functions A : Θ→ Rn×n and B : Θ→
Rn×m are smooth.

Assumption 3. The matrix C is known and we have access
to the full state measurement xk.

Assumption 4. For all θ ∈ Θ, the system (1) is stable and
the noise wk is an independent and identically distributed
(i.i.d.) sequence with covariance matrix E (θ).

In our formulation, Assumption 3 ensures the system order
n is known and the state-space realisation is specified, so
identification of (1) for fixed θ becomes a special case of
VARX regression, where identifiability issues arising from
unknown state-space realisation do not become a concern.
Also note by Assumption 4 that we do not necessarily
require the noise to be Gaussian.

Implementation of predictive control algorithms for (1)
require knowledge of the system matrices A (θ) and B (θ).
As these are often not known in practice, they would

be replaced by their estimates Â (θ) and B̂ (θ). Doing so
introduces some uncertainty in the predictions (in the form
of variance), attributed to variance in the estimates for
A (θ) and B (θ). This motivates our problem herein, which
is to devise a method that quantifies the uncertainty in the

estimates Â (θ) and B̂ (θ), and simultaneously leverages
this to decide the next operating point to conduct an
experiment at.

2.2 Gaussian Process Regression

We describe Gaussian process regression (GPR), which has
been used in active learning settings (Brochu et al., 2007)
and in uncertainty quantification (Bilionis and Zabaras,
2012). A Gaussian process on d-variate feature variable
θ ∈ Rd may be defined by:

f (θ) ∼ GP (µ (θ) , κ (θ, θ′)) (3)

where µ (θ) : Rd → R is called the mean function and
positive definite kernel κ (θ, θ′) : Rd × Rd → R is known
as the covariance function. For two collections of points
θ = (θ1, . . . , θm) and θ′ = (θ′1, . . . , θ

′
n), denote

K
(
θ,θ′

)
:=

κ (θ1, θ
′
1) . . . κ (θ1, θ

′
n)

...
. . .

...
κ (θm, θ

′
1) . . . κ (θm, θ

′
n)

 , (4)

µ (θ) := [µ (θ1) . . . µ (θm)] . (5)

Then for pre-specified prior mean and covariance functions
µ (·) and κ (·, ·), the posterior predictive distribution at
test points θ∗ given input-output training data D = (θ, f)
subject to zero-mean Gaussian noise with covariance Σ on
the output observations f , is given by:

[f∗|θ∗,D] ∼ N
(
µ (θ∗) +K (θ∗,θ) K−1 (f − µ (θ)) ,

K (θ∗,θ∗)−K (θ∗,θ) K−1K (θ,θ∗)
)
, (6)

where
K := K (θ,θ) + Σ. (7)

The primary computational cost incurred by GPR is the
inversion of the m × m matrix K, for which there are
efficient ways of bypassing, such as by using the Cholesky
decomposition (Rasmussen and Williams, 2006, Algorithm
2.1).

2.3 GPR-LPV Model Estimation

The active learning procedure is explained as follows. We
presume there to be an initial selection of m operating
points θ = (θ1, . . . , θm) for identification. For each of
these points, a time-series data set has been collected by
running a local experiment and measuring the (xk, uk)
pairs. From this, we have then subsequently identified local

linear models with matrices
(
Âθ1 , B̂θ1

)
, . . . ,

(
Âθm , B̂θm

)
.

Moreover, suppose our estimation method also provides
uncertainty estimates for the identified parameters in the
form of estimated standard deviation for the estimator
(called the standard errors of the estimates). For an

arbitrary element γ̂θi of
(
Âθi , B̂θi

)
for any i ∈ {1, . . . ,m},

denote its standard error by se (γ̂θi).

Now to conduct active learning, we fit Gaussian processes
to each of the elements of A (θ) and B (θ). That is, we
represent these matrices as

A (θ) =

a11 (θ) . . . a1n (θ)
...

. . .
...

an1 (θ) . . . ann (θ)

 , (8)

B (θ) =

b11 (θ) . . . b1m (θ)
...

. . .
...

bn1 (θ) . . . bnm (θ)

 , (9)
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where each element a11 (θ) , . . . , bnm (θ) is a GPR model
over θ as introduced in Section 2.2. From our initial
identified models, we form n2 + mn training datasets
Da11 , . . . ,Dbnm

from the m experiments. Each Dγ for
γ ∈ {a11, . . . , bnm} consists of m observations with feature-
label pairs (θi, γ̂θi) for i = 1, . . . ,m. Then at this stage,
GPR is applied to each training dataset. Note that this
induces a distribution over LPV models, and is the primary
mechanism used in this paper to quantify uncertainty,
which we do so in the following novel way. Under standard
conditions (these being (1) is stable, wk is i.i.d. and uk is
quasistationary), the least squares parameter estimates are
asymptotically normal as the length of time for the local
experiment tends to infinity (Boutahar and Deniau, 1995).
Hence it is reasonable to use those standard errors as the
Gaussian output-error covariances for each of the GPR:

Σγ = diag
{

se (γ̂θ1)
2
, . . . , se (γ̂θm)

2
}

(10)

for each γ ∈ {a11, . . . , bnm}. In traditional GPR, the
covariance Σ is typically treated as a hyperparameter
that can be optimised (usually simplified to be a scaled
identity matrix). Here, we expressly use Σ to incorpo-
rate uncertainty information about the local parameters
into the resulting GPR-LPV model. Qualitatively, where
there is greater uncertainty about the local parameter
estimates, this carries through to greater uncertainty in
that surrounding region on the GPR-LPV model, as will
be illustrated later on in Section 3.

2.4 Uncertainty Criterion

As a probabilistic model, the utility of the fitted GPR-
LPV is that it can be used to quantify the uncertainty of
the model with respect to an operating point of interest θ∗.
Introduce gM (θ∗) : Θ→ R as an arbitrary objective func-
tion which quantifies a measure of uncertainty at operating
point θ∗ for identified GPR-LPV modelM. Following the
well-known MacKay approach, new query points can be
selected where there is currently the most uncertainty
(MacKay, 1992). The decision of which operating point to
conduct the (m + 1)th experiment at is obtained by solving

θm+1 = argmax
θ∗∈Θ

gM (θ∗) . (11)

In this paper, we focus on gM (θ∗) being the sum of GPR-
LPV variances:

gM (θ∗) =
∑

γ∈{a11,...,bnm}

Var (γ|Dγ , θ∗) , (12)

which is a natural choice, since it is equivalent to the
trace of the posterior covariance for the parameter vec-
tor (a11, . . . , bm). In general, the problem (11) can have
multiple local optima. If d = 2, global optima may be
validated visually due to Assumption 1. However beyond
d = 2, the problem of finding global optima begins to suffer
from the curse of dimensionality. This is a similar problem
encountered in Bayesian active learning, whereby the prac-
tice is to resort to global optimisation and heuristic search
techniques to find an approximate solution (Brochu et al.,
2007).

Note that the type of uncertainty we are quantifying is the
epistemic uncertainty (i.e. the model uncertainty), because
the epistemic uncertainty can in principle be reduced by
collecting more data. Quantifying the aleatoric uncertainty

(which would involve estimating the covariance of the noise
wk) is not within the main scope of the active learning
framework because the aleatoric uncertainty by definition
cannot be reduced (without modifying the system itself).

2.5 Active Learning Algorithm

The active learning procedure is detailed by the pseu-
docode in Algorithm 1, with the following components.

• Time-series datasets D1, . . . ,Dm from local exper-
iments conducted at the corresponding operating
points θ1, . . . , θm. Note that the experiments need not
be all of the same length.

• A method ilm() which identifies a local linear model
(with standard errors) from local experiment data.

• A method gpr() which fits a GPR-LPV model to the
local linear models, as described in Section 2.3.

• A method uc() which computes the uncertainty cri-
terion for a GPR-LPV model at a supplied operating
point.

Specific implementation details of the methods ilm(),
gpr(), uc() are up to the practitioner’s choice, which allows
for flexible variations of the active learning algorithm. We
are also formally required to impose a basic assumption on
the time-series data, so that identifiability is maintained.

Assumption 5. The input signals in each of D1, . . . ,Dm

are quasistationary and satisfy persistency of excitation
(Aström and Eykhoff, 1971).

Algorithm 1 Active Learning with GPR-LPV Models

1: for i ∈ {1, . . . ,m} do

2: Perform ilm (Di) to obtain
(
Âθi , B̂θi

)
and

se
(
Âθi

)
, se

(
B̂θi

)
3: end for

4: for γ ∈
{
â11, . . . , b̂nm

}
do

5: Construct Dγ from D1, . . . ,Dm

6: Σγ ← diag
{

se (γθ1)
2
, . . . , se (γθm)

2
}

7: end for
8: Perform gpr (Da11 , . . . ,Dbnm ,Σa11 , . . . ,Σbnm) to ob-

tain GPR-LPV model M
9: Solve (11) using gM (θ∗) := uc (M, θ∗)

10: Return θm+1

We are able to state the following two results for our active
learning framework, which characterise the performance
of Algorithm 1 in terms of the posterior variance on the
GPR-LPV model.

Lemma 1. Suppose the experiment at θm+1 is appended
to the existing GPR-LPV which is identified from exper-
iments at operating points θm = (θ1, . . . , θm). Then for
each parameter γ ∈ {a11, . . . , bnm}, the reduction Rγ,m+1

in posterior variance at θ∗ is given by:

Rγ,m+1 (θ∗)

=

(
κ (θ∗, θm+1)− k>m,m+1K

−1
γ K (θm, θ∗)

)2
κ (θm+1, θm+1) + se

(
γ̂θm+1

)2 − k>m,m+1K
−1
γ km,m+1

,

(13)
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where

km,m+1 := K (θm, θm+1) , (14)

Kγ := K (θm,θm) + Σγ , (15)

Σγ := diag
{

se (γ̂θ1)
2
, . . . , se (γ̂θm)

2
}
, (16)

and γ̂θi is the estimator for parameter γ (θi) via the data
collected at experiment i.

Proof. The proof follows closely to the online supplement
of Sung et al. (2018), which relies on partitioned matrix
inverse results. The main difference here is our inclusion
of the standard errors (i.e. se (γ̂θ1), se (γ̂θ2), etc.) in the
output observation covariances.

Remark 1. The reduction in posterior variance is non-
negative since the denominator of (13) is the Schur com-
plement of a positive definite matrix. Additionally, we can
see that a smaller standard error se

(
γ̂θm+1

)
results in a

greater reduction in the posterior variance. When the term
se
(
γ̂θm+1

)
is computed using an asymptotic approximation

(Lütkepohl, 2005, (10.3.8)), it behaves like O
(
T
−1/2
m+1

)
,

where Tm+1 is the length of the (m + 1)th experiment. This
yields an intuitive conclusion that conducting a longer
experiment will result in a greater reduction in posterior
variance of the GPR-LPV.

Next, we upper bound the posterior variance at the queried
operating point in terms of the standard errors provided
by ilm().

Theorem 2. Suppose the experiment at θm+1 is appended
to the existing GPR-LPV which is identified from exper-
iments at operating points θm. Then for each parameter
γ∗ ∈ {a11, . . . , bnm}, the posterior variance at θ∗ = θm+1

satisfies

Var
(
γ∗
∣∣Dγ , θm+1, γ̂θm+1

, θ∗ = θm+1

)
≤ se

(
γ̂θm+1

)2
. (17)

Proof. Begin from (13) and substitute θm+1 for θ∗. Then
from the structure for the posterior variance given in (6),
we are able to show that the posterior variance takes the
form:

Var
(
γ∗
∣∣Dγ , θm+1, γ̂θm+1

, θ∗ = θm+1

)
= a− a2

a + b
, (18)

where

a := κ (θ∗, θ∗)−K (θ∗,θ∗) K−1
γ K (θ∗, θ∗) , (19)

b := se
(
γ̂θm+1

)2
. (20)

Then it follows that

Var
(
γ∗
∣∣Dγ , θm+1, γ̂θm+1 , θ∗ = θm+1

)
= b · a

a + b
≤ b (21)

since a ≥ 0 and b ≥ 0.

Remark 2. If the uncertainty criterion is chosen as the sum
of GPR-LPV variances as in (12), then Theorem 2 implies
that the total uncertainty at θm+1 post active learning
will be upper bounded by the trace of the estimated
covariance matrix for the local LPV model parameters.
In this way, the active learning framework decouples the
choice of operating point from the choice of input signals
in the local experiment. Algorithm 1 can be seen as find-
ing the operating point with greatest variance reduction
potential, for which the resultant variance reduction can
be controlled by the design of the local experiment with an

A-optimality criterion. In general, this local design prob-
lem will depend on experimental constraints such as the
allowable length of experimental time, as well as slew rate,
saturation or power constraints on the input signals. This
sub-problem is already well-addressed for linear systems
in other literature, so we do not elaborate further here.

3. ACTIVE LEARNING FOR DIESEL ENGINE
AIR-PATH

We apply the active learning framework to the LPV system
identification of a physical automotive diesel engine air-
path, with exhaust gas recirculation (EGR) and variable
geometry turbine (VGT). A typical high-fidelity model for
the diesel air-path has around eight states, for example in
Wahlstrom and Eriksson (2011). In Shekhar et al. (2017),
a reduced order model of four states was introduced to
facilitate the online implementation of model predictive
control.

3.1 Modelling

Following Shekhar et al. (2017), the system is modelled
using n = 4 measured signals for the states:

x = [pim pem Wcomp yEGR]
>

(22)

and m = 3 actuators:

u = [uthr uEGR uVGT]
>
, (23)

where pim is the intake manifold (boost) pressure, pem is
the exhaust manifold pressure, Wcomp is the compressor
mass flow rate and yEGR is the EGR rate (which is the ratio
of EGR mass flow rate to the sum of EGR and compressor
mass flow rates). For the inputs, uthr is the throttle valve,
uEGR is the EGR valve and uVGT is the VGT vane. A
model is developed in the trimmed state and input:

x̃ = x− x̄ (θ) , (24)

ũ = u− ū (θ) , (25)

where x̄ (θ) and ū (θ) are steady state maps on the operat-
ing point θ = (Ne, wfuel), with Ne as the engine speed and
wfuel as the fueling rate. These maps have been previously
obtained from a static calibration procedure as described
in Sankar et al. (2019). Thus, we can form an LPV model
in the trimmed state and inputs with dynamics

x̃k+1 = A (θ) x̃k +B (θ) ũk + wk. (26)

The operating space Θ is formed by box-constraints over
θ (represented by high/low Ne and wfuel), and the outputs

of interest for this system are y = [pim yEGR]
>

. Normal-
isation of the states has been performed so that they are
within the same order of magnitude.

3.2 Initial Training Data

An initial dataset was collected from 16 experiments at
each of the operating points marked by the crosses in
Figure 1. Each experiment constituted slightly over 6000
samples in duration, and was designed with a multisine
input perturbation signal, due to slew rate considerations
on the actuators.

For our choice of ilm() in the framework, the local linear
estimates and their corresponding standard errors were
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w

Fig. 1. Operating points at which experiments were con-
ducted. Points labelled with a number indicates the
order in which the active learning experiment was
performed beginning from the initial dataset.

identified using generalised least squares for VARX regres-
sion (Lütkepohl, 2005). A GPR-LPV model is then fitted
to these estimates. In our gpr() method, the covariance
function we choose is the commonly-used squared expo-
nential kernel:

κ (θ, θ′) = σ2 exp

[
−1

2
(θ − θ′)> Λ−1 (θ − θ′)

]
, (27)

which is a justifiable choice by Assumption 2, since this
kernel produces smooth sample paths of the posterior
Gaussian processes. The matrix Λ is a diagonal matrix
of length-scales, which we decide upon using domain
knowledge, since the relative magnitudes of the units
used in the operating point variables θ = (Ne, wfuel) are
understood. The hyperparameter σ is chosen based on an
empirical Bayes approach, where it is set to a factor of 2 of
the maximum observed standard error for the respective
parameter being fitted. As we suspect that A (θ) has all
eigenvalues inside the unit disk, we place a simple prior
mean for A (θ) which is a constant diagonal matrix with
all elements less than one in magnitude. The prior mean
for B (θ) is taken as a constant matrix of zeros.

Figure 2 illustrates a GPR surface fitted to the a11 element
from the initial training dataset, along with 95% credible
intervals provided by the GPR and approximate 95%
confidence intervals (2 standard errors) computed in the
initial estimates.

3.3 Active Learning Results

We demonstrate the active learning framework for sequen-
tial selection of operating points. The uncertainty criterion
(as given by the sum of GPR-LPV variances in (12)) for
the GPR-LPV after the initial training dataset is displayed
in Figure 4. To extend Algorithm 1 for sequential operating
point selection, we adopt a greedy approach, whereby the
(m + 1)st operating point is chosen at the point of maxi-
mum uncertainty after m experiments. We performed an
additional 19 experiments using active learning with this
greedy approach, to append on top of the initial training
dataset for the GPR-LPV. The order and the locations at
which these experiments were conducted are indicated in
Figure 1. Figures 4, 5 and 6 show the eventual reduction
in variance over the operating space. The updated GPR
surface for the a11 element is presented in Figure 3.

To assess the overall uncertainty of a GPR-LPV model
M after a batch of experiments, we numerically evaluate

Fig. 2. Initial fitted GPR surface for the a11 parameter.
The GPR variance naturally increases the further
away from the data points. Where the GPR surface
lies above the particular data point; this is due to
the effect of the prior regularisation. With a different
selection of priors and also the hyperparameter Λ, a
closer fit between the GPR estimate and the data
point is possible.

Fig. 3. Final fitted GPR surface for the a11 parameter after
active learning. Compared to Figure 2, the surface is
more refined and the uncertainty intervals of the GP
are narrower. Moreover by comparing the width of the
GP 95% interval to the ±2 standard errors interval,
Theorem 2 is demonstrated.

the total integrated volume of the uncertainty criterion
over the operating space, i.e.

∫
Θ
gM (θ) dθ. Figure 7 plots

the uncertainty volume as each subsequent experiment is
added, and shows that using the active learning frame-
work, most of the uncertainty can be reduced within the
first few experiments.

4. CONCLUSION & FUTURE WORK

In this paper, we contributed an active learning framework
for identifying LPV systems and demonstrated the success
of the approach via a reduction in total uncertainty of
a GPR-LPV for a diesel-engine air-path. The ability to
quantify the model uncertainty also provides benefit, such
as for when analysing performance of controllers designed
using the model. This work raises some interesting ad-
ditional questions to follow-up on, such as how active
learning can be applied when Assumption 3 (full state
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Fig. 4. Initial total uncertainty of GPR-LPV.

Fig. 5. Total uncertainty of GPR-LPV after 5 experiments.
The total uncertainty is reduced compared to Figure
4.

Fig. 6. Total uncertainty of GPR-LPV after 19 experi-
ments. The total uncertainty is reduced compared to
Figures 4 and 5.

Fig. 7. Decrease in uncertainty volume
∫

Θ
gM (θ) dθ via

active learning.

measurement) is relaxed, and LPV models must be iden-
tified from noisy input-output observations. Extensions to
other classes of nonlinear systems may also be explored.
These ideas will be investigated in future contributions.
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