
Curvature and Force Estimation
for a Soft Finger using an EKF

with Unknown Input Optimization

Junn Yong Loo ∗,1, Ze Yang Ding ∗,1, Evan Davies ∗,
Surya Girinatha Nurzaman ∗, Chee Pin Tan ∗,2

∗ School of Engineering and Advanced Engineering Platform, Monash
University Malaysia, 47500 Selangor, Malaysia (e-mail:

junn.loo/ze.ding/surya.nurzaman/tan.chee.pin/@monash.edu)

Abstract: Sensory data such as bending curvature and contact force are essential for controlling
soft robots. However, it is inconvenient to measure these variables because sensorizing soft robots
is difficult due to their inherent softness. An attractive alternative is to use an observer/filter
to estimate the variables that would have been measured by those sensors. Nevertheless, an
observer/filter requires a model which can be analytically demanding for soft robots due to
their high nonlinearity. In this paper, we propose an Unknown Input Extended Kalman Filter
(UI-EKF) consisting of an EKF interconnected with a UI-optimizer to respectively estimate the
state (curvature) and unknown input (contact force) for a pneumatic-based soft finger based
on an identified nonlinear model. We also prove analytically that the estimation errors are
bounded. Experimental results show that the UI-EKF can perform the estimation with high
accuracy, even when the identified system model is not accurate and the sensor measurement is
noisy. In other words, the proposed framework is able to estimate proprioceptive (internal) and
exteroceptive (external) variables (curvature and contact force respectively) of the robot using
a single sensor (flex), which is still an open problem in soft robotics.

Keywords: Extended Kalman filters; Unknown input estimation; Neural-network models;
Stochastic systems; Lyapunov Stability; Robotics

1. INTRODUCTION

Inspired by the inherent softness and compliance found
in biological organisms, soft robots are designed to have
these characteristic for adaptive operation in unstructured
environments (Nurzaman et al., 2014). For control pur-
poses, soft robots should ideally have access to sensory
data just like their rigid counterparts. For example, cur-
vature angle is useful in describing the bending of soft
actuators for feedback control (Webster and Jones, 2010).
External force is also important because soft robots gen-
erally have to interact with objects and obstacles in real
applications. However, integrating sensors in soft robots
to measure these variables is not as straightforward as
for their rigid counterparts (Rus and Tolley, 2015). For
instance, attaching multiple load cells on a soft robot for
force measurement introduces extra weight which could
stiffen it, whilst cameras, which are used for measuring
the curvature of a soft robot, are impractical to setup espe-
cially in unstructured environments. Due to this difficulty,
many soft robots are still open-loop systems (Wang et al.,
2017). To reduce the need of integrating sensors in soft
robots, an alternative is to employ estimation methods.
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A convenient estimation approach is using an empirical
model identified by experimental data. For example, El-
geneidy et al. (2018) developed data-driven models using
linear regression and neural networks to estimate the cur-
vature angles of a pneumatic actuator. Thuruthel et al.
(2019) trained a long short-term memory (LSTM) network
as the kinematic and force model to estimate the tip
position and contact force of their soft finger. However,
these empirical methods heavily depend on sensor mea-
surements which could be noisy, thereby reducing the esti-
mation accuracy. Another estimation method is through
optimization, for example Wang and Hirai (2017) esti-
mated the grasping force of their soft robot by minimizing
the discrepancy between the model estimates and sensor
measurements. Recent work by Venkiteswaran et al. (2019)
developed a pseudo-rigid body model with parameter opti-
mization to estimate the forces applied on a magnetically-
actuated manipulator. Nonetheless, the optimization ac-
curacy is adversely affected by modelling error, which can
be significant in soft robots due to their high nonlinearity.
Hence, it can be seen that the estimation approaches in
the aforementioned works are open-loop, and to get a good
estimate would require accurate sensor measurements and
a high-fidelity model, both of which are difficult or ex-
pensive to attain in soft robots. An observer/filter, that
processes sensor measurements based on a model in closed-
loop, could be a promising alternative to these methods.
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There are only few studies that utilize an observer/filter for
state estimation in soft robots. A Luenberger observer was
used to estimate the position and velocity using a reduced
order steady-state model (Thieffry et al., 2019). Lunni
et al. (2018) used an Adaptive Extended Kalman Filter
on a simplified quasi-static model to estimate the angle of
rotation at each flexural joint of a tendon-driven soft robot.
Loo et al. (2019a,b) proposed an Extended Kalman Filter
(EKF) to estimate states in the actuator and configuration
space of both planar and non-planar pneumatic-based soft
tentacles. However, none of these filter-based approaches
estimated the contact force, which is an external signal (or
unknown input). To the best of our knowledge, discrete-
time filters by themselves cannot estimate unknown in-
puts. A possible solution is to integrate the filters with an
additional component such as an optimizer for unknown
input estimation. In the field of structural control for
example, Huang et al. (2010); Liu et al. (2016) combined
Kalman Filters with least square optimization to estimate
unknown input in nonlinear systems, but only for a specific
class of systems in which the measurement model must be
a function of the unknown input.

In this paper, we present a general observer/filter-based
framework for state and unknown input estimation of a
pneumatic soft finger. Using a single flex sensor that can
be conveniently embedded in the finger, we estimate the
curvature angle and contact force, which are difficult to
measure. Due to the complexities involved in analytical
modelling of soft robots (Rus and Tolley, 2015), we em-
ploy system identification to model the soft finger, using
a NARX model with wavelet network to represent its
state dynamics, and nonlinear regression model to rep-
resent its output equation. The models that we use are
a class of non-recurrent methods, that are less complex
compared to recurrent network structure such as that in
(Thuruthel et al., 2019). In the model, the curvature angle
is formulated as an internal state because it relates to
proprioception (produced and perceived within the soft
finger), whereas the contact force, being an exteroceptive
stimulus, is modelled as an unknown input. Based on the
identified models, we propose an Unknown Input Extended
Kalman Filter scheme (UI-EKF) consisting of an EKF
interconnected with an UI-optimizer to estimate the curva-
ture and contact force respectively. We also prove that the
estimation errors are bounded. Experimental results show
that the UI-EKF is capable of estimating the curvature
and contact force to a high degree of accuracy. In the
model that we identified, the unknown input (contact
force) does not appear in the measurement equation, and
hence the methods by Huang et al. (2010) and Liu et al.
(2016) are not applicable to our system. In other words,
we have demonstrated the ability of the framework in es-

Fig. 1. Cross-sectional illustration of the PSF design.

Fig. 2. Experimental setup of the soft finger (actuated).

timating both proprioceptive (internal) and exteroceptive
(external) variables using a single sensor, which is still a
significant challenge in soft robotics.

This paper is organized as follows. Section 2 describes
the soft robot fabrication method and experimental setup.
Section 3 details the framework of the proposed UI-EKF.
Results are presented and discussed in Section 4. Lastly,
we conclude our work in Section 5.

2. MATERIALS

2.1 Fabrication of the Pneumatic Based Soft Robot

The soft robot used was a pneumatic-based soft finger
(PSF). We casted silicone (EcoFlex 0050, Smooth-On Inc.)
using 3D-printed molds to form the main body and a base
layer. After that, we embedded a flex sensor (4.5 inches,
SparkFun) in the base layer together with a piece of paper
to make it inextensible. Then, the base layer and the main
body were joined together with more silicone. Finally, we
soldered the connections of the flex sensor and prodded
the PSF with a sharp-end pneumatic pipe as air inlet. The
cross-sectional view of the PSF is shown in Fig. 1.

2.2 Experimental Setup

Our pneumatic system consisted of a pneumatic supply
connected in series to a pressure regulator followed by a
solenoid valve (VQD1151U-5L, SMC Pneumatics), which
was used to modulate the pressure by high-speed switch-
ing using PWM signals (Memarian et al., 2015). Finally,
the modulated supply was connected to the PSF inlet
and a pressure sensor (MPXH6400A, NXP) in parallel.
The pressure inside the PSF was assumed to be the
same as the measured pressure. We used a microcontroller
(PSOC R©5LP) to manipulate the duty cycle (control in-
put) of the PWM signal that controls the solenoid valve.
The amplitude and pulse width of the signals followed a
pseudorandom sequence.

To capture the motion of the PSF, we attached it to a
holder and placed reflective ball markers on its base, mid
and tip position. During actuation, 3 cameras (OptiTrack
Flex 13, NaturalPoint Inc.) continuously measured the
coordinates of the markers to be used as ground-truth
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Fig. 3. Piece-wise constant curvature model of the PSF.

in the identification and estimation process. In addition,
a sensing circuit was used to convert the the change in
resistance of the embedded flex sensor to voltage readings.
For tip contact force measurements, we used a load cell
(FX1901, TE Connectivity) to obtain the ground-truth by
positioning it near the PSF’s tip. The experimental setup
is shown in Fig. 2.

2.3 Data Collection

The sensors (for pressure, flex and force) were connected
to the analog pins of an Arduino Mega 2560 board for data
sampling whereas the markers’ coordinates were provided
by OptiTrack’s Motive software. We collected the mea-
surements at a rate of 11.5 Hz using MATLAB. 11 sets of
10-minute data and 4 sets of 5-minute data were collected
as identification and validation data respectively. Each set
corresponded to a different location of the load cell in front
of the tip; this was to simulate the unstructuredness of real
world environment in which the obstacles could be in any
arbitrary location when in contact with the tip.

3. METHODS

3.1 Planar Bending Modelling

The motivation behind choosing curvature angle to charac-
terize the PSF bending is the fact that the angle subtended
by the bending arc of a single segment, θi is the total
change in tangential direction along that arc as illustrated
in (Loo et al., 2019a). Here we use a piece-wise constant
curvature (PCC) analysis to calculate the angle φi between
any two consecutive segments using method in (Wang and
Hirai, 2017), given the nodal point coordinates as the
measured markers’ coordinates, as shown in Fig. 3. We
also considered the case when the 2nd and 3rd markers

Fig. 4. Block diagram of pneumatic soft finger system and
UI-EKF.

are to the left of the base marker by placing the origin
at the most leftward marker and calculate φi as before so
that the bending arc always extends out from the origin
marker, parallel to Y axis. With that, we approximate the
segmental curvature angle using the relationship θi = 2φi
(Webster and Jones, 2010). Finally, we quantify the cur-
vature of the whole PSF as sum of the discrete segmental
curvature angles, θ =

∑3
i=1 θi.

3.2 System Identification

The dynamics of the curvature angle that characterizes the
bending of the soft finger can be represented using a gen-
eral nonlinear state model and a nonlinear measurement
model as follows

ẋ = Φ(x, u1, u2) , y = Γ(x) (1)

where x is the system state (curvature angle), u1 is
the known system input (PSF’s internal pressure), u2 is
the unknown system input (tip contact force), y is the
measurement output (flex sensor voltage).

Using the Forward-Euler scheme, we discretize the contin-
uous models (1) by approximating the curvature angular
velocity, ẋk at each time step as

ẋk ≈
xk+1 − xk

ts
(2)

where ts is the sampling time step, to get the following
discrete-time models:

xk+1 = xk + Φ(xk, u1k , u2k) ts = f(xk, u1k , u2k) (3)

yk = h(xk) (4)

where f(·) is the system difference equation function and
h(·) is the discretized version of Γ(·). Fig. 4 illustrates this
configuration.

Since the soft robot is slowly-actuated, we can disregard
its dynamics, and assume ẋk ≈ 0, i.e.

Φ(xk, u1k , u2k) ≈ 0 (5)

from which we can get the following quasi-static model:

xk = gk(u1k , û2k ) (6)

Following our previous approach (Loo et al., 2019a), the
state model is identified as a NARX model using a wavelet
network with the modification of xr = [xk upk ufk ] as
the regressor input. Similarly, the measurement model
is identified as a fourth order polynomial function using
polynomial regression.

3.3 Unknown Input Extended Kalman Filter

Consider a nonlinear discrete system with additive noises,
represented by state and measurement models as follows

xk+1 = f(xk, u1k , u2k) + Gkwk (7)

yk = h(xk) + Dkvk (8)

Here, wk and vk are modelling error and measurement
noise of (3),(4), both assumed to have zero mean and unit
covariance. In this paper, we introduce a novel observation-
based filter structure termed as UI-EKF (Fig. 4), in
which the conventional EKF is interconnected with a least
square optimization scheme to simultaneously estimate the
state (curvature) and unknown input (contact force) of
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a nonlinear stochastic system. The formulations are as
follows:

EKF Predict phase:

x̂−k+1 = f(x̂+k , u1k , û2k) (9)

P−k+1 = Fk P+
k F>k + Qk (10)

where

Fk = Ak + ηBk (11)

EKF Correct phase:

Kk+1 = P−k+1C>k+1

[
Ck+1P−k+1C>k+1 + Rk+1

]−1
(12)

x̂+k+1 = x̂−k+1 + Kk+1

(
yk+1 − h(x̂−k+1)

)
(13)

P+
k+1 =

[
I−Kk+1Ck+1

]
P−k+1 (14)

where Ak, Bk and Ck are the state, input and measurement
Jacobians respectively, obtained as

Ak =
∂f

∂x

∣∣∣∣
x̂+
k
,u1k

,û2k

Bk =
∂f

∂u2

∣∣∣∣
x̂+
k
,u1k

,û2k

Ck+1 =
∂h

∂x

∣∣∣∣
x̂−
k+1

(15)

Unknown Input Optimization:

û2k = arg min
u2k

∥∥ x̂+k − g(u1k , u2k )
∥∥2 (16)

:= ψ( x̂+k , u1k , εk ) (17)

where εk is the modelling error of (6). In (16), we estimate
the unknown input, û2k via a nonlinear Least Square
Optimization as shown.

This quasi-static model (6) is identified using a 1-hidden
layer, Rectified Linear Unit (ReLU) activated neural net-
work. We used the ReLU activation to conserve the con-
vexity of the function thereby preventing the optimiza-
tion solution from being a local minima. A quasi-static
approximation is valid since there is no rapid dynamics
in our pneumatic soft finger. For fast-actuated system,
the dynamic model (7) can be used for unknown input
optimization (16) instead.

Define the estimation errors to be

ek = xk − x̂+k , zk = xk − x̂−k , ξk = u2k − û2k (18)

Then

ξk = ψ(xk, u1k , εk)− ψ(x̂+k , u1k , εk) := Ψ(xk, x̂
+
k ) (19)

The Taylor’s expansion of f(·) at x̂+k and h ◦ f(·) at x̂−k+1
are

f(xk, u1k , u2k )− f( x̂+k , u1k , û2k )

= Jkζk + ϕ(xk, x̂
+
k , u2k , û2k )

h
(
f(xk, u1k , u2k ) + Gkwk

)
− h
(
f( x̂+k , u1k , û2k )

)
= Ck+1

(
Jkζk + ϕ(xk, x̂

+
k , u2k , û2k ) + Gkwk

)
+ χ(xk+1, x̂

−
k+1 )

(20)

where we have used chain rule for h ◦ f(·) and

Jk = [Ak Bk] , ζk =

[
ek
ξk

]
(21)

Introduce the a priori estimation error as

zk+1 = xk+1 − x̂−k+1

= f(xk, u1k , u2k )− f( x̂+k , u1k , û2k ) + Gkwk
= Jkζk + ϕ(·) + Gkwk

(22)

Introduce the a posteriori estimation error as

ek+1 = xk+1 − x̂+k+1

= xk+1 −
(
x̂−k+1 + Kk+1

(
yk+1 − h(x̂−k+1)

) )
= f(xk, u1k , u2k ) + Gkwk − f( x̂+k , u1k , û2k )

−Kk+1

(
h
(
f(xk, u1k , u2k ) + Gkwk

)
+ Dk+1vk+1

− h
(
f( x̂+k , u1k , û2k )

) )
= Jkζk −Kk+1Ck+1Jkζk + rk + sk
= [I−Kk+1Ck+1] Jkζk + rk + sk

(23)

where

rk = [I−Kk+1Ck+1]ϕ(·)−Kk+1 χ(·) (24)

sk = [I−Kk+1Ck+1] Gkwk −Kk+1Dk+1vk+1 (25)

Here, we make the following global boundedness assump-
tions∥∥Ak

∥∥ ≤ a ,
∥∥Bk

∥∥ ≤ b ,
∥∥Ck

∥∥ ≤ c (26)

qI ≤ Qk ≤ qI , rI ≤ Rk ≤ rI (27)

pI ≤ P+
k ≤ pI (28)

and the following global Lipchitz assumptions:

‖ξk‖ =
∥∥Ψ(xk, x̂

+
k )
∥∥ ≤ η‖ek‖ (29)∥∥ϕ(xk, x̂

+
k , u2k , û2k )

∥∥ ≤ κϕ‖ζk‖2

≤ κϕ(‖ek‖2 + ‖ξk‖2) ≤ κϕ(1 + η2) ‖ek‖2
(30)∥∥χ(xk+1, x̂

−
k+1 )

∥∥ ≤ κχ‖zk+1‖2 (31)

Lemma 1. Under the assumptions (26)-(28), there exists a

positive real number β < 1 such that Πk = P+
k

−1
satisfies

F>k
[
I−Kk+1Ck+1

]>
Πk+1

[
I−Kk+1Ck+1

]
Fk ≤ Πk(1− β)

Proof. See Appendix A.1.

Lemma 2. Under the Lipchitz assumptions (29)-(31) and
let rk be given by (24), there exist positive real numbers

κnonl1 , κnonl2 and κnonlw such that Πk = P+
k

−1
satisfies

E
[
r>k Πk+1

(
2
[
I−Kk+1Ck+1

]
Jkζk + rk

)]
≤ κnonl1(‖ek‖) + κnonl2(‖ek‖)δw + κnonlwδ

2
w

Proof. See Appendix A.2.

Lemma 3. Let sk be given by (25), there exist positive

real numbers κnoisew and κnoisev such that Πk = P+
k

−1

satisfies

E
[
s>k Πk+1sk

]
≤ κnoisewδw + κnoisevδv

Proof. See Appendix A.3.

Proposition 1. Under assumptions (26)-(31), the UI-EKF
described by (9)-(16) is able to estimate the state and
unknown input of system (7)-(8) with errors exponentially
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Fig. 5. Validation of system model (top) and measurement
model (bottom) identification.

bounded in mean square with probability one, provided
that the initial state error is small i.e.

‖e0‖ ≤ ε (32)

and the model error and sensor noise are bounded i.e.

GkG>k ≤ δwI , DkD>k ≤ δvI (33)

Proof. See Appendix A.4.

Remark: Assuming that our identified system (3),(4) is
locally observable (i.e. two distinct states, x1, x2 are U-
distinguishable for every admissible system input, u, im-
plying that the nonlinear observability rank condition is
satisfied) (Hermann and Krener, 1977) and their nonlin-
ear functions, f(·), h(·) are twice differentiable, then from
Lemma 4.1 and Lemma 4.2 in (Reif et al., 1999), Ak,Ck
in (15) satisfy the uniform observability condition, thus
condition (28) is valid if the noise covariances are bounded
i.e. (27) holds. Lipchitz assumptions (29) generally holds
if the objective function in (16) is convex and the model
error, ε of (6) is small. According to (Reif et al., 1999,
Proof of Theorem 4.1 ), κϕ, κχ in (30), (31) are given by
the spectral norm of the respective Hessian matrices of
f(·), h(·).

In practice, we use P−k+1 = Ak P+
k A>k + Qk instead of (10)

for estimate covariance propagation in EKF while setting a
higher Qk to compensate for the term η2BkP+

k B>k at each
time step, so that we circumvent the difficulty of finding
the global Lipchitz constant, η in (29).

4. RESULTS & DISCUSSIONS

4.1 System Identification

With the identification data, the state model f(·) is identi-
fied as a wavelet-based NARX model using xk (curvature),
u1k (pressure) and u2k (force) as inputs and xk+1 as
output, whereas the measurement model h(·) uses a 4th

order polynomial to fit xk and yk (flex voltage) as input
and output respectively. The model is then tested against
the validation data, and its normalized root-mean-squared
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Fig. 6. Result of curvature (top) and contact force (bot-
tom) estimation.

error (NRMSE) is used to indicate the quality of fit. Fig.
5 shows the validation results of the state model (top) and
measurement model (bottom), with a NRMSE of 7.47%
and 2.72% respectively. The validation results also show
that both the open-loop models (state and measurement)
are able to capture the soft robot’s dynamics well and
also estimate the curvature angles, but only to a certain
accuracy with the respective margin of errors. In addition,
the identified model requires the knowledge of contact
force for estimation, and it cannot be used for real-time
testing as contact force is an unknown quantity.

4.2 State and Unknown Input Estimation

Using the identified models, the UI-EKF closed-loop
framework is employed to estimate both the curvature and
contact force. Fig. 6 (top) shows the curvature estimation
result with a much-improved NRMSE of 2.94% compared
to the open-loop estimation (Fig. 5-top). Even without
the knowledge of contact force. the EKF is able to esti-
mate the curvature with a high accuracy. In addition, the
EKF, being a filter, reduces the effect of noise from the
measurement output onto the estimated state.

Fig. 6 (bottom) shows the result for contact force estima-
tion, with a NRMSE of 4.05%. This indicates that our pro-
posed UI-EKF framework is successful in estimating not
only the state, but also the unknown input. Furthermore,
the force estimate is much less affected by measurement
noise because it is obtained by the UI optimizer using the
filtered curvature angle.

5. CONCLUSION

In this work, we present a novel Unknown Input Extended
Kalman Filter (UI-EKF) to estimate the state (curvature)
and unknown input (contact force) for a pneumatic soft
finger based on an identified nonlinear model, and mea-
surements of pressure and flex voltage (which are more
convenient to obtain in our setting). We also prove that
the estimation errors are bounded. The results show that
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the estimates from the UI-EKF are very accurate. Finally,
the paper has also shown that the proposed framework can
estimate both proprioceptive (internal) and exteroceptive
(external) variables using only a single sensor, resolving a
significant challenge in soft robotics. Future work includes
estimation in more complex soft robotic systems.

REFERENCES

Elgeneidy, K., Lohse, N., and Jackson, M. (2018). Bending
angle prediction and control of soft pneumatic actuators
with embedded flex sensors–a data-driven approach.
Mechatronics, 50, 234–247.

Hermann, R. and Krener, A. (1977). Nonlinear controlla-
bility and observability. IEEE Trans. Autom. Control,
22(5), 728–740.

Huang, H., Yang, J.N., and Zhou, L. (2010). Adaptive
quadratic sum-squares error with unknown inputs for
damage identification of structures. Structural Control
and Health Monitoring, 17(4), 404–426.

Liu, L., Su, Y., Zhu, J., and Lei, Y. (2016). Data fusion
based ekf-ui for real-time simultaneous identification
of structural systems and unknown external inputs.
Measurement, 88, 456 – 467.

Loo, J.Y., Kong, K.C., Tan, C.P., and Nurzaman, S.G.
(2019a). Non-linear system identification and state
estimation in a pneumatic based soft continuum robot.
In 2019 CCTA.

Loo, J.Y., Tan, C.P., and Nurzaman, S.G. (2019b). H-
infinity based extended kalman filter for state estimation
in highly non-linear soft robotic system. In 2019 ACC,
5154–5160. IEEE.

Lunni, D., Giordano, G., Sinibaldi, E., Cianchetti, M.,
and Mazzolai, B. (2018). Shape estimation based on
kalman filtering: Towards fully soft proprioception. In
2018 RoboSoft, 541–546. IEEE.

Memarian, M., Gorbet, R., and Kulić, D. (2015). Con-
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Appendix A. STABILITY PROOFS

The proofs follow closely the results of (Reif et al., 1999)
who considered a priori estimation of a one-step EKF;
in this paper, we also include unknown input estimation
by considering the conventional two-step EKF in cas-
cade with an unknown input optimization and prove for
bounded error in both a posteriori state and unknown
input estimates. Hence, Lemma 1, Lemma 2, Lemma 3
and Proposition 1 follow from Lemma 3.1, Lemma 3.2,
Lemma 3.3 and Theorem 3.1 in (Reif et al., 1999), but
with the necessary modifications.

A.1 Proof of Lemma 1. The posteriori estimate covariance
propagation equation in (14) can be reformulated into

P+
k+1 =

[
I−Kk+1Ck+1

]
P−k+1

[
I−Kk+1Ck+1

]>
+ Kk+1Rk+1K>k+1

=
[
I−Kk+1Ck+1

][
FkP+

k F>k + Qk

][
I−Kk+1Ck+1

]>
+ Kk+1Rk+1K>k+1

=
[
I−Kk+1Ck+1

]
Fk

[
P+
k + F−1k QkF−>k

+ F−1k
[
I−Kk+1Ck+1

]−1
Kk+1Rk+1K>k+1

×
[
I−Kk+1Ck+1

]−>
F−>k

]
F>k
[
I−Kk+1Ck+1

]>
≥
[
I−Kk+1Ck+1

]
Fk×

P+
k

(
1 +

1

p(a+ ηb)2

(
q +

p2c2

r
(
1 + pc2 1

r

)2))
× F>k

[
I−Kk+1Ck+1

]>
(A.1)

where we used the fact that (12) can be rewritten into

Kk = P+
k C>k R−1k , pc

1

r
≤ ‖Kk‖ ≤ pc

1

r
(A.2)

Taking the inverse on both sides of (A.1),

P+
k+1

−1 ≤
[
I−Kk+1Ck+1

]−>
F−>k ×

P+
k

−1
(

1 +
1

p(a+ ηb)2

(
q +

p2c2

r
(
1 + pc2 1

r

)2))×
F−1k

[
I−Kk+1Ck+1

]−1
F>k
[
I−Kk+1Ck+1

]>
P+
k+1

−1[
I−Kk+1Ck+1

]
Fk

≤ P+
k

−1
(

1 +
1

p(a+ ηb)2

(
q +

p2c2

r
(
1 + pc2 1

r

)2))−1
By letting Πk = P+

k

−1
,
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F>k
[
I−Kk+1Ck+1

]>
Πk+1

[
I−Kk+1Ck+1

]
Fk

≤ Πk
1

1 + 1

p(a+ηb)2

(
q +

p2c2

r
(
1+pc2 1

r

)2) = Πk (1− β)

A.2 Proof of Lemma 2. From (24),(30),(31),(22) we have

‖rk‖ ≤
∥∥[I−Kk+1Ck+1]ϕ(·)

∥∥+
∥∥Kk+1χ(·)

∥∥
≤ (1 + pc2

1

r
)κϕ‖ζk‖2 + pc

1

r
κχ‖Jkζk + ϕ(·) + Gkwk‖2

≤
(

1 + pc2
1

r
κϕ + pc

1

r
κχ(a+ ηb)2

)
‖ζk‖2

+ pc
1

r
κχκ

2
ϕ‖ζk‖4 + pc

1

r
κχ‖Gkwk‖2

≤ κ′1(1 + η2) ‖ek‖2 + κ′2(1 + η4) ‖ek‖4 + κ3‖Gkwk‖2

= κ1‖ek‖2 + κ2‖ek‖4 + κ3‖Gkwk‖2

where we have used the facts that from (21) and (29),
‖Jkζk‖ ≤ (‖Ak‖+ η‖Bk‖)‖ek‖. Given (33) holds and the
fact that wk is white, we have

E
[
r>k Πk+1

(
2
[
I−Kk+1Ck+1

]
Jkζk + rk

)]
≤ E

[
κ1‖ek‖2 + κ2‖ek‖4 + κ3‖Gkwk‖2×

1

p

(
2
(
1 + pc2

1

r

)
(a+ ηb)‖ek‖
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(
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]
G>k

)2
= κnonl1(‖ek‖) + κnonl2(‖ek‖)δw + κnonlwδ

2
w

where κnonl1(·) and κnonl2(·) are polynomial functions of
‖ek‖.
We also used the matrix identity for trace operation
tr(AB) = tr(BA), and the fact that

tr
(
GkG>k

)
≤ gδw , tr

(
DkD>k

)
≤ dδv (A.3)

where g and d are the number of rows of Gk and Dk. Note
that taking the trace of a scalar does not change its value.

A.3 Proof of Lemma 3. Taking the expectation of
s>k Πk+1sk, we get

E
[
s>k Πk+1sk

]
= E
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w>k G>k

[
I−Kk+1Ck+1

]>
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+ v>k+1D>k+1K>k+1Πk+1Kk+1Dk+1vk+1

]
where the cross terms of wk and vk vanished since they
are uncorrelated. With the fact that both wk and vk are
white , we have
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A.4 Proof of Proposition 1. Choose a Lyapunov function

Vk
(
ek
)

= e>k Πkek, where Πk = P+
k

−1
. From (28) we have

1

p
‖ek‖2 ≤ Vk

(
ek
)
≤ 1

p
‖ek‖2 (A.4)

Then, from (23), we have
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(
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=
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(A.5)

Taking the conditional expectation, E
[
Vk+1

(
ek+1

) ∣∣ ek],
the term

E
[
2s>k Πk+1
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I−Kk+1Ck+1

]
Jkζk + rk

))∣∣∣ ek]
= 2E

[
s>k
∣∣ ek]E[Πk+1
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I−Kk+1Ck+1

]
Jkζk + rk
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vanishes due to the fact that Πk+1( [ I−Kk+1Ck+1] Jkζk +
rk) and ζk are independent of the noise term sk(wk, vk+1 ).

Applying Lemma 1,2,3 on (A.5), we get

E
[
Vk+1

(
ek+1

) ∣∣ ek]− Vk(ek)
≤ − βVk

(
ek
)

+ κnonl1(‖ek‖) + κnonl2(‖ek‖)δw
+ κnonlwδ

2
w + κnoisewδw + κnoisevδv

(A.6)

Let ‖ek‖ ≤ ε be the solution such that

κnonl1(‖ek‖) + κnonl2(‖ek‖)δw ≤
β

p
‖ek‖2 ≤ βVk

(
ek
)

where the second inequality follows from (A.4).

Then (A.6) becomes

E
[
Vk+1

(
ek+1

) ∣∣ ek]− Vk(ek) ≤ µ− αVk(ek)
with µ = κnonlwδ

2
w + κnoisewδw + κnoisevδv.

Finally, if there exist some positive constants ε, δw and
δv such that (32) and (33) holds, together with (A.4), the
conditions in (Reif et al., 1999, Lemma 2.1) is fulfilled.
Hence, we proved that ek is exponentially bounded in
mean square and bounded with probability one. Then from
(29), the same boundedness applies to ξk.
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