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Abstract: We consider an optimal control problem for discrete-time linear time-invariant
systems subject to unknown state-space model, constrained inputs and noisy output measure-
ments. Since traditional model-based optimal control problem formulations and methods are
not applicable to the problem under consideration, we propose a data-driven robust formulation
based on the explicit model description derived from a single measured trajectory of the system.
Then we propose an open-loop optimal feedback control scheme and show that its efficient
implementation requires solution of a number of optimal estimation problems and a deterministic
optimal control problem, all in data-driven formulations. The main contributions of this paper
are the separation of the estimation and control processes in the data-driven context and the
resulting robust feedback control scheme.
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1. INTRODUCTION

Data-driven control methods has received a significant
attention recently. This is mainly motivated by growing
amount of data that is becoming easier to acquire and
rapid development of various learning techniques. The idea
of incorporating data directly into a control problem for-
mulation, and thus, avoiding model identification step, is
becoming very attractive, especially for complex systems.
An overview of data-driven approaches in control theory
is given in Hou and Wang (2013).

This paper deals with a finite-time optimal control prob-
lem for discrete-time linear time-invariant (LTI) systems
subject to constrained inputs and noisy output measure-
ments. For LTI systems a promising approach to obtaining
a purely data-driven control problem formulation is pro-
vided by results originally obtained in the framework of
behavioral systems theory, see Willems et al. (2005). As
shown in Willems et al. (2005), under an assumption of
persistently exciting input, the space of all LTI system
trajectories can be obtained from a single input-output
trajectory measurement as a linear combination of its
time-shifts. Thus, a system is no longer characterized by
its state-space model, but rather by one persistently excit-
ing and long enough trajectory. This result from Willems
et al. (2005) has been recently translated in Berberich and
Allgöwer (2019) to classical state-space control context. A
data-based trajectory characterization from Berberich and
Allgöwer (2019) was used in Romer et al. (2019) to verify
dissipativity properties, and in Berberich et al. (2019) to
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propose a data-driven model predictive controller with
first results on stability and robustness guarantees. Other
approaches in this direction can be found in Yang and Li
(2015); Coulson et al. (2019); Kadali et al. (2003); Salvador
et al. (2018).

In this note we rely on results from Berberich and Allgöwer
(2019) to propose a robust feedback control scheme in an
optimal control problem. Our focus is on a data-driven
formulation of optimization problems that are solved in a
receding horizon manner to obtain the feedback and on
robust output constraint satisfaction. Although here the
problem is considered on a finite-time interval, the results
can be useful in robust model predictive control, as the
approach proposed here is close to the simultaneous con-
trol and state estimation approach in Copp and Hespanha
(2017).

The overall paper is structured as follows. In Section 2
we outline the model-based optimal control problem sub-
ject to set-membership uncertainty in the initial state
of the system and output measurement errors, and pro-
vide some results related to open-loop optimal feedback
control, which are needed in the following sections to
derive relevant data-driven counterparts of the model-
based approach. Section 3 presents required results from
Berberich and Allgöwer (2019) on the LTI system’s tra-
jectories representation and introduces one possible data-
driven optimal control problem formulation. Here, we also
discuss the lack of robustness of the proposed formulation
and present the idea of robustifying it via the separation
of estimation and control problems which is studied in
detail in Section 4. In Section 5 we illustrate the proposed
approach by a numerical example. Section 6 provides some
final conclusion.
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Notations. In the following the discrete-time LTI system
is denoted by G. The concatenation of vectors x ∈ Rn and
y ∈ Rm is denoted by (x, y), i.e. (x, y) = [xT , yT ]T . The
Euclidean and `∞-norm of vectors x ∈ Rn are denoted
by ||x|| and ||x||∞, respectively. Further, we denote a
vector of ones by 1, its dimension follows from the context.
Finally, x(t|x0, ut) denotes the trajectory of the system G
at time t if the initial state is x(0) = x0 and the control is
ut = (u(0), u(1), . . . , u(t)).

2. MODEL-BASED OPTIMAL CONTROL PROBLEM

In this section we consider a model-based problem formu-
lation, i.e. the case when the system G is explicitly defined
by known matrices A, B, C, and D:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0, (1)

y(t) = Cx(t) +Du(t), t = 0, . . . , N − 1.

In (1) x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rq, denote the state,
the input and the output, respectively; (A,B,C,D) is a
minimal realization of G.

System (1) is subject to input and output constraints

u(t) ∈ U, y(t) ∈ Y (t), t = 0, . . . , N − 1, (2)

where U = {u ∈ Rr : umin ≤ u ≤ umax}, and Y (t) = {y ∈
Rq : G(t)y ≤ g(t)}, G(t) ∈ Rm×q, g(t) ∈ Rm.

In the following we distinguish between the variables used
in model (1) and the real system/plant variables. The
latter will be denoted by a superscript p, thus,

upτ = (up(0), . . . , up(τ − 1)) , ypτ = (yp(0), . . . yp(τ − 1))

are the input and the output/measurement trajectories
which realize in a particular control process by the time τ .
We will also refer to them as past input-otput trajectories.

The measured output yp(t) differs from model (1) output
y(t) due to two types of uncertainties. First, it is assumed
that the initial state x0 of system (1) is not known. Sec-
ondly, the output is measured with an additive bounded
error denoted by ξ(t), i.e.

yp(t) = y(t) + ξ(t), t = 0, . . . , N − 1.

For the uncertain variables set-based estimates in the form
x0 ∈ X0 and ξ(t) ∈ Ξ are given. Here, X0 = {x ∈ Rn :
xmin ≤ x ≤ xmax} is the set of possible initial states of
system (1), and Ξ = {ξ ∈ Rp : ||ξ||∞ ≤ ε} is the set of
possible realizations of measurement errors, ε > 0.

The control objective is to minimize the quadratic cost of
the form

N−1∑
t=0

||u(t)||2, (3)

while satisfying input and output constraints (2) robustly,
i.e. for all possible initial state and measurement errors
realizations.

In the following we discuss the open-loop optimal feedback
control strategy for problem (1) – (3). The results are a
modification of ideas from Gabasov et al. (2007); Dmitruk
et al. (2008), which accounts for constrained outputs in
(2) and discrete-time systems (1).

Open-loop (worst-case) optimal feedback control refers to
a control strategy that is formed on the base of a repeated

solution of the open-loop optimal control problem (1)–
(3) at every time instant τ = 0, . . . , N − 1 subject to a
shrinking control horizon {τ, . . . , N} and the past input-
output trajectories {upτ , ypτ}. If we denote the optimal
solution of the problem by u0(t|τ, upτ , ypτ ), t = τ, . . . , N ,
then the input applied to the plant at time τ is given by

up(τ) = u0(τ |τ, upτ , ypτ ).

Definition 1. We say that a state x(τ) is consistent with
the past input-output trajectory {upτ , ypτ} if there exist an
initial condition x0 ∈ X0 and feasible measurement errors
ξ(t), t = 0, . . . , τ − 1, such that

x(τ) = x(τ |x0, upτ ),

yp(t) = Cx(t|x0, upt ) +Dup(t) + ξ(t), t = 0, . . . , τ − 1.

Let X(τ, upτ , y
p
τ ) denote the set of all states x(τ) consistent

with {upτ , ypτ}.
The open-loop optimal control problem for the time in-
stant τ is formulated as follows

min
u

N−1∑
t=τ

||u(t)||2, (4)

s.t. x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

u(t) ∈ U, y(t) ∈ Y (t) ∀x(τ) ∈ X(τ, upτ , y
p
τ ),

t = τ, . . . , N − 1.

The solution of problem (4) is a feasible input u0(t|τ, upτ , ypτ ),
t = τ, . . . , N , that for every realization of the initial state
x(τ) ∈ X(τ, upτ , y

p
τ ) steers the output inside the set Y (t)

and minimizes the cost-to-go
∑N−1
t=τ ||u(t)||2. Thus, (4)

guarantees robust constraint satisfaction for all states x(τ)
consistent with {upτ , ypτ}.
Due to the separation principle for linear systems (see
e.g. Kurzhanskii and Vályi (1997)), the optimal input
u0(t|τ, upτ , ypτ ), t = τ, . . . , N , of problem (4) can be ob-
tained by the solution of several optimal estimation prob-
lems and one deterministic optimal control problem.

To obtain these optimization problems we separate the
state x(t) and the output y(t), t = τ, . . . , N−1, in (4) into
the sums

x(t) = x0(t) + x̂(t), y(t) = y0(t) + ŷ(t), (5)

where x0(t), y0(t) denote the state and the output of the
nominal system with the trivial initial state

x0(t+ 1) = Ax0(t) +Bu(t), x0(τ) = 0,

y0(t) = Cx0(t) +Du(t), t = τ, . . . , N − 1,

and x̂(t), ŷ(t) denote the state and the output of the
uncontrolled system with the uncertain initial state

x̂0(t+ 1) = Ax̂(t), x̂(τ) ∈ X(τ, upτ , y
p
τ ),

ŷ(t) = Cx̂(t), t = τ, . . . , N − 1.

Now consider the output constraint at the time instant t
of problem (4) in the form

G(t)(y0(t) + ŷ(t)) ≤ g(t) ∀x(τ) ∈ X(τ, upτ , y
p
τ ).

Obviously, this constraint is satisfied robustly, if the nom-
inal output y0(t) satisfies the tightened constraint of the
form

y0(t) ∈ Y0(t|τ) = {y ∈ Rq : G(t)y ≤ g(t)− χ(t|τ)}.
Here χ(t|τ) = χ(t|τ, upτ , ypτ ) = (χi(t|τ), i = 1, . . . ,m), and
each χi(t|τ) corresponds to the worst-case realization of
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the state x(τ) as obtained by the solution of the optimal
estimation problem

χi(t|τ) = max
z

Gi(t)ŷ(t),

s.t. x̂(s+ 1) = Ax̂(s), x̂(τ) = z, (6)

ŷ(s) = Cx̂(s), s = τ, . . . , t− 1,

z ∈ X(τ, upτ , y
p
τ ),

where Gi(t) denotes the i-th row of the matrix G(t).

After calculating all estimates χ(t|τ), t = τ, . . . , N − 1,
the optimal input u0(t|τ, upτ , ypτ ), t = τ, . . . , N , is now
obtained by the solution of the following deterministic
optimal control problem

min
u

N−1∑
t=τ

||u(t)||2, (7)

s.t. x0(t+ 1) = Ax0(t) +Bu(t), x0(τ) = 0,

y0(t) = Cx0(t) +Du(t),

u(t) ∈ U, y0(t) ∈ Y0(t|τ),

t = τ, . . . , N − 1.

As outlined, vectors χ(t|τ), t = τ, . . . , N − 1, contain all
information required to solve the optimal control problem
(7). To conclude this section we show how to obtain the
estimates χ(t|τ) in an efficient way, without calculating
the set X(τ, upτ , y

p
τ ).

Following Gabasov et al. (2007), this can be achieved
on the base of “purified measurements” yp0(s) = yp(s) −
Cx(s|0, ups) −Dup(s), s = 0, . . . , τ − 1, by the solution of
linear programs (for all i = 1, . . . ,m, and t = τ . . . , N − 1)

γi(t|τ) = max
x0

Gi(t)CA
tx0,

s.t. − ε1 ≤ yp0(s)− CAsx0 ≤ ε1, s = 0, . . . , τ − 1,

xmin ≤ x0 ≤ xmax.

Then χ(t) = G(t)CAt−τx(τ |0, upτ ) + γ(t|τ).

3. DATA-DRIVEN OPTIMAL CONTROL PROBLEM

In this section we assume that matrices A, B, C, and D of
the system G are not known, therefore the mathematical
model (1) is not available for formulating the optimal
control problem (1)–(3). Moreover, the state dimension n
is also not known, but an upper estimate for it is given
(see, Berberich et al. (2019)).

Our knowledge about the system G is limited to a single
a priory measured input-output trajectory

ud =
(
ud(0), . . . , ud(Nd − 1)

)
, (8)

yd =
(
yd(0), . . . yd(Nd − 1)

)
. (9)

Data (8),(9) can be obtained via experiments or simu-
lations and satisfies relations (1) with some initial state
x0. Note that here the output yd is not affected by any
measurement noise. This is a restrictive assumption that
will be relaxed in the future work.

3.1 Trajectory-based representation of LTI systems

Recent results, obtained in Berberich and Allgöwer (2019),
provide characterization of the trajectory space of the LTI
system G using only its single input-output trajectory

(8),(9). This is done via Hankel matrices that consist of
the time-shifts of trajectory (8),(9).

For ud and yd define the Hankel matrices, respectively

Hu = HN (ud) =


ud(0) ud(1) . . . ud(Nd −N)
ud(1) ud(2) . . . ud(Nd −N + 1)

...
...

. . .
...

ud(N − 1) ud(N) . . . ud(Nd − 1)

,

Hy = HN (yd) =


yd(0) yd(1) . . . yd(Nd −N)
yd(1) yd(2) . . . yd(Nd −N + 1)

...
...

. . .
...

yd(N − 1) yd(N) . . . yd(Nd − 1)

.
The following definition and theorem are given according
to Berberich and Allgöwer (2019); Berberich et al. (2019).

Definition 2. We say that a signal ud defined by (8)
with u(t) ∈ Rr is persistently exciting of order L if
rank HL(ud) = rL.

Theorem 1. Suppose that (8),(9) is a trajectory of the LTI
system G, where ud is persistently exciting of order N+n.
Then,

u = (u(0), . . . , u(N − 1)) , y = (y(0), . . . y(N − 1))

is a trajectory of G if and only if there exists α ∈ RNd−N+1

such that [
Hu

Hy

]
α =

[
u
y

]
. (10)

Theorem 1 gives a useful representation of the input-
output trajectories of the system G. The LTI system
is no longer characterized by its state-space model, but
rather by a single persistently exciting and long enough
trajectory. It also allows us to skip identification of model
(1) and use relation (10) directly in the optimization
problem. This is done in the next section.

3.2 Data-driven problem formulation

In the following we consider the LTI system G with its
trajectory-based representation (10). Since there is no
state information or state-space model of the system G,
there is no information about the initial state or set X0

available. As shown in Berberich and Allgöwer (2019),
the trajectory of the system, and hence, its initial state,
is uniquely defined by n first (for t = 0, . . . , n − 1)
input-output measurements. Therefore, we assume that
the control of the real plant starts at the time instant
τ = n.

Consider an arbitrary τ , n ≤ τ ≤ N − 1. As in Section ??,
the triple (τ, upτ , y

p
τ ) is the current position of the control

process.

We are interested in representing the trajectory {(upτ , u),
(ŷpτ , y)} with a noiseless past output ŷp = (ŷp(0), ŷp(1) ,
. . . ŷp(τ − 1)) and future input-output trajectories

u = (u(τ), . . . , u(N − 1)) , y = (y(τ), . . . y(N − 1)) .

The noiseless output ŷp relates to the measurements yp,
via the constraint

||ŷp(t)− yp(t)||∞ ≤ ε, t = 0, . . . , τ − 1.

According to (10), the trajectory {(upτ , u), (ŷpτ , y)} is rep-
resented by the relation
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[
Hu

Hy

]
α(τ) =

u
p
τ
u
ŷpτ
y

 ⇔
Hp
u(τ)α(τ) = upτ ,

Hf
u (τ)α(τ) = u,

Hp
y (τ)α(τ) = ŷpτ ,

Hf
y (τ)α(τ) = y,

(11)

where α(τ) ∈ RNd−N+1 is a parameter, corresponding to
the current time instant τ , the Hankel matrices are splitted
as follows

Hp
u(τ) =

 ud(0) . . . ud(Nd −N)
...

. . .
...

ud(τ − 1) . . . ud(Nd −N + τ − 1)

,

Hf
u (τ) =

 ud(τ) . . . ud(Nd −N + τ)
...

. . .
...

ud(N − 1) . . . ud(Nd − 1)

,
Hp
y (τ) =

 yd(0) . . . yd(Nd −N)
...

. . .
...

yd(τ − 1) . . . yd(Nd −N + τ − 1)

,
Hf
y (τ) =

 yd(τ) . . . yd(Nd −N + τ)
...

. . .
...

yd(N − 1) . . . yd(Nd − 1)

.
The simplest way to formulate a data-driven optimal
control problem is to replace the dynamical system (1)
by the equality constraints (11). This yields the following
formulation of the optimal control problem

min
α(τ),u,y,ŷp

||u||2, (12)

s.t. Hp
u(τ)α(τ) = upτ ,

Hf
u (τ)α(τ) = u,

Hp
y (τ)α(τ) = ŷpτ ,

Hf
y (τ)α(τ) = y,

||ŷp(t)− yp(t)||∞ ≤ ε, t = 0, . . . , τ − 1,

u(t) ∈ U, y(t) ∈ Y (t), t = τ, . . . , N − 1.

Problem (12), however, is not a data-driven counterpart
of the robust model-based problem (4). Formulation (12)
fits a single parameter α(τ) to both past data {upτ , ypτ} and
predicted input-output trajectory {u, y}, and, thus, has no
robustness. In the real process realization y could be such
that output constraints are violated.

To overcome the inconsistency of formulation (12) we
aim to find a separation between fitting past and future
trajectories. In the next section we propose one approach
to tackle this idea.

4. DATA-DRIVEN ROBUST OPTIMAL CONTROL
PROBLEM WITH SEPARATION

The goal of this section is to incorporate separation of
estimation and control processes, as in Section 2, in the
data-based trajectory representation (11).

4.1 Robust problem formulation

We follow the ideas of Section 2, namely decomposition
(5), and represent α(τ) as a sum

α(τ) = α0(τ) + α̂(τ), (13)

where α0(τ) will be used to characterize future (predicted)
optimal input-output trajectory {u, y} and α̂(τ) will define
possible past trajectories {up, ŷp}.
Accordingly, the future output will be decomposed into
two parts:

y = y0 + ŷ, (14)

where y0 = (y0(τ), . . . , y0(N − 1)) is the nominal output,
corresponding to α0(τ) and optimized future inputs u, and
ŷ = (ŷ(τ), . . . ŷ(N − 1)) corresponds to α̂(τ) and feasible
future outputs, consistent with past trajectories {up, ŷp}.
Definition 3. We say that the parameter α̂(τ) is consistent
with the past input-output trajectory {up, yp} if[

Hu

Hp
y (τ)

]
α̂(τ) =

[
upτ
0
ŷpτ

]
, (15)

||ŷp(t)− yp(t)||∞ ≤ ε, t = 0, . . . , τ − 1.

Each α̂(τ) satisfying constraints (15) defines a trajectory
{up, ŷp} of the system G, i.e. there exists an initial state x0
such that ŷp(t) = Cx(t|x0, upt ) + Dup(t), t = 0, . . . , τ − 1,
and the internal state x(τ) = x(τ |x0, upτ ) is consistent
with the past input-output trajectory {upτ , ypτ} as in Defi-
nition 1.

The set of all α̂(τ) consistent with the past input-output
trajectory {up, yp} is denoted by A(τ, upτ , y

p
τ ), i.e.

A(τ, upτ , y
p
τ ) =

{
α̂(τ) ∈ RN

d−N+1 : Hp
u(τ)α̂(τ) = upτ ,

Hf
u (τ)α̂(τ) = 0, −ε1 ≤ Hp

y (τ)α̂(τ)− yp ≤ ε1
}
,

where 1 is a q(N − τ)-vector of ones.

From the previous discussion it follows that the set
A(τ, upτ , y

p
τ ) is a data-driven counterpart of the set

X(τ, upτ , y
p
τ ) of states x(τ) consistent with the past tra-

jectory {upτ , ypτ} in Section ??.

The future input-output nominal trajectory {u, y0} is de-
fined by the parameter α0(τ) via the following representa-
tion [

Hu

Hy

]
α0(τ) =

 0
u
0
y0

 . (16)

Obviously, the sum of (15), (16) results in (11), where
α(τ), y are defined by decompositions (13), (14) and
ŷ = Hf

y (τ)α̂(τ):[
Hu

Hy

]
α(τ) =

[
Hu

Hy

]
(α0(τ) + α̂(τ)) =

 up

u
ŷp

y0 + ŷ

 .
The future output y is subject to constraints

Hy(t)(α0(τ) + α̂(τ)) ∈ Y (t), t = τ, . . . , N − 1, (17)

that should be satisfied robustly, i.e. for all α̂(τ) ∈
A(τ, upτ , y

p
τ ). Here, Hy(t) =

(
yd(t), . . . , yd(Nd −N + t)

)
is

the block of the matrix Hy, corresponding to the time
instant t.

Summarizing, the optimal control problem for the current
position (τ, upτ , y

p
τ ) can be formulated as
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min
α0(τ),u

||u||2, (18)

s.t. Hp
u(τ)α0(τ) = 0,

Hp
y (τ)α0(τ) = 0,

Hf
u (τ)α0(τ) = u,

Hy(t)(α0(τ) + α̂(τ)) ∈ Y (t), ∀α̂(τ) ∈ A(τ, upτ , y
p
τ ),

u(t) ∈ U, t = τ, . . . , N − 1.

In contrast to (12), problem (18) is a robust formulation
of the data-driven optimal control problem. Its solution,
denoted by α0

0(τ), guarantees constraint satisfaction for
every output y consistent with the past trajectory {upτ , ypτ}.
In the rest of this section we show that problem (18)
corresponds to model-based optimal control problem (4)
in Section 2, i.e. both problems yield same results for
the same open-loop optimal feedback control process if
X0 = Rn in the model-based approach and the control
starts at the same time τ = n as in the data-driven
approach.

4.2 Optimal estimation and control problems

Here we discuss how problem (18) is solved for a given
time instant τ . Our focus is on constraint (17) that can be
rewritten using the definition of the set Y (t) as

G(t)Hy(t)(α0(τ) + α̂(τ)) ≤ g(t) ∀α̂(τ) ∈ A(τ, upτ , y
p
τ ),

t = τ, . . . , N − 1.

This is equivalent to the following constraint

G(t)Hy(t)α0(τ) + χα(t|τ) ≤ g(t),

where χα(t|τ) = χα(t|τ, upτ , tpτ ) corresponds to the esti-
mates of the set A(τ, upτ , y

p
τ ) in the directions defined by

the rows of the matrix G(t)Hy(t) and can be found as the
solutions of m maximization problems of the form

χαi (t|τ) = max
α̂(τ)∈A(τ,upτ ,y

p
τ )
Gi(t)Hy(t)α̂(τ), i = 1, . . . ,m.

Thus, as in Section 2, problem (18) is separated into
m(N − τ) optimal estimation problems

χαi (t|τ) = max
α̂(τ)

Gi(t)Hy(t)α̂(τ), (19)

s.t. Hp
u(τ)α̂(τ) = upτ ,

Hf
u (τ)α̂(τ) = 0,

− ε1 ≤ Hp
y (τ)α̂(τ)− ypτ ≤ ε1,

and the optimal control problem

min
α0(τ),u

||u||2, (20)

s.t. Hp
u(τ)α0(τ) = 0,

Hp
y (τ)α0(τ) = 0,

Hf
u (τ)α0(τ) = u,

G(t)Hy(t)α0(τ) ≤ g(t)− χα(t|τ),

u(t) ∈ U, t = τ, . . . , N − 1.

Let’s consider problems (6) and (19) for a fixed τ ≥ n
and assume that X0 = Rn. Based on the Theorem 1,
to each α̂(τ) ∈ A(τ, upτ , y

p
τ ) there corresponds a state

z ∈ X(τ, upτ , y
p
τ ) such that ŷ(t) = Hy(t)α̂(τ) = CAt−τz,

and vise versa. Obviously,

χ(t|τ) = χα(t|τ) ∀ t = τ, . . . , N − 1, ∀ τ = n, . . . , N − 1.

It immediately follows that problems (7) and (20) also
yield same results, i.e.

u0(t|τ, upτ , ypτ ) = Hu(t)α0
0(τ), t = τ, . . . , N − 1.

4.3 Data-driven open-loop optimal feedback control

Open-loop optimal feedback control in data-driven context
presented in this section is now a control strategy formed
on the base of a repeated solution of m(N − τ) optimal
estimation problems (19) and one optimal control problem
(20) at every time instant τ = n, . . . , N − 1. The first
value of the optimal input u0(t|τ, upτ , ypτ ) = Hu(t)α0

0(τ),
t = τ, . . . , N , is applied to the plant at time τ . Therefore,
the applied data-driven open-loop optimal feedback is
given by

up(τ) = u0(τ |τ, upτ , ypτ ) = Hu(τ)α0
0(τ), τ = n, . . . , N − 1.

Given this feedback we can derive:

Proposition 1. Assume that a solution of problem (20) at
the time instant τ = n exists. Then (20) is feasible for all
τ = n, . . . , N − 1, and the overall cost at the time instant
τ given by

J(τ) =

τ−1∑
t=0

||up(t)||2 +

N−1∑
t=τ

||u0(t|τ, upτ , ypτ )||2

is non-increasing as a function of τ .

This proposition implies that if the optimal solution exists
for τ = n then it exists for all times (i.e. recursive
feasibility property holds), and thus, the data-driven open-
loop optimal feedback control can indeed be implemented.
Note that the proof is trivial due to equivalence of data-
driven problem (18) and model-based problem (4) for
which the result as in Proposition 1 follows from Bellman’s
principle of optimality (see also Gabasov et al. (2007) and
Gabasov et al. (2004)).

5. EXAMPLE

In this section, we apply the data-driven open-loop optimal
feedback control to the following discrete-time LTI system:

x(t+ 1) =

[
0.9950 0.0998
−0.0998 0.9950

]
x(t) +

[
0.0050
0.0998

]
u(t),

y(t) = [1 0]x(t), t = 0, 1, . . . , N − 1.

The control objective is to minimize the overall input (3)
over the period of N = 100.

Input and output of the system are subject to constraints
of the form

|u(t)| ≤ 0.7, t = 0, . . . , N − 1,

|y(t)| ≤ 0.2, t = N − 10, . . . , N − 1,

where output constraints are enforced only at the last ten
time instants of the control interval.

The output is measured with an additive bounded error,
with a bound ε = 0.02.

For the purposes of application of the data-driven ap-
proach, the system matrices are unknown, only measured
input-output trajectory {upτ , ypτ} realized in a particular
control process is available. We also assume that exact
estimate of the state dimension is known, i.e. n = 2 is
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Fig. 1. Optimal feedback realization (a), the resulting
output (b), internal trajectory (c) and cost decrease
at the beginning of process (d).

used and the feedback control starts at τ = 2. The process
considered in this numerical example is generated by the
initial state x(0) = (4, 0), the initial input u(0) = u(1) = 0,
and a random sequence of measurement errors within the
interval [−0.02, 0.02].

In an experiment, in which data for Hankel matrices
is acquired, an input-output trajectory (8),(9) of length
Nd = 250 is measured. The input ud(t) is chosen randomly
lying within the input constraint interval. The output yd(t)
corresponds to the initial condition x(0) = (0, 0) and is not
affected by the measurement noise.

The results of the application of open-loop optimal feed-
back control scheme, described in Section 4.3, are illus-
trated in Figure 1. It can be observed that the applied
input up satisfies the constraints that become active on a
part of the control interval, and the output yp is within
the dash line corresponding to the constraints at times
from τ = 90 to τ = 99. To illustrate Proposition 1 a
fragment of the cost J(τ) is shown for τ = 0, . . . , 30. After
τ = 30 the cost change is insignificant and its final value
is J(N − 1) = 31.2056.

Application of the model-based approach of Section 2 to
this example gives the same results.

6. CONCLUSIONS

This paper presents a finite-time optimal feedback control
scheme in the data-driven context for discrete-time LTI
systems subject to constrained inputs and constrained
noisy output measurements. In particular, the feedback
is obtained in a receding horizon control fashion based on
a repeated solution of the robust optimal control prob-
lem. We present the efficient data-driven optimal control
problem formulation that allows to separate estimation
and control problems and guarantees output constraints
satisfaction despite uncertainty generated by noisy mea-
surements. The proposed approach is a data-driven coun-
terpart of the model-based approach from Dmitruk et al.
(2008) and Gabasov et al. (2007). The results of this paper
can be useful for data-driven model predictive control

schemes that utilize the simultaneous control and state
estimation approach as in Copp and Hespanha (2017).

Future research will investigate the case of noisy output
measurements in experimental data (9) for Hankel matri-
ces construction.
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