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Abstract: This paper is concerned with the design of an adaptive extremum seeking control
scheme for a mass structured cell population balance model in a bioreactor. The feed substrate
concentration is considered as the manipulated input to drive system states to the desired
setpoints that maximize the value of an objective function of the cell density. We assume limited
knowledge on the objective function and we use the substrate concentration measurements to
estimate this function. We use the Lyapunov’s stability theorem and a persistency of excitation
condition to show that the proposed adaptive extremum seeking control achieves the exponential
convergence to the desired set points. Numerical simulation has been performed to illustrate
the performance of the proposed approach.
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1. INTRODUCTION

The design of a control algorithms, the analysis of the dy-
namical properties, and the analysis of numerical schemes
for a mass structured cell population balance model has
become an active area of research over the last decades
(see e.g. Mantzaris et al (2007), Mantzaris et al (1999)
and references therein). The dynamics of such processes
is described by a nonlinear partial integro-differential
equation with a nonlinear boundary condition for the
cell growth coupled with a nonlinear ordinary integro-
differential equation accounting for substrate consump-
tion, see Mantzaris et al (2007), Mantzaris et al (1999).

Several control approaches have been developed for this
class of systems by controlling the different moments in
order to achieve a cell mass distribution with the maximum
possible for zeroth and first moments and the minimum
possible for second moment. Mantzaris et al (2007) have
developed a nonlinear linearizing controller to control the
different cell distribution moments, Mantzaris et al (2002)
have proposed nonlinear and linear schemes to control
the productivity for multi-staged cell population, and
Beniich & Dochain (2009) have developed a nonlinear
constrained controller based on the Lyapunov design to
stabilize a steady state of the cell distribution. In this
work, we are particularly interested in maximizing an
objective function of the zeroth moment described by
a nonlinear integro-ordinary differential equation with
limited knowledge of the integral term. We assume that
measurements of the substrate concentration are available

to estimate the objective function. In the literature, the
used approach to solve the similar control problem, where
some parameters are unknowns and where the objective
function is not available for measurement, is known as the
extremum seeking control approach.

The main purpose of the extremum seeking control de-
sign is to find the operating setpoints that maximize or
minimize an objective function, Extremum-seeking control
(ESC) has been the subject of considerable research effort
over the last decade. This approach, which dates back
to the 1920s (Leblanc (1922)), is a remarkably versatile
control technology that can be used to drive an unknown
dynamical system to the optimum of a measured variable
of interest (Tan et al (2010)). One of the most funda-
mental contributions to this increasingly important topic
was provided by Krstic in the early 2000s (Krstic & Wang
(2000)) who provided a formal proof of the convergence of
a standard perturbation-based extremum-seeking scheme
for a general class of nonlinear systems. We also refer to
Guay et al (1990), Guay et al (2004), Hudon et al (2008),
Zhang et al (2007), Zhang (2012) and references therein
for a complete review of the control algorithms and the
stability analysis developed for linear unknown systems
and a class of general nonlinear systems.

In our approach, a Lyapunov-based adaptive learning
control technique is used to approximate the unknown
state and to steer the system to its unknown extremum.
We show that a certain level of persistence of excitation
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condition is necessary to guarantee the convergence of the
extremum seeking mechanism.

The paper is organized as follows. Section 1 presents the
mathematical model, its parameters, and the problem
formulation. In section 2, and extremum seeking algorithm
design is developed. Numerical simulation is shown in
Section 3 followed by brief conclusions in Section 4.

2. MATHEMATICAL MODEL

Let us consider a cell population growing in a continuous
stirred tank reactor. The cells are distinguishable from
each other in terms of their mass or any other property
of the cell, which obeys the conservation law. Let N(m, t)
be the number of cells which have a mass m at time t.
The cells are considered to grow with a rate r(m,S) that
depends on their mass and on the concentration of the
limiting substrate S.

r(m,S) = m.µ(S) (1)

where µ is a continuously differentiable function on R+.

We also assume that the value of the mass is standardized
and that m ∈ [0, 1]. The cell division and the birth
processes of the cell population are described by the
division rate Γ(m,S) defined as follows (see Mantzaris et al
(2007); Mantzaris et al (1999)):

Γ(m,S) =
f(m)

1−
∫ m

0

f(m′)dm′
r(m,S) = γ(m)r(m,S) (2)

where f(m) is the division probability density function
which is assumed to depend only on the cell mass, and is
taken to be a left hand side truncated Gaussian distribu-
tion with the mean of µf and standard deviation of σf .

We also assume that the probability p that a mother
cell of mass m will give birth to a daughter cell of
mass m′ is independent of substrate concentration. This
function should further satisfy the following normalization
condition ∫ m′

0

p(m,m′)dm = 1 (3)

and should also be such that the biomass is conserved at
cell division, i.e.:

p(m,m′) = p(m′ −m,m′) (4)

We finally assume that the probability function is a
symmetrical beta distribution with a parameter q defined
by the following equation:

p(m,m′) =
1

B(q, q)
× 1

m′

(m
m′

)q−1 (
1− m

m′

)q−1

(5)

where B(q, q) =

∫ 1

0

sq−1(s− 1)q−1ds.

We assume also that no cell death occurs and that cells
grow in a continuous reactor from which they exit with a
dilution rate of D. Under these assumptions, the cell pop-
ulation dynamics are described by the following integro-
differential equations:

∂N(m, t)

∂t
+

∂

∂m
[r(m,S)N(m, t)] + Γ(m,S)N(m, t)

= −DN(m, t) + 2

∫ 1

m

Γ(m′, S)p(m,m′)N(m′, t)dm′ (6)

subject to the initial condition:

N(m, 0) = N0 (7)

completed by the following boundary conditions:

r(1, S)×N(1, t) = r(0, t)×N(0, t) = 0 (8)

The behavior of the cell population depends on the sub-
strate concentration, the source of nutrient for its growth.
The mass balance equation for the substrate expresses in
particular that the substrate consumption is proportional

to the total biomass production
∫ 1

0
r(m,S)N(m, t)dm with

a yield coefficient Y which is the ratio of the biomass pro-
duction rate over the substrate consumption rate, assumed
to be constant. The substrate concentration mass balance
then reads as follows:

dS

dt
= D(Sf − S)− 1

Y

∫ 1

0

r(m,S)N(m, t)dm (9)

subject to the initial condition:

S(0) = S0 (10)

with Sf is the substrate concentration in the feed.

Here we address the problem of controlling the cell density
(zeroth moment):

M0 =

∫ 1

0

N(m, t)dm (11)

by manipulating the substrate concentration in the feed.

By integrating both sides of (6) with respect to the mass
m, we obtain:∫ 1

0

∂N(m, t)

∂t
dm+

∫ 1

0

∂

∂m
[r(m,S)N(m, t)] dm

+

∫ 1

0

Γ(m,S)N(m, t)dm+D

∫ 1

0

N(m, t)dm

= 2

∫ 1

0

∫ 1

m

Γ(m′, S)p(m,m′)N(m′, t)dm′dm

by considering equations (3) and (8), we obtain:∫ 1

0

∫ 1

m

Γ(m′, S)p(m,m′)N(m′, t)dm′dm

=

∫ 1

0

(

∫ m′

0

p(m,m′)dm)Γ(m′, S)N(m′, t)dm′

=

∫ 1

0

Γ(m′, S)N(m′, t)dm′

Consequently,

Ṁ0(t) = −DM0(t) +

∫ 1

0

Γ(m,S)N(m, t)dm (12)

3. EXTREMUM SEEKING CONTROL DESIGN

Let us consider the problem of the design of the extremum
seeking controller of the following model:
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Ṁ0(t) =−DM0(t) +

∫ 1

0

Γ(m,S)N(m, t)dm (13)

dS

dt
=DSf −DS −

1

Y

∫ 1

0

r(m,S)N(m, t)dm (14)

with an objective function:

y = HM0 where H ∈ R1×n (15)

Our objective is to design a control law u = DSf , with
D is a constant, that maximizes the cell density, i.e that
maximize the objective function

y = HM0 (16)

Due to the limited knowledge on the integral terms, we
use the second mean theorem to reformulate the model.

This means that we consider that there exists a unique
m1 ∈ [0, 1] such that:∫ 1

0

Γ(m,S)N(m, t)dm= γ(m1)r(m1, S)

∫ 1

0

N(m, t)dm

= γ(m1)r(m1, S)×M0

=C1(S,M0) (17)

We obtain a similar result for 1
Y

∫ 1

0
r(m,S)N(m, t)dm.

Therefore there exists a unique m2 ∈ [0, 1] such that:

− 1

Y

∫ 1

0

r(m,S)N(m, t)dm=− 1

Y
r(m2, S)

∫ 1

0

N(m, t)dm

=−C2(S,M0) (18)

The problem will be therefore defined by considering the
following dynamical equations:

Ṁ0(t) = −DM0(t) + C1(S(t),M0(t)) (19)

Ṡ(t) = −DS(t) + C2(S(t),M0(t)) + u(t) (20)

with limited knowledge on C1(S,M0).

The problem is solved by expressing the equilibrium as
a function of the substrate concentration. We assume
that there exists a function π(S) solution of the following
equation:

−Dπ(S) + C1(S, π(S)) = 0 (21)

The substrate concentration dynamics equation subject to
the equilibrium condition equation is written as follows:

Ṡ = −DS + C2(S,M0) + u+Dπ(S)− C1(π(S), S)

= −DS + u+Dπ(S) + [C2(S,M0)− C1(π(S), S)](22)

The solution π(S) is assumed to be continuous. More
specifically, we require the following.

Assumption 1. The solution π(S) is supposed continuous
in a compact set X of R+.

Assumption 2. The function Hπ(S) is continuously
differentiable and admits a maximum in M0 ∈ X \ π(S).

Assumption 3. For all M0 in the compact set X of R+

and for all S ∈ R+, there exists a positive nonzero constant
L such that

||C2(S,M0)− C1(π(S), S)|| ≤ L||M0 − π(S)||

Remark 1.

(1) Assumption 1 is important for the approximation
of the objective function.

(2) In Assumption 2 , we consider only the cases where
Hπ(S) is continuously differentiable convex function
of S.

(3) Assumption 3 guarantees the convergence of M0 to
a neighborhood of the equilibrium M0 = π(S).

(4) From (17) and (18), it easy to show that the feasibility
of Assumption 1, Assumption 2 and Assump-
tion 3 is ensured by the continuity and differentia-
bility of µ(S).

Our approach consists in approximating the equilibrium
π(S) using a linear approximation based on the radial basis
function (RBF) presented in Hudon et al (2008).

A continuous function f : Rp → R can be approximated
by using RBF technique as:

f(z) = W ∗TZ(z) + µl(t) (23)

with µl(t) the approximation error, and Z(z) is the radial
basis function vector defined as follows:

Z(z) = [Z1(z), Z2(z), ..., Zl(z)] (24)

Zi(z) = exp

[
−(z − ϕi)T (z − ϕi)

σ2
i

]
(25)

with i = 1, ..., l, and ϕi is the center of the receptive field,
and σi is the width of the Gaussian function.

The ideal weight W ∗ is defined as

W ∗ := arg min
W∈Ωω

{sup
z∈Ω
|WTS(z)− f(z)|} (26)

where Ω is a compact set of Rp and

Ωω = {W | ||W || ≤ ωm} (27)

with positive constant ωm to be chosen at the design stage.

We apply this method on our objective function to obtain
an approximation as follows:

Hπ(S) = W ∗Tp Z(S) + µp(t) (28)

where µp(t) is an approximation error, and we consider
that

π(S) = HTW ∗Tp Z(S) +W ∗To Z(S) + µl(t) (29)

We have the following assumption about the approxima-
tion error terms µp(t) and µl(t).

Assumption 4: The approximation errors satisfy |µp(t)| ≤
µ1 and |µl(t)| ≤ µ2 with constants µ1 > 0 and µ2 > 0 over
the compact set Ωω.

At this stage, we first give the estimation algorithm of the
unknown parameter vector W ∗. Let us denote by Ŵ the
estimate of the true parameter W ∗ and Ŝ the prediction
of S. We have
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Ṡ =−DS + u+Dπ(S) + [C2(S,M0)− C1(π(S), S)]

=−DS + u+DHTW ∗Tp Z(S) +DW ∗To Z(S)

+Dµl(t) + [C2(S,M0)− C1(π(S), S)]

=−DS + u+ [DZ(S), DHTZ(S)]

(
W ∗Tp
W ∗To

)
+Dµl(t) + [C2(S,M0)− C1(π(S), S)]

=−DS + u+ F (S)W ∗ +Dµl(t)

+[C2(S,M0)− C1(π(S), S)]

whereW ∗T = [W ∗Tp ,W ∗To ] and F (S) = [DZ(S), DHTZ(S)]

The predicted state Ŝ is generated by

˙̂
S = −DS + u+ F (S)Ŵ + kS(S − Ŝ) + c1(t)

˙̂
W (30)

with gain function kS > 0 and prediction error eS = S−Ŝ.
The vector time varying function c1(t) is to be assigned.
It follows that

ėS = F (S)W̃ +Dµl(t)− kSeS
+[C2(S,M0)− C1(π(S), S)]− c1(t)

˙̂
W (31)

where W̃ = W ∗ − Ŵ .

The aim of the extremum seeking control is to stabilize the
closed-loop system around a point where the gradient of
y = Hπ(S) with respect to S vanishes while attenuating
the effect of the modeling uncertainty µl(t). Using the
radial basis function approximation, the objective function
is given by:

y = Hπ(S) = W ∗Tp Z(S) + µp(t) (32)

is approximated by

ye = ŴT
p Z(S) (33)

where Ŵp is an estimate of the optimal weight W ∗p .

The estimated gradient of ye with respect to S is given by

z =
∂ye
∂S

= ŴT
p dZ(S) (34)

where: dZ(S) =
∂Z(S)

∂S
.

The Hessian of ye with respect to S is given by

∂
2

ye
∂S

= ŴT
p d

2Z(S) = Γ2 (35)

where: d2Z(S) =
∂2Z(S)

∂S2

Let us define
zS = ŴT

p dZ(S)− d(t) (36)

where d(t) ∈ C1 is an excitation signal to be assigned.

For the controller design, we define the following auxiliary
signals

η1 = eS − c1(t)T W̃ (37)

η2 = zS − c2(t)T W̃ (38)

where c2(t) is a time-varying vector valued function to be
assigned in the design.

And the dynamics of the time varying functions c1(t) and
c2(t) are assigned as follows

ċ1(t)T = −kSc1(t)T + F (S) (39)

ċ2(t)T = −kZc2(t)T + Γ2F (S) (40)

Let us consider the following Lyapunov function candidate

V =
1

2
η2

1 +
1

2
η2

2 (41)

= V1 + V2 (42)

We consider the control input u such that

u = DS − F (S)W ∗ − kdd(t) (43)

with the following dynamical equation for d:

ḋ(t) = ŴT
p dZ(S) + kZc2(t)T W̃ + kZη2

−Γ2F (S)W̃ − c2(t)T ˙̃W − kdΓ2d(t) (44)

where kZ , kd are positive gain functions to be assigned.

We have
V̇1 = η1η̇1

= η1(ėS − ċ1(t)T W̃ − c1(t)T ˙̃W )

= η1{F (S)W̃ +Dµl(t)− kSeS + C2(S,M0)

−C1(π(S), S)− c1(t)
˙̂
W − ċ1(t)T W̃ − c1(t)T ˙̃W}

= η1{F (S)W̃ +Dµl(t)− kSeS + C2(S,M0)

−C1(π(S), S)− c1(t)
˙̂
W + kSc1(t)T W̃

−F (S)W̃ − c1(t)T ˙̃W}
= η1{Dµl(t)− kS(eS − c1(t)T W̃ ) + C2(S,M0)

−C1(π(S), S)− c1(t)
˙̂
W − c1(t)T ˙̃W}

= η1{Dµl(t)− kSη1 + [C2(S,M0)− C1(π(S), S)]

−c1(t)
˙̂
W − c1(t)T ˙̃W}

= −kSη2
1 + η1(Dµl(t) + [C2(S,M0)− C1(π(S), S)]).

We obtain

V̇1 = −kSη2
1+η1(Dµl(t)+[C2(S,M0)−C1(π(S), S)]) (45)

In a similar way, we obtain

V̇2 = −kZη2
2 + Γ2η2(Dµl(t) + [C2(S,M0)− C1(π(S), S)])

(46)
We finally have

V̇ =−kSη2
1 + η1(Dµl(t) + [C2(S,M0)− C1(π(S), S)])

−kZη2
2 + Γ2η2(Dµl(t) + [C2(S,M0)− C1(π(S), S)])

=−kSη2
1 − kZη2

2 + (η1 + Γ2η2)((Dµl(t)

+[C2(S,M0)− C1(π(S), S)])

from Assumption 1, it follows that

sup ||M0 − π(S)|| = CS
exists and is finite.

By Assumption 3, we get

V̇ ≤−kSη2
1 − kZη2

2 + (η1 + Γ2η2)Dµl(t)

+(|η1|+ |Γ2|||η2||)L× sup ||M0 − π(S)||
=−kSη2

1 − kZη2
2 + (η1 + Γ2η2)Dµl(t)

+(|η1|+ |Γ2|||η2||)L× CS
Completing the squares and applying the gain functions

kS = kS0 +
k4

2
D2 (47)

kZ = kZ0 +
k7

2
Γ2

2 (48)
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we obtain the following inequality

V̇ ≤ −kS0η
2
1 − kZ0η

2
2 +

1

2k4
D2µl(t) +

(
1

2k6
+

1

2k7

)
L2CS

(49)
where kS0,kZ0,k4,k6 and k7 are positive constants.

Remark 2. Equation (49) establishes that the state η
converges to a small neighborhood of the origin.

It remains to show that the original state variables eS ,
zS and the parameter estimation errors W̃ converge to a
small neighborhood of the origin. To this end, we derive
a persistency of excitation condition that guarantees the
convergence of the parameter estimates to the ideal weight
W ∗.

Consider the following matrix,

Υ(t) =

[
c1(t)T

c2(t)T

]
By construction, this matrix solves the matrix differential
equation

Υ̇(t) = −K(t)Υ(t) +B(t) (50)

with

K(t) =

[
kS 0
0 kz

]
, B(t) =

[
F (S)

Γ2F (S)

]
(51)

A bound on the parameter estimates Ŵ can be ensured
by choosing the following parameter update law.

˙̂
W =


γwΓ if ||Ŵ || ≤ wm or

if ||Ŵ || = wm and ŴT ≤ 0

γw

(
I − ŴŴT

ŴT Ŵ

)
Γ otherwise

(52)

where Γ = Υ(t)T e.

(52) is a projection algorithm which ensures that ||Ŵ || ≤
wm. The convergence of the parameter estimation scheme
is considered in the sequel.

By the property of projection algorithm and for the specific
choice of basis function, it is possible to show that the norm
of B(t) is bounded.

Using the bound onB(t), an explicit bound for the solution
of (50) can be obtained as follows,

||Υ(t)|| ≤ C3e
−λ2(t−t0) + C3

BM
λ2

(53)

where C2 = Υ(t0) > 0 and λ2 > 0 is a positive constant.

Next we want to show that the parameter estimation error
W̃ converges to a neighborhood of the origin.

Substituting for e = η + Υ(t)W̃ , we obtain the dynamics

˙̃W = −γwΥ(t)T W̃ − γwΥ(t)T η

+


0 if ||Ŵ || ≤ wm or

if ||Ŵ || = wm and ŴTΥ(t)T e ≤ 0

γw

(
ŴŴT

ŴT Ŵ

)
(Υ(t)TΥ(t)W̃ + Υ(t)T η) otherwise

To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.

Assumption 5. The solution of (50) is such that there
exist positive constants T > 0 and kN > 0 such that∫ t+T

t

Υ(τ)TΥ(τ)dτ ≥ kNIN (54)

where IN is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

˙̃W = −γmΥ(t)TΥ(t)W̃ (55)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

||W̃ || ≤ α4e
−λ4(t−t0) +

|µ|+ L1Cs√
2kmc3

(56)

Hence the parameter estimation error and the redefined
state variables, η converge exponentially to an adjustable
neighborhood of the origin.

By definition, convergence of η and W̃ to a neighborhood
of the origin implies that ||e|| ≤ ||η|| + ||Υ(t)||||W̃ ||.
Substituting for ||η||, ||Υ(t)|| and W̃ , we obtain

||e|| ≤ αpe−λ(t−t0) + βp (57)

where αp and βp are positive constants.

The convergence of the error vector, e, implies that the
convergence of the prediction error, eS and the exponential
convergence of the closed-loop system to an adjustable
neighborhood of the unknown steady-state optimum. We
can summarize the above analysis result as follows.

Theorem 3. Consider the model of the density cell and the
substrate concentration (13) and (14) in closed-loop with
the state prediction (30), the controller (43), the dither
signal (44) and the adaptive learning law (52). Assume
that ∫ t+T

t

Υ(τ)TΥ(τ)dτ ≥ kNIN (58)

for positive constants T > 0 and kN where Υ(t) is the
solution of (50). Then

• the error dynamics (31) converge exponentially to a
small neighborhood of the origin,
• the parameter estimation errors W̃ converge expo-

nentially to small neighborhood of the origin,
• the tracking error from the unknown steady-state, zS ,

converges exponentially to a small neighborhood of
the origin.

4. SIMULATION RESULTS

The effectiveness of the proposed adaptive extremum
seeking control is illustrated in simukation. To this end
we consider the bioreactor with Haldane kinetics:

µ(S) =

(
µmS

KS + S +K1S2

)1.5

(59)

The following parameters and initial values have been
used:
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D= 1, Y = 0.4, K1 = 0.1, S(0) = 0, µm = 1,

γw = 100, kd = kS = 0.75, kz = 0.505

wm = 1/2, k4 = k7 = 1, kS0 = kZ0 =
1

2
, Γ2 = 0.1

d(0) = 1, Υ(0) = 1, W̃ (0) = 1

Simulation results are shown in figures 1-3. Figure 1 shows
the value of the objective function and its optimum, and
it shows the quick convergence of the production rate
(objective function) to its optimum. Moreover the figures
2 and 3 shows the convergence of the estimation and
prediction error to a small neighborhood of the origin.
Finally it is clear that the required control action to steer
the system to its optimum is satisfied.

5. CONCLUSION

We have solved the problem of extremum seeking for a
mass structured cell population balance model in a biore-
actor. It has been shown when the Lyapunov function and
design parameters are well chosen, such that a persistent
of excitation condition is satisfied, the proposed adaptive
extremum seeking control guarantees the exponential con-
vergence to a neighborhood of its maximum cell density.

Fig. 1. objective function

Fig. 2. estimation error

Fig. 3. prediction error
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