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Abstract: A well-conceived real-time control strategy can greatly increase the captured power
for a wave energy converter (WEC). Optimal strategies rely on a dynamic model of the WEC
and prediction of the wave excitation force several seconds into the future. Both the modelling
and prediction processes are subject to errors. This paper investigates the impact of these errors
on the performance of a multi-DOF submerged point absorber WEC. A state-space model of
the system in its nominal position is derived and used by the control strategy. This idealised
system is tested in multiple numerically generated irregular sea states with perfect estimation
and prediction of the excitation force assumed. An optimally tuned passively damped system
is used as a performance benchmark. The idealised system under optimal control is capable
of more than doubling the captured power compared to the passively damped system. The
control strategy is then applied to a full kinematic model of the WEC in the WEC-Sim
environment. Real-time estimation and prediction of the excitation forces and constraints on
motion and control force are also included. Under these more realistic conditions, the power
gain is a more modest 68% at best across the tested sea states, and for one tested sea state
there is no power gain compared to the passive system. Overall the gains are still significant
and demonstrate the potential benefits of such control strategies for application to multi-DOF
WECs, though more robust alternatives may be preferable.
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1. INTRODUCTION

The control system is key to enabling wave energy con-
verters (WECs) to become economically viable by max-
imising energy capture in variable sea states. Many con-
trol strategies have been proposed to achieve a practically
implementable optimal or sub-optimal power maximis-
ing objective. This study is concerned with the applica-
tion of model-based optimal control strategies and uses
a Model Predictive Control (MPC) formulation. Example
WEC applications of MPC can be found in Hals et al.
(2010), Cretel et al. (2011) and Richter et al. (2013) and
many variants have been proposed.

Many simulation studies on this topic use a simplified
buoy WEC constrained to move only in heave. The hy-
drodynamics are approximated by Boundary Element
Method (BEM) solutions and embedded within the ide-
alised model around which the MPC is formulated. The
controller performance is then established by application
to a system with identical dynamics, thus the assump-
tion is that there is no model mismatch. MPC and other
optimal strategies also require future knowledge of the
wave excitation force. The common assumption is that
this knowledge is readily available and many studies will
assume perfect prediction over any control horizon. In
practice the excitation force must be estimated (again a

model-based procedure) and then forecast on-line based
upon measurements and historical data. Errors will in-
evitably be introduced but there are relatively few studies
that investigate the more realistic deployable situations.
The focus here is not on the improvement of the control,
but rather to test the effects on system performance of
removing common assumptions made in other studies.

The sensitivity of an MPC control strategy to model mis-
match in the hydrodynamics (mass, damping and stiff-
ness) has been studied in O’Sullivan (2017) with appli-
cation to a simulated heaving buoy. The most signifi-
cant performance degradation was found to be related
to mismatch in the hydrodynamic stiffness model. A
more generic study of closed-loop sensitivity to hydro-
dynamic model mismatch was conducted in Ringwood
et al. (2019). The hydrodynamic added mass, radiation
damping and hydrostatic stiffness parameters are varied
from those fixed in the controller model. Two common
control structures are investigated - approximate con-
jugate control (ACC) and approximate optimal velocity
tracking control (AVT). These are applied to a simplified
heaving buoy and the sensitivity of power absorption to
parameter variations is established. It is found that ACC
is sensitive to inertial and stiffness errors while the AVT
is less so due to the robust nature of the tracking loop. In
both studies perfect knowledge of the future wave exci-
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tation over the prediction horizon was assumed, though
errors here will inevitably impact on the overall system
performance.

Here we study the effects of prediction errors and model
mismatch on power absorption by applying an MPC law
to a specific multi-DOF WEC, known as WaveSub, in two
different situations. Firstly, an idealised WEC is used (i.e.
no model mismatch) to study the impact of excitation
force estimation and prediction errors in isolation. Sec-
ondly, a WEC-Sim (Yu et al. (2014)) simulation is con-
ducted which includes on-line estimation and prediction
of the excitation force. The model includes full kinematic
constraints, yielding a system which is nonlinear due to
large motions causing significant variation of the me-
chanical stiffness matrix.

The remainder of this paper is organised as follows. An
overview of the WaveSub WEC is provided in section 2.
Section 3 provides a description of the linearised equiv-
alent model for use in the controller. The MPC law is
described in section 4 and a method for wave force es-
timation and forecasting is given in section 5. Simulation
results for the idealised and WEC-Sim cases are provided
in sections 6 and 7 and conclusions are provided in sec-
tion 8.

2. OVERVIEW OF THE WAVESUB WEC

WaveSub is under development by Marine Power Sys-
tems Ltd (MPS). It is a submerged point absorber with a
unique multi-tether configuration and variable geometry
which can be tuned to the prevailing sea state. A float
moves with the waves and reacts against a moored base.
The tethers pull on rotational drums which are attached
to a PTO. Figure 1 shows an image of the simplified ge-
ometry used for simulation in the WEC-Sim package. The
float has diameter 12m and the reactor length is 50m.

Fig. 1. Simplified geometry and mooring in WEC-Sim

3. LINEARISED DYNAMIC SYSTEM MODEL

The MPC formulation requires a linearised approxima-
tion to the WEC and PTO systems. For simplicity we
assume the reactor to be fixed as a taut mooring system
is used. Therefore, the WEC float dynamics can be repre-
sented by the state-space system

ẋ+(t) =

 ẋ
ẍ

ṗr

 = Acx+(t) + Bc(fe(t) + u(t))

y(t) = Ccx+(t)

(1)

where u is the 6DOF control force vector, fe is the wave
excitation force vector and the position and velocity state
vector is given by [x ẋ]

T . The state vector is augmented
with the auxiliary states pr relating to a 4th order State-
Space approximation Gr of the radiation impulse re-
sponse functions described by

ṗr(t) = Arpr(t) + Brẋ(t)∫ t

0
Kr(t− τ)ẋ(τ)dτ ≈ Crpr(t) + Drẋ(t)

(2)

where the matrices {Ar,Br,Cr,Dr} describing Gr are
computed using a standard BEM solver. Including all 36
modes in the state-space model results in 144 states.

The augmented plant and output matrices are obtained
from linearising the WEC system about its nominal rest-
ing position, giving

Ac =

 06×6 I6×6 06×144

−M−1∞ K0 −M−1∞ (Bv + Dr) −M−1∞ Cr

0144×6 Br Ar


Bc =

 06×6

M−1∞
0144×6

 Cc =
[

06×6 I6×6 06×144 ] (3)

where M∞ is the sum of the float mass matrix and infinite
added mass matrix A∞ which is obtained from the BEM
solution, K0 is the linearised stiffness matrix (see Scruggs
et al. (2013)) and Bv is a linear viscous damping matrix
empirically tuned to experimental data (Faraggiana et al.
(2020)). Following a balanced model reduction process,
the number of states is reduced to a more tractable 36.

The state-space model is then discretised using a first-
order hold approximation, such that

x+k+1 = Ax+k + B(fek + uk)

yk = Cx+
k

(4)

4. MODEL PREDICTIVE CONTROL

The predicted state trajectory over the prediction horizon
N is generated from the discrete time state-space model
(4) according to

X+
k = Mx+

k + C(F̂e|k + Uk) (5)

where Uk and F̂e|k are the stacked future control force and
estimated excitation force matrices given by

Uk =


uk

uk+1

...
uk+N−1

 F̂e|k =


f̂e|k

f̂e|k+1

...
f̂e|k+N−1

 (6)

M =


A
A2

...
AN

 C =


B 0 · · · 0

AB B · · · 0
...

...
. . .

AN−1B AN−2B · · · B

 (7)

The control objective is to maximise the average absorbed
power w̄ over the prediction horizon through appropriate
manipulation of the control force u. This objective can be
expressed as the following discrete integral ( Soltani et al.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12445



(2014))

w̄ =
1

N

k+N∑
i=k

x+i sui = X+T

SU (8)

where S is the N -block-diagonal matrix of s, and

s =
[

06×6 I6×6 024×6
]T (9)

Substituting the state prediction (5) into the objective
function (8) gives the quadratic cost function

J(Uk) = UT
k HUk + FT Uk (10)

where H = CT S, FT = X+T
k MT S + F̂

T

e|kC
T S. Since H is

time-invariant it is computed offline, while FT is updated
each time step according to the most recent estimates
of the state prediction X+

k and forecast excitation force
F̂e|k. To improve the tractability of the optimisation, the
cost function is convexified with the addition of small
diagonal terms to H equal to the absolute value of its
smallest eigenvalue (Li and Belmont (2014)), such that
Ĥ = H + |λmin|(H).

With the addition of state constraints designed to limit
surge and heave position amplitudes, the optimisation
problem is defined as

maximise UT
k ĤUk + FT Uk

Uk

subject to

[
Ci

−Ci

]
uk ≤

[
x̄
−x

]
+

[
−Ai

Ai

]
xk , i = 1 : N

(11)

where x̄ and x are the upper and lower bounds of the
state variables, respectively. Limits on control force are
not imposed within the optimisation here. In part, this is
to provide a fair comparison to benchmark data from the
optimally tuned passive system which does not include
these limits. There is a necessary constraint on control
force to avoid slack PTO tethers, but including this in
the optimisation can result in constraint conflict and sub-
sequent intractability of the solution. Therefore this con-
straint is imposed as a dynamic saturation on the control
force post optimisation, exactly as it is for the passive
system.

Performing this optimisation and applying only the out-
put for the next time step to the WEC results in a 6DOF
control force in Cartesian space. This control force is dis-
tributed to the four PTO tethers according to

uPTO = JT0 u (12)

where J−10 is the inverse kinematic Jacobian matrix (see
Hillis et al. (2019) for details).

5. WAVE FORCE ESTIMATION AND FORECASTING

The wave excitation or disturbance force is not measur-
able, but is a necessary input to the optimisation problem
in order to generate the appropriate control force. In order
to estimate the disturbance force it is required to know
the dynamics of the float body and all other forces acting

upon it, as well as estimates or measurements of the float
motion. It this then possible to implement a dynamic
observer to estimate the wave excitation force. Here we
use a Kalman filter approach as described in Nguyen and
Tona (2018) to achieve this. As we are able to measure
the tether forces directly using load cells, we can directly
measure the combination of control force and passive
spring force.

The state vector x+ is further augmented with the un-
known disturbance force fe. Maintaining the notation x+
for the further augmented state vector for convenience,
the discretised system dynamics are now described by

x+
k+1 =

[
x+
fe

]
k+1

= A+x+k + B+ (fe − T)k + εk

y = C+x+
k + µk

(13)

where ε describes the random walk process for excita-
tion force estimation and unmodelled dynamics, and µ
describes measurement noise. T is the Cartesian vector of
tether tension forces, derived from direct measurement of
the PTO tether tensions TPTO, according to

T = J−T0 TPTO (14)

where J−T0 is the transpose of the inverse kinematic Jaco-
bian matrix. The system matrices are defined as follows:

A+ =

[
A B
0 I

]
B+ =

[
B
0

]
C+ = [ C 0 ] (15)

A standard Kalman filter is then used to estimate x+
k+1,

tuned using knowledge of the covariance of ε and µ.

The estimated wave excitation force must also be forecast
over a prediction horizon for the MPC optimisation. In
practice the choice of horizon must balance the improve-
ment in power absorption from the optimisation against
the quality of the estimated wave force which degrades
as the forecast horizon increases. Inevitably there will be
a point where the estimation is not accurate enough to
yield power increases. A further limitation is the compu-
tational load, which increases as the prediction horizon
increases but must be completed between computational
steps. A number of methods for forecasting are stud-
ied in Fusco and Ringwood (2010). Based on this study
an auto-regressive (AR) modelling technique is adopted
here.

The N -step ahead prediction of the excitation force at
instant k is given by

f̂e [k +N |k] =

n∑
i=1

âif̂e [k +N − i|k] (16)

where âi are the AR coefficients resulting from an estima-
tion procedure. Here we use the Burg method to estimate
the AR parameters. The training data used for this estima-
tion is excitation force data generated for sea states with
the same spectra, but different random seeds (and hence
different time-domain values in the sequences). An AR
filter with order 200 was found to give reasonable results.

Figure 2 shows the goodness-of-fit for three irregular sea
states with a range of prediction horizons. All spectra
are Pierson-Moskowitz (PM) type with a range of en-
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ergy periods and significant wave heights. We observe
reasonable estimation with the quality reducing as the
prediction horizon and energy period of the sea states
increase. The time-domain plot of the ”actual” excitation
force (from WEC-Sim simulations) versus the 10s ahead
predictions for the surge direction for the three sea states
are shown in Figure 3 by way of example. The predicted
force is time-shifted by -10s to facilitate comparison.

Fig. 2. Goodness of fit of wave excitation force predictions
for a range of horizons and sea states

Fig. 3. Actual vs 10s ahead predictions of excitation forces

6. SIMULATION RESULTS: PREDICTION ERRORS

A simulation study was conducted whereby the system
under control is an exact match for the state-space model
embedded within the MPC optimisation. Many optimal
control studies for WECs are limited to this ideal case.
As a benchmark for performance comparison, a passively
controlled system (i.e. the PTO forces are proportional to
the PTO tether velocities) was tuned for each sea state.
For this and all subsequent power plots, power values are
normalised against the peak mean value achieved with
the tuned passive system in the most energetic sea state.

The ideal system was then placed under MPC with both
ideal prediction and real-time prediction scenarios with a
range of prediction horizons. Figure 4 shows the results
for mean power absorbed for each case. It is seen that
a horizon of at least 5s is required to increase absorbed
power compared to the optimal passive case in all three
sea states. We also see the expected reduction in power

as the horizon increases for the cases where online pre-
diction is used. Again, as expected this effect is most pro-
nounced for the sea state with the highest energy period
as this case has the least accurate forecasting. Based on
this and the fact that beyond a 10s horizon the benefits
drop off, a pragmatic horizon to use would seem to be
10s, which is in line with other studies. Figure 5 shows the
instantaneous absorbed mechanical power for the three
sea states using a 10s horizon. The mean power gains
for MPC with online prediction compared to the tuned
passive system are rather dramatic, being up to a factor of
2.5. The reduction in mean power absorption as a result
of using online prediction rather than assuming perfect
future knowledge with MPC is relatively minor, being
15% in the worst case.

Fig. 4. Mean power absorbed for different horizons with
ideal and realistic prediction of excitation force (ide-
alised model)

Fig. 5. Absorbed power in irregular sea states for passive
and MPC systems with ideal and realistic prediction
(idealised model with 10s horizon)
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7. SIMULATION RESULTS: PREDICTION AND
MODELLING ERRORS

The MPC constrained optimisation together with estima-
tion and 10s ahead prediction of the excitation force is
now applied to a nonlinear WEC-Sim model of the multi-
DOF WEC (see Figure 1 for an image of the simplified sys-
tem geometry). These simulations, therefore, represent a
more realistic scenario as the controller is deployable in
a real system and there is model mismatch between the
state-space idealisation embedded within the optimisa-
tion and the actual system under control. The float and re-
actor are connected with four taut PTO tether lines, each
modelled as a translational PTO actuation force incorpo-
rating a spring stiffness and damping force, a universal
joint and gimbal. All motions and forces are available for
use by the control strategy within this model and the con-
trol force applied to each PTO is incorporated by adding
to the external preload force on each PTO. The damping
force is used only for the benchmark passive optimally
tuned system and is set to zero for active control. Irregular
waves are applied in the x-direction. A 4th order Runge-
Kutta solver was used with a base sampling interval of
0.02s. The MPC algorithm was executed with a sampling
interval of 0.1s.

Figure 6 shows the surge (x), heave (z) and pitch (rotation
about y) displacement responses of the float in the most
energetic sea state (Hs = 6.5m, Te = 6s). Results are
presented only for this sea state for the sake of brevity
and because it shows the most interesting results as all
constraints are active. We observe that the controlled
motions are significantly exaggerated compared to the
optimal passive system as we would expect. We also see
that the heave position limit is not in danger of being
exceeded while the surge position limit is largely adhered
to, though not in a hard sense.

Fig. 6. Float surge, heave and pitch displacement re-
sponses in PM sea state (Hs = 6.5m, Te = 6s). Results
shown for passive system and MPC with 10s horizon

The explanation of this comes from studying the accom-
panying Figure 7 which shows the PTO control forces and
line tensions. It is observed that the dynamic limit ap-

plied to avoid PTO tether slackness is active at the times
when the surge position limit is exceeded. This could
potentially be avoided by incorporating the slack tether
constraint into the MPC optimisation. However, as pre-
viously stated, this could cause problems with solution
feasibility. The way to solve this would be to incorporate
slack variables to the position constraint, but this would
result in similar behaviour in terms of limit violation.

Fig. 7. PTO forces and tether tensions in PM sea state
(Hs = 6.5m, Te = 6s) for passive system and MPC
with 10s horizon

Figure 8 shows the instantaneous absorbed mechanical
power for each sea state with the passive and constrained
MPC solutions. We see that large increases in power are
achieved for the lowest energy sea state (Hs = 0.5m, Te =
16s), though not as impressive as seen for the same case
with an idealised system (see Figure 5). The mean power
increase here is +68%. The 10s sea state shows a mean
power increase of +27% - again far below that suggested
by the idealised simulations. The highest energy sea state
results in a reduction of absorbed power compared to the
passive system of -3%. Table 1 summarises these results
against those for the idealised system.

Table 1. Mean absorbed power increases with
MPC compared to tuned passive system

Sea State Mean absorbed power increase
Ideal model, Ideal model, WEC-Sim model,

Te[s] Hs[m] ideal prediction realistic prediction realistic prediction
6 6.5 +140% +150% −3%

10 3.0 +81% +84% +27%
16 0.5 +115% +100% +68%
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Fig. 8. Instantaneous absorbed power in irregular sea
states for passive and MPC systems with a 10s pre-
diction horizon using WEC-Sim model

8. CONCLUSIONS

An MPC law has been applied to the multi-DOF WaveSub
WEC in idealised and more realistic scenarios with the
purpose of investigating the effects of modelling and ex-
citation force prediction errors on system performance.
The results show that prediction errors have a relatively
minor effect on power absorption, though this is depen-
dent on the quality of the prediction. This study considers
only a small range of sea states and real sea states may
occur which are less predictable. Model mismatch is a
significant issue and results in a very large reduction in
power absorption compared to the ideal case. In part
this is due to changes in the controlled system stiffness
matrix as the float moves away from its nominal position,
and in part because the kinematic Jacobian matrix used
to distribute the control forces to the PTO tethers also
changes. This could potentially be alleviated by employ-
ing a nonlinear MPC law such as in Richter et al. (2013),
however the already considerable computational burden
would further increase along with the risk of infeasibility
in the optimisation.

This study, though a step beyond using an idealised state-
space model as the target system, is still limited by hav-
ing at its heart the linearised BEM hydrodynamic coeffi-
cients comprising part of the system dynamics. In reality
these coefficients will be nonlinear for large motions and
complex geometries. Other studies e.g. Ringwood et al.
(2019) have shown the sensitivity of system performance
to these inaccuracies. The performance results achieved
here suggest that significant improvements can still be
achieved with an MPC law in spite of these errors. Sig-
nificant power gains over the optimised passive system
were achieved in the more commonly occurring lower
energy sea states. However, it is arguably better in real-
ity to use a control strategy that is inherently more ro-
bust to uncertainty e.g. the relatively recently proposed
pseudo-spectral optimal strategy, see Bacelli and Ring-

wood (2015) or an AVT strategy as noted in Ringwood
et al. (2019).
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