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Abstract: The reconstruction mechanisms built by the human auditory system during sound
reconstruction are still a matter of debate. The purpose of this study is to propose a
mathematical model of sound reconstruction based on the functional architecture of the auditory
cortex (A1). The model is inspired by the geometrical modelling of vision, which has undergone
a great development in the last ten years. The algorithm transforms the degraded sound in an
’image’ in the time-frequency domain via a short-time Fourier transform. Such an image is then
lifted in the Heisenberg group (i.e., the celebrated Brockett integrator) and it is reconstructed
via a Wilson-Cowan integro-differential equation. Numerical experiments are provided.

Listening to speech requires the capacity of the auditory
system to map incoming sensory input to lexical repre-
sentations. When the sound is intelligible, this mapping
(“recognition”) process is successful. With reduced intelli-
gibility (e.g., due to background noise), the listener has to
face the task of recovering the loss of acoustic information.
This task is very complex as it requires a higher cognitive
load and the ability of repairing missing input (Mattys
et al. (2012) for a review on noise in speech). Yet, (normal
hearing) humans are quite able to recover sounds in several
effortful listening situations (e.g. see for instance Luce
and McLennan (2008), ranging from sounds degraded at
the source (e.g., hypoarticulated and pathological speech),
during transmission (e.g., noise, reverberation) or cor-
rupted because of physiological deficits (e.g. hearing loss;
Mattys et al. (2012) among others).

Mathematical modelling of sensory input reconstruction
has made a lot of progresses in the field of vision, cf. Petitot
and Tondut (1999a), Citti and Sarti (2006), and Boscain
et al. (2010). These models are based on the Reed-Shepp
control system in the group of rototranslations in the
plane, cf. Boscain et al. (2014). In later years, algorithms
inspired by the structure of the primary visual cortex (V1)
have been very successful in image processing and in par-
ticular for image reconstruction tasks, see, .e.g., Franken
and Duits (2009); Duits and Franken (2010b); Prandi and
Gauthier (2017); Boscain et al. (2018). Such work does not
seem to have been done for sound processing, probably due
to the lack of information regarding the primary auditory
cortex (A1) with respect to V1.

The model proposed here is highly inspired by the one
successfully applied for the primary visual cortex. The
analogy between the structure of V1 and A1 is well-

grounded on the existence of several biological similarities
between the two cortex. For neuroscientists, models of the
visual cortex are taken as a starting point for understand-
ing mechanisms of the auditory system (see, for instance,
Nelken and Calford (2011) for a comparison, Hickok and
Poeppel (2007) for a related discussion in speech process-
ing). A well-often cited case is the “topographic” orga-
nization of the cortex, a general principle according to
which the processing of sensory information strongly lies
on for mapping visual input and auditory-frequency input
to neurons Rauschecker (2015).

Within the specific case of the auditory system, sensors
(so-called hair cells) are tonotopically organized along
the spiral ganglion of the cochlea in a frequency-specific
fashion, with cells close to the base of the ganglion being
more sensitive to low-frequency sounds and cells near the
apex more sensitive to high-frequency sounds. This early
‘spectrogram’ of the signal is then transmitted to higher-
order layers of the auditory cortex. Strong evidence for
V1-A1 analogy comes from studies on animals and on
humans with deprived hearing or visual functions showing
cross-talk interactions between sensory regions Sharma
et al. (2000); Zatorre (2001). More relevant for our study
is the existence of receptive fields of neurons in V1 and
A1 (“simple” and “complex” cells), which supports the
idea of a “common canonical processing algorithm within
cortical columns” Tian et al. (2013): p.1. The presence
of S-cells/C-cells and the appearance of “pinwheels” in
certain situations Sharma et al. (2000); Polger et al. (2016)
speaks in favour of the idea that V1 and A1 share similar
mechanisms of sensory input reconstruction. However,
there are certain differences to take into account: In A1
the time dimension represents one of the coordinates of an
“auditory” image.
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Neuro-geometric model of V1

The neuro-geometric model of V1 can be traced back
to the work of Hoffman (1989), which, inspired by the
experimental results of Hubel and Wiesel (1959), first
proposed to model the primary visual cortex as a contact
space. This model has then been extended to the so-called
sub-Riemannian model by Petitot and Tondut (1999b),
Citti and Sarti (2006), and Boscain et al. (2010). On the
basis of such a model, exceptionally efficient algorithms for
image inpainting have been developed (e.g.Boscain et al.
(2018); Duits and Franken (2010a,b)), resulting in several
medical imaging applications (e.g., Zhang et al. (2016)).
The main idea behind this model is that an image, seen
as a function f : R2 → R+ representing the grey level,
is lifted into a surface in the bundle of the direction of
the plane R2 × P 1. Here P 1 is the space of directions
on the plane measured without orientation 1 , namely is
the circle S1 in which antipodal points are identified. The
lift is realized by adding to each point of the image the
direction of the tangent line to the level set of f . Under
suitable assumptions, such lift of a function is a surface
Sf . When f is corrupted (i.e. when f is not defined in
some region of the plane), the lift is corrupted as well and
the reconstruction is obtained by making a totally non-
isotropic diffusion adapted to the problem. Such diffusion
mimic the flow of information along the horizontal and
vertical connections of V1 and uses as an initial condition
the surface Sf and the value of the function f . Control
theorists call such a diffusion the sub-Riemannian diffusion
in R2×P 1, cf. Montgomery (2002); Agrachev et al. (2019).

One of the main features of the image reconstruction
model is the fact that it is invariant by rototranslation
of the plane. In other words, it reconstructs an image,
independently from its position and orientation on the
plane.

From V1 to sound reconstruction

In what follows, we explain how similar ideas could be
translated to the problem of sound reconstruction. A
sound (that we can think as represented by a function
s : [0, T ] → R) is transformed to its time-frequency
representation S : [0, T ] × R → C, which can be thought
of as the collection of two black-and-white images: |S| and
argS. The function S depends on two variables: the first
one is time, that here we indicate with the letter τ , and the
second one is frequency, denoted by ω. Roughly speaking,
|S(τ, ω)| represents the strength of the presence of the
frequency ω at time τ . In the following, we call S the
sound image.

A first attempt to model the process of sound reconstruc-
tion into A1 would be to apply the same algorithm of
image reconstruction discussed above. In a sound image,
however, the time plays a special role: a rotated sound
image corresponds to a completely different original sound.
Also, while for image reconstruction one can assume the
image to be static, for sound reconstruction time plays an
essential role. Hence, the invariance by rototranslations is

1 Note that in mathematics, the term “direction” corresponds to
what neurophysiologists call “orientation” and viceversa. In this
study, we use the mathematical terminology.

lost. Different symmetries have to be taken into account
and a different model for both the lift and the processing
in the lifted space is required.

As explained before, in V1 neural stimulation can stem
not only from the input but also from its variations.
That is, mathematically speaking, the input image is
considered as a real valued function on a 2-dimensional
space, and the orientation sensitivity arises from the
sensitivity to a first order derivative information on this
function. Furthermore, the geometric relation between the
perceived orientation and the derivatives of the input
signal yields a variational problem on an underlying non-
commutative structure. This structure, endowed with a
metric naturally associated with the variational problem,
give rise to the sub-Riemannian diffusion.

We follow this principle when trying to study sound
inputs à la V1. Input sound signals are time dependent
real valued functions submitted to a short time Fourier
transform via the action of the cochlea. As a result the
neuronal input is considered as a function of time and
frequency. The first time derivative of this object allows
to add a supplementary dimension to the domain of
the input. Variation of the perceived frequency can be
understood as chirpiness and denoted by ν. This notion
gives rise to a natural lift of the signal to the contact
space in the sense of Hoffman (1989); Petitot and Tondut
(1999a), i.e., R3 with the Heisenberg group structure. This
is structure is also called the Brocket integrator, and in
coordinates (τ, ω, ν) ∈ R3 reads:{

τ̇ = 1,
ω̇ = ν,
ν̇ = u(t).

As in the case of V1, this observation implies the pres-
ence of a non-commutative structure associated with this
relation. The hypo-elliptic operator associated with this
structure is the famed Kolmogorov operator.

A successful model to describe the evolution of neural
activation, in particular in the case of V1, is given by
the so-called Wilson-Cowan equations Wilson and Cowan
(1972). These integro-differential equations owe their suc-
cess to their ability to predict complex perceptual phe-
nomena in V1, such as the emergence of hallucinatory
pattern Ermentrout and Cowan (1979); Bressloff et al.
(2001). Recently, these equations have been coupled with
the neuro-geometric model of V1 to great benefit. For in-
stance, in Bertalmı́o et al. (2019b,a) they allowed to repli-
cate orientation-dependent brightness illusory phenomena,
which had proved to be a hurdle for non-cortical-inspired
models. See also Sarti and Citti (2015), for applications to
the detection of perceptual units.

Motivated by these positive results, we emulate this ap-
proach in the A1 context. Namely, we will consider the
lifted sound image I(τ, ω, ν) to yield an A1 activation
a(τ, ω, ν) via the following Wilson-Cowan equations:

∂τa(τ, ω, ν) = −αa(τ, ω, ν) + βI(τ, ω, ν)

+ γ

∫
R2

w(ω, ν‖ω′, ν′)σ(a(τ − δ, ω′, ν′)) dω′ dν′. (1)

Here, α, β, γ > 0 are parameters, σ : C → C is a non-
linear sigmoid, w(ω, ν‖ω′, ν′) is a weight modelling the
interaction between (ω, ν) and (ω′, ν′), and δ > 0 is a
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delay. The presence of this delay term models the fact
that the time-scale of the input signal and of the neuronal
activation are comparable. Wilson-Cowan equations with
delay have been applied, e.g., to feedback stabilisation of
deep-brain stimulation, cf. Chaillet et al. (2017).

The proposed algorithm to treat a sound signal s : [0, T ]→
R, is the following:

A. Preprocessing:
(a) Compute the time-frequency representation S :

[0, T ] × R → C of s, via standard short time
Fourier transform (STFT);

(b) Lift this representation to the Heisenberg group,
which encodes redundant information about the
instantaneous frequency, obtaining I : [0, T ]×R×
R→ C;

B. Processing: Process the lifted representation I via
an adapted version of the Wilson-Cowan equations,
obtaining a : [0, T ]× R× R→ C.

C. Postprocessing: Invert the preprocessing proce-
dures to a to obtain the resulting sound signal ŝ :
[0, T ]→ R.

Remark 1. All the above operations can be streamlined,
as they only require the knowledge of the sound on a short
window [t− τ, t+ δt].

Closing remarks and experiments

We presented a sound reconstruction framework inspired
by the analogies between visual and auditory cortices.
Building upon the successful cortical inspired image recon-
struction algorithms, the proposed framework lifts time-
frequencies representations of signals to the 3D contact
space, by adding instantaneous chirpiness information.
These redundant representations are then processed via
adapted diffeo-integral Wilson-Cowan equations. More in-
depth discussions of these principles and their articulation
can be found in Boscain et al. (2020).

In Figure 1 we present a simple synthetic experiment,
where the input sound is assumed to consist of two dis-
tinct frequencies depending linearly on time. One observes
that the processed sound presents the same features, but
with a longer duration. Such numerical examples can be
listened at www.github.com/dprn/WCA1. The promising
results obtained on simple synthetic sounds, although pre-
liminary, suggest possible applications of this framework to
the problem of degraded speech. This should be done via
psycholinguistic experiments, testing the reconstruction
ability of normal-hearing humans on originally degraded
speech material compared to the same material after al-
gorithm reconstruction. Such an endeavour will contribute
to further the understanding of the auditory mechanisms
emerging in effortful listening conditions and help to refine
our knowledge on current theories and models of human
speech perception as well as on general organization prin-
ciples underlying the functioning of the human cortex.
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