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Automatique et Systèmes, 60 Boulvard Saint Michel 75006 Paris,

France (e-mail: sijia.kong@mines-paristech.fr,
delphine.bresch-pietri@mines-paristech.fr)

Abstract:
We introduce a constant time horizon prediction-based controller to compensate for a time-
varying input delay in a linear control system. We establish that this controller guarantees
closed-loop exponential stability, provided that the time-varying delay remains sufficiently close
to its average value D0 and its rate of variation sufficiently small. This conclution only has to
hold in average, in a mathematical sense that we specify.
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1. INTRODUCTION

Time-delay is a common phenomenon that exists widely
in engineering systems, and usually brings great difficulties
to system analysis and controller design. As the internal
operating mechanisms of a dynamic system may not be
single-threaded, the delays could be time-varying. For
instance, see [Witrant (2005), Simon et al. (2017)], for
network systems, information traveling between two nodes
can be transmitted through different channels, yielding
data reordering and transmission lag. The latter can
depend on the congestion of the channel, which itself
depends on the routine algorithm, and can thus vary to a
large extent. Besides, these variations are hard to quantify
and the resulting time-delay is often unknown in practice.

Numerous control systems have been developed to re-
duce the influence of time-delays, as exposed in Gu and
Niculescu (2003) and Richard (2003). When the delay af-
fects the input of a system, prediction-based controllers are
an interesting tool to consider as they aim at compensating
for the delay and thus eliminating its effect in the closed-
loop dynamics. However, state-of-the-art prediction-based
techniques (see [Smith (1957), Artstein (1982), Kwon and
Pearson (1980), Manitius and Olbrot (1979)]) only ap-
ply to the constant delay case. Extension in the works
of Nihtila (1991), Bekiaris-Liberis and Krstic (2012) to
time-varying delays reveals troublesome and, in any case,
requires the knowledge of the delay variations.

In this paper, we propose to use a predictor with a constant
prediction horizon, chosen as an a priori known average
value of the time-varying delay. We establish that this con-
troller guarantees closed-loop exponential stability, pro-
vided that the time-varying delay remains sufficiently close
to its average value D0 and its rate of variation sufficiently
small. This conclusion only has to hold in average, in a

mathematical sense that we specify. This is consistent with
previous results reported in the study of Bekiaris-Liberis
and Krstic (2013), which considers time-varying pertur-
bations of a nominal constant delay and obtains similar
conditions bearing on the delay perturbation. However, in
this paper, contrary to Bekiaris-Liberis and Krstic (2013),

we do not need to restrict the rate of delay with |Ḋ| < 1.
This is achieved by introducing a different transport PDE
representation of the delay and a corresponding Lyapunov
functional for stability analysis, inspired by our previous
research in Bresch-Pietri et al. (2018). This is the main
contribution of the paper.

We start the paper with Section 2 in which we describe
the problem statement and give the main result. Section
3 contains the proof of this result, reformulating a trans-
port PDE with a backstepping transformation, inspired
by Krstic and Smyshlyaev (2008), to perform Lyapunov
stability analysis. Finally, the conservativeness of the ob-
tained conditions is discussed with a numerical example in
Section 4, which highlights the interests of the proposed
method.

Notations: In the following, for a given scalar function
x : R → R, we denote xt : s ∈ [−D, 0] → x(t + s) for
t ∈ R and a given positive constant D.

2. PROBLEM STATEMENT

We consider the following potentially unstable linear dy-
namic system

Ẋ = AX +BU(t−D(t)) (1)

in which X ∈ Rn, U is scalar and D(t) ∈ [D,D] (D >
D > 0) is a positive time-varying delay which is continu-
ously time differentiable function for t ≥ 0. We assume
that this plant is controllable and choose a prediction-
based controller as
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U(t) = K

[
eAD0X(t) +

∫ t

t−D0

eA(t−s)BU(s)ds

]
(2)

in which D0 is the average value or a positive time-
invariant estimation of the delay, which is a priori known,
and K is a stabilizing feedback gain, such that A+BK is
Hurwitz.

Theorem 1. Consider the closed-loop system which con-
sists of system (1) and the control law (2). Define the
Lyapunov-Krasovskii functional

Υ(t) = |X(t)|2 +

∫ t

t−max{D(t),D0}
U(s)2ds+

∫ t

t−D0

U̇(s)2ds

(3)
Assume there exist δ > 0 and ∆ > 0 such that

1

∆

∫ t+∆

t

(
|D0 −D(s)|

D0
+ |Ḋ(s)|

)
ds ≤ δ, t ≥ 0 (4)

Then, there exists δ∗ > 0 such that, if δ < δ∗, there exist
two positive constants R and γ such that

Υ(t) ≤ Rmax Υ0e
−γt (5)

The prediction-based controller (2) would give an exact
prediction X(t+D0) in the case of a constant input delay
D(t) = D0. Intuitively, one could guess that, though exact
delay compensation is not achieved with the controller (2)
in the case of a time-varying delay, exponential stability
would still hold if the time-varying delay can be reasonably
approximated by a constant. This is the sense of condition
(4), which requires the time-varying delay D(t) to be
approximately equal to the average value D0. Note that
this condition only holds in average on a time window of
length ∆. This means that pointwise fluctuations can still
occur as long as they are compensated the rest of the time.

We now provide the proof of this theorem.

3. PROOF OF THEOREM 1

3.1 Transport Equations and Backstepping Transformation

To represent the time-varying delay phenomemon, define
a distributed actuator u(x, t) = U(t + D(t)(x − 1)), for
x ∈ [0, 1], which satisfies the following dynamics{

D(t)ut(x, t) =
(
1 + Ḋ(t)(x− 1)

)
ux

u(1, t) = U(t)
(6)

To account for the control law (2) based on a D0 units
of time prediction horizon, introduce an estimate of the
distributed input as û(x, t) = U(t + D0(x − 1)), and the
corresponding distributed input estimation error ũ(x, t) =
u(x, t) − û(x, t). The dynamics of the extended state
(X, û, ũ) can then be written as

Ẋ = AX +B
(
û(0, t) + ũ(0, t)

)
D0ût = ûx(x, t)

û(1, t) = U(t)

D(t)ũt =
(
1 + Ḋ(t)(x− 1)

)
ũx(x, t)

+

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
ûx

ũ(1, t) = 0

(7)

In view of the stability analysis, we reformulate this
system by introducing the backstepping transformation
(see [Krstic and Smyshlyaev (2008)])

w(x, t) =û(x, t)−KeAD0xX(t)

−D0

∫ x

0

KeAD0(x−y)Bû(y)dy
(8)

Lemma 2. The backstepping transformation (8), along
with the control law (2), transform the plant (7) into the
following target system

Ẋ = (A+BK)X +Bw(0, t) +Bũ(0, t)

D0wt(x, t) = wx(x, t)−D0Ke
AD0xBũ(0, t)

w(1, t) = 0

D(t)ũt(x, t) =

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
f
(
X(t), w(·, t)

)
+
(
1 + Ḋ(t)(x− 1)

)
ũx(x, t)

ũ(1, t) = 0
(9)

in which

f(X,w) =wx(x, t) +D0K(A+BK)e(A+BK)D0xX(t)

+D0KBw(x, t) +

∫ x

0

KD0(A+BK)D0

× e(A+BK)D0(x−y)Bw(y, t)dy
(10)

In addition, the partial space-derivative of the backstep-
ping variable satisfies{

D0wxt(x, t) = wxx(x, t)−D2
0KAe

AD0xBũ(0, t)

wx(1, t) = D0Ke
AD0Bũ(0, t)

(11)

Proof. Taking the space-derivation and the time-derivative
of (8), one concludes that{

D0wt(x, t) = wx(x, t)−D0Ke
AD0xBũ(0, t)

w(1, t) = û(1, t)−KX(t) = 0
(12)

Using the inverse backstepping transformation of (8) (see
[Krstic and Smyshlyaev (2008)])

û(x, t) =w(x, t) +Ke(A+BK)D0xX(t)

+

∫ x

0

KD0e
(A+BK)D0(x−y)Bw(y, t)dy

(13)

One can formulate the derivative of û with respect to x as

ûx(x, t) = f(X(t), w(·, t))
= wx(x, t) +D0K(A+BK)e(A+BK)D0xX(t)

+D0KBw(x, t) +

∫ x

0

KD0(A+BK)

×D0e
(A+BK)D0(x−y)Bw(y, t)dy

(14)

We take the spatial derivative of (12) and use the first
equation in (12) for x = 1 to obtain

D0wxt(x, t) = wxx(x, t)−D2
0KAe

AD0xBũ(0, t)

wx(1, t) = D0wt(1, t) +D0Ke
AD0Bũ(0, t)

= D0Ke
AD0Bũ(0, t)

(15)
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3.2 Lyapunov Analysis

Based on the work of Bresch-Pietri et al. (2018), we
construct a positive Lyapunov functional as follows:

V (t) = X(t)TPX(t) + bD0

∫ 1

0

(1 + x)w(x, t)2dx

+ cD

∫ 1

0

(1 + x)ũ(x, t)2dx

+ dD0

∫ 1

0

(1 + x)wx(x, t)2dx

(16)

with b, c, d > 0, and P is the symmetric positive definite
solution of the equation P (A+BK)+(A+BK)TP = −Q,
for a given symmetric positive definite matrix Q.

Lemma 3. If g : t→ |D(t)−D0|
D0

+ |Ḋ| satisfies the condition

(4) given in Theorem 1, there exist (b, c, d, δ∗) ∈ R∗+
4 such

that, if δ < δ∗, there exist positive constants R and γ such
that

V (t) ≤ RmaxV0e
−γt (17)

where V is defined in (16).

Proof. Firstly, using Lemma 2, we obtain the derivative
of the Lyapunov functional V (t) as follows

V̇ (t) = −X(t)TQX(t) + 2X(t)TPB[w(0, t) + ũ(0, t)]

+ 2b

∫ 1

0

(1 + x)w(x, t)
(
wx(x, t)−D0Ke

AD0x

×Bũ(0, t)
)
dx+ cḊ(t)

∫ 1

0

(1 + x)ũ(x, t)2dx

+ 2c

∫ 1

0

(1 + x)ũ(x, t)

[
(1 + Ḋ(t)(x− 1))ũx(x, t)

+

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
f(X(t), w(·, t))

]
dx

+ 2d

∫ 1

0

(1 + x)wx(x, t)
(
wxx(x, t)

−D2
0KAe

AD0xBũ(0, t)
)
dx

(18)

Using Cauchy-Schwarz and Young’s inequalities (see Ap-
pendix A), and classifying polynomials by grouping the
like terms, we obtain the following inequality

V̇ ≤
(
− min(λ(Q))

2
+ cM3g(t)γ3

)
|X(t)|2

+
(
− b+ bM1γ1 + cM4g(t)γ4 + cM5g(t)γ5

)
‖w(t)‖2

+
(
− c+ 2c|Ḋ|+ 4c

γ2
+
cM3

γ3
+
cM4

γ4
+
cM5

γ5

)
‖ũ(t)‖2

+
(
− d+ 4cg(t)γ2 + dM6γ6

)
‖wx(t)‖2

+
(
− b+

4‖PB‖2

min(λ(Q))

)
w(0, t)2

+
(
− c+

4‖PB‖2

min(λ(Q))
+ c|Ḋ|+ bM1

γ1
+
dM6

γ6

+ dM7

)
ũ(0, t)2

+ (−d)wx(0, t)2

(19)

in which (see Appendix B) M1, M3, M4, M5, M6, M7 are
positive constants, and the positive constants γ1, γ2, γ3,
γ4, γ5, γ6 are chosen as follows:

(1) γ1 ≤ 1
M1

, γ6 ≤ 1
M6

,

(2) b ≥ 4‖PB‖2
min(λ(Q)) , d ≥ 0,

(3) c ≥ b
γ2
1

+ d
γ2
6

+ dM7 + 4‖PB‖2
min(λ(Q))

(4) (γ2, γ3, γ4, γ5) such that 4
γ2

+ M3

γ3
+ M4

γ4
+ M5

γ5
≤ 1.

From (2),

U2(t) ≤M0

(
|X(t)|2 + ‖û(t)‖2

)
(20)

in which M0 = 2‖K‖2 max
{
e2‖A‖D, e2‖A‖D0‖B‖2

}
Using the fact that ũ(0, t) = U(t −D(t)) − U(t −D0), it
holds

ũ2(0, t)

≤ 2M0 max
s∈[−max(D(t),D0),0]

(
|X(t+ s)|2 + ‖û(t+ s)‖2

)
≤M max

s∈[−D,0]
V (t+ s)

(21)

in which M = 2M0 max{(r1 + 1), r2} with r1 and r2 (see
Appendix C) are positive constants.

Then, it holds

V̇ (t) ≤ −η1V (t) + η2g(t) max
s∈[−D,0]

V (t+ s), t ≥ 0 (22)

defining

η1 =
1

a
min

{
min(λ(Q))

2
, b(1−M1γ1), d(1−M6γ6),

c

(
1− 4

γ2
− M3

γ3
− M4

γ4
− M5

γ5

)}
> 0

η2 =
c

a
max{M3γ3, (M4γ4 +M5γ5), 2, 4γ2}

+
4c

a
‖K‖2max

{
e2‖A‖D, e2‖A‖D0‖B‖2

}
max{(r1 + 1), r2} > 0

(23)
where a = min{min(λ(P )), bD0, cD, dD0}, λ represents
the eigenvalues of the matrix.

Applying Lemma 5 (see Appendix D), one concludes that
there exists δ∗ such that, if δ ≤ δ∗, there exist two
constants R, γ > 0 such that

V (t) ≤ RmaxV0e
−γt (24)

thus, the exponential stability of the Lyapunov functional
V holds.

3.3 Exponential stability in terms of Υ

Lemma 4. The two Lyapunov functionals V (t) and Υ(t)
are equivalent, that is, there exist λ1, λ2 > 0 such that
λ1V (t) ≤ Υ(t) ≤ λ2V (t) for t ≥ 0.

Proof. See Appendix C.

The proof of Theorem 1 is then completed, as a straight-
forward consequence of Lemmas 3 and 4.
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4. SIMULATIONS

To illustrate the merits of the proposed prediction-based
control, we consider the following LTI system as an exam-
ple

Ẋ(t) =

[
0 1
−1 1

]
X(t) +

[
0
1

]
U(t−D(t)) (25)

The control law (2) is applied with the feedback gain K =
− [3.5 4.5], which corresponds to closed-loop eigenvalues
λp(A+BK) = [−1.7500 + 1.1990i,−1.7500− 1.1990i].

We propose to compute the delay margin of the corre-
sponding constant delay dynamic system, to find a rea-
sonable range of δ∗ which is mentioned in Theorem 1.
According to the study of Mondié et al. (2001), when D
is constant, the dynamic system (1) with the control law
(2) has the characteristic matrix

Mchar =[
sI −A −Be−Ds
−KeAD0 Im −K(sI −A)−1(I − e−D0(sI−A))B

]
(26)

which corresponds to the characteristic equation

det(Mchar) =det(sI −A− [Im − e−D0(sI−A)

+ eD0A−DsI ]BK) = 0
(27)

We solve this equation using the QPmR routine [Vyhĺıdal
and Źıtek (2014)] with D = D0 + ∆D and for different
values of ∆D. Corresponding roots are pictured in Fig.1.
When ∆D = 0, one recovers a finite spectrum as (27)
simplifies into

det(Mchar) = det(sI −A−BK) = 0 (28)

which is consistent with the finite spectrum assignment
property of a prediction-based controller. As ∆D increases
continuously, the system reaches instability when the real
part of the caracteristic roots crosses the imaginary axis,
which occurs for ∆D = 0.08.

Fig. 1. Characteristic roots solutions to (27) for D0 = 2,
D = D0 + ∆D and different values of ∆D.

Correspondingly, we now choose D(t) = D0 + asin(ωt)
with a ≤ ∆D∗. Firstly, we choose a set of parameters
(a, ω) = (0.10, 1) that contributes to a stable system in
Fig. 2(a), even though transient performances are dete-
riorated by a substantial delay variation rate. However,
the selection of a higher pulsation ω0 = 10rad/s results
into an unstable closed-loop dynamics, in compliance with
Theorem 1. The choice of a larger value of a (a = 0.15
for instance) would yield similar numerical results. This
confirms the key role of both the delay magnitude and
variation rate, which should be restricted in a sufficiently
small range to guarantee closed-loop stability.

(a) a = 0.10, ω = 1rad/s

(b) a = 0.10, ω = 10rad/s

Fig. 2. (Delay perturbation ∆D = asin(ωt)) Simulation
results with a feedback gain K = −[3.5 4.5], initial
conditions X(0) = [1 0]T , estimated delay D0 = 2.

5. CONCLUSION

In this paper, we formulated sufficient conditions to guar-
antee the exponential stability of a time-varying input de-
lay system controlled with a constant horizon prediction-
based controller. This result is of interest in the case
where the current value of the delay is unknown and only
statistical properties of the delay are available. Future
works should focus on the extension of this technique in
a stochastic framework which is an important concern of
network systems.
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Appendix A. BOUNDS USED IN THE LYAPUNOV
ANALYSIS

Using the Cauchy-Schwartz and Young’s inequalites, each
part of the derivative of Lyapunov functional V with
respect to t can be bounded as follows:

2X(t)TPB[w(0, t) + ũ(0, t)]

≤ min(λ(Q))

2
|X(t)|2 +

4‖PB‖2

min(λ(Q))
(w(0, t)2 + ũ(0, t)2)

2b

∫ 1

0

(1 + x)w(x, t)wx(x, t)dx

≤ 2bD0‖K‖e‖A‖D0‖B‖
( 1

γ1
ũ(0, t)2 + γ1‖w(t)‖2

)
cḊ(t)

∫ 1

0

(1 + x)ũ(x, t)2dx ≤ 2c|Ḋ(t)|‖ũ(t)‖2

2c

∫ 1

0

(1 + x)ũ(x, t)[1 + Ḋ(t)(x− 1)]ũx(x, t)dx

≤ c(|Ḋ| − 1)ũ(0, t)2 + c(2|Ḋ| − 1)‖ũ(t)‖2

2c

∫ 1

0

(1 + x)ũ(x, t)

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
wx(x, t)dx

≤ 2c

(
|D0 −D|

D0
+
|Ḋ|
2

)( 1

γ2
‖ũ(t)‖2 + γ2‖wx(t)‖2

)
2c

∫ 1

0

(1 + x)ũ(x, t)

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
×K(A+BK)D0e

(A+BK)D0xX(t)dx

≤ 2c‖K‖‖A+BK‖D0e
‖A+BK‖D0

(
|D0 −D|

D0
+
|Ḋ|
2

)
×
( 1

γ3
‖ũ(t)‖2 + γ3|X(t)|2

)
2c

∫ 1

0

(1 + x)ũ(x, t)

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
D0KB

× w(x, t)dx

≤ 2cD0‖K‖‖B‖

(
|D0 −D|

D0
+
|Ḋ|
2

)
×
( 1

γ4
‖ũ(t)‖2 + γ4‖w(t)‖2

)
2c

∫ 1

0

(1 + x)ũ(x, t)

(
D0 −D(t)

D0
+ Ḋ(x− 1)

)
D0

×
∫ x

0

K(A+BK)D0e
(A+BK)D0(x−y)Bw(y, t)dydx

≤ 2cD2
0‖K‖‖A+BK‖e‖A+BK‖D0‖B‖

×

(
|D0 −D|

D0
+
|Ḋ|
2

)
(

1

γ5
‖ũ(t)‖2 + γ5‖w(t)‖2)

2d

∫ 1

0

(1 + x)wx(x, t)wxx(x, t)dx

≤ 2dD2
0(‖K‖e‖A‖D0‖B‖)2ũ(0, t)2 − dwx(0, t)2

− d‖wx(t)‖2

2d

∫ 1

0

(1 + x)wx(x, t)D2
0KAe

AD0xBũ(0, t)dx

≤ 2dD2
0‖K‖‖A‖e‖A‖D0‖B‖( 1

γ6
‖wx(t)‖2 + γ6ũ(0, t)2)

Appendix B. CONSTANTS IN (19)

(M1,M3,M4,M5,M6,M7) are positive constants that de-
pend on the feedback gain and estimated delay of the
system, and are given as

M1 = 2D0‖K‖e‖A‖D0‖B‖ (B.1)

M3 = 2D0‖K‖‖A+BK‖e‖A+BK‖D0 (B.2)

M4 = 2D0‖KB‖ (B.3)

M5 = 2D2
0‖K‖‖A+BK‖e‖A+BK‖D0‖B‖ (B.4)

M6 = 2D2
0‖KA‖e‖A‖D0‖B‖ (B.5)

M7 = 2D2
0(‖K‖e‖A‖D0‖B‖)2 (B.6)
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Appendix C. PROOF OF LEMMA 4

Firstly, we define another Lyapunov functional Γ(t) based
on the state (X, û, ũ)

Γ(t) = |X(t)|2 + ‖u(t)‖2 + ‖û(t)‖2 + ‖ûx(t)‖2 (C.1)

From the definition of u and û, one gets

Γ(t) = |X(t)|2 +

∫ t

t−D(t)

U(s)2ds+

∫ t

t−D0

U(s)2ds

+

∫ t

t−D0

U̇(s)2ds

= |X(t)|2 + 2

∫ t

t−max{D(t),D0}
U(s)2ds

−
∫ t−min{D(t),D0}

t−max{D(t),D0}
U(s)2ds+

∫ t

t−D0

U̇(s)2ds

(C.2)

and hence
Υ(t) ≤ Γ(t) ≤ 2Υ(t) (C.3)

From the backstepping transformation (8) and its inverse
(13), there exist ri, si > 0 such that

‖û(t)‖2 ≤ r1|X(t)|2 + r2‖w(t)‖2 (C.4)

‖ûx(t)‖2 ≤ r3|X(t)|2 + r4‖w(t)‖2 + r5‖wx(t)‖2 (C.5)

‖ũ(t)‖2 ≤ 2‖u(t)‖2 + 2‖û(t)‖2 (C.6)

‖w(t)‖2 ≤ s1|X(t)|2 + s2‖û(t)‖2 (C.7)

‖wx(t)‖2 ≤ s3|X(t)|2 + s4‖û(t)‖2 + s5‖ûx(t)‖2 (C.8)

From which one can conclude that
Γ(t) = |X(t)|2 + ‖u(t)‖2 + ‖û(t)‖2 + ‖ûx(t)‖2

≤ |X(t)|2 + 2‖ũ(t)‖2 + 3‖û(t)‖2 + ‖ûx(t)‖2

≤ max{1 + 3r1 + r3, 3r2 + r4, r5, 2}
min{λ(P ), bD0, cD, dD0}

V (t)

(C.9)

and that
V (t) ≤ λ(P )|X(t)|2 + 2bD0‖w(t)‖2

+ 2cD‖ũ(t)‖2 + 2dD0‖wx(t)‖2

≤ (λ(P ) + 2bD0s1 + 2dD0s3)|X(t)|2

+ (2bD0s2 + 4cD + 2dD0s4)‖û(t)‖2

+ 4cD‖u(t)‖2 + 2dD0s5‖ûx(t)‖2

≤ max{λ(P ) + 2bD0s1 + 2dD0s3, 4cD,

2bD0s2 + 4cD + 2dD0s4, 2dD0s5}Γ(t)

(C.10)

The desired result follows defining

λ1 =

(
2max{λ(P ) + 2bD0s1 + 2dD0s3, 4cD,

+ 4cD + 2dD0s4, 2dD0s5}
)−1

λ2 =
max{1 + 3r1 + r3, 3r2 + r4, r5, 2}

min{λ(P ), bD0, cD, dD0}

(C.11)

Appendix D. TIME-VARYING HALANAY
INEQUALITY

We detail here a new version of a time-varying Halanay
inequality, inspired by the work of Bresch-Pietri et al.
(2018).

Lemma 5. Consider a nonnegative differentiable function
x such that for t ≥ 0ẋ(t) ≤ −η1x(t) + η2g(t) max

s∈[−D,0]
x(t+ s)

x0 = ψ ∈ C([−D, 0],R)
(D.1)

in which D > 0, (η1, η2) ∈ R∗+
2 and g is a nonnegative

continuous function which satisfies, for certain ∆ > 0 and
δ > 0,

1

∆

∫ t+∆

t

g(s)ds ≤ δ, t ≥ 0 (D.2)

Then, there exists δ∗ > 0, such that, if δ < δ∗,

x(t) ≤ Rmaxψe−γt (D.3)

in which R and γ are two positive constants.

Proof. First, we prove that there exists R > 0 such that

max
s∈[−∆−D,0]

x(∆ + s) ≤ Rmaxψ (D.4)

Let k > maxψ and define

y(t) =


k, t ∈ [−D, 0]

k exp
( ∫ t

0

η2g(s)ds
)
, t ∈ [0,∆]

(D.5)

which is a non-decreasing function and thus

ẏ(t) = η2g(t) max
s∈[−D,0]

y(t+ s) > 0 (D.6)

Consider z = y − x which is a continuous function. Then,
from (D.1) and (D.6), one obtains

ż(t) = η2g(t) max
s∈[−D,0]

y(t+ s)

−
(
− η1x(t) + η2g(t) max

s∈[−D,0]
x(t+ s)

)
> η2g(t)

(
max

s∈[−D,0]
y(t+ s)− max

s∈[−D,0]
x(t+ s)

)
+ η1x(t) > 0

(D.7)

which gives, as k > maxψ

x(t) ≤ exp
(
η2

∫ t

0

g(s)ds
)

maxψ, t ∈ [0, T ] (D.8)

from which (D.4) follows.

Second, t ≥ ∆, integrating (D.1) on [t−∆, t], one gets

x(t) ≤
(
e−η1∆ + η2

∫ t

t−∆

e−η1(t−s)g(s)ds
)

× max
s∈[−∆−D,0]

x(t+ s)

≤
(
e−η1∆ + η2δ∆

)
max

s∈[−∆−D,0]
x(t+ s)

≤ c max
s∈[−∆−D,0]

x(t+ s)

(D.9)

in which c is a positive constant such that limδ→0 c =
e−η1∆ < 1.

Finally, we can always find a positive constant δ∗ such
that, if δ ≤ δ∗, there exist R > 0 and γ > 0 such that x
satisfies (D.3).
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