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Abstract: This paper deals with the stabilization of switched affine systems. The particularities
of this class of nonlinear systems are first related to the fact that the control action is performed
through the selection of the switching mode to be activated and, second, to the problem of
providing an accurate characterization of the set where the solutions to the system converge to.
In this paper, we propose a new method based on a control Lyapunov function, that provides
a more accurate invariant set for the closed-loop systems, which is composed by the union
of potentially several disjoint subsets. The main contribution is presented as a non convex
optimization problem, which refers to a Lyapunov-Metzler condition. Nevertheless a gridding
technique applied on some parameters allows obtaining a reasonable solution through an LMI
optimization. The method is then illustrated on two numerical examples.
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1. INTRODUCTION

Switched systems represent a subclass of hybrid systems
(Liberzon, 2003), (Shorten et al., 2007) encountered in
many applications such event-triggered control, mobile
sensor networks, damping of vibrating structures, among
many others. The reader may refer to (Antunes and
Heemels, 2017) to know more about these applications.
While one can find a rich literature on the stabilization of
switched linear systems, as for instance in (Feron, 1996;
Lin and Antsaklis, 2009; Liberzon, 2003), the problem of
stabilizing switched affine systems has been less regarded
even though this class of nonlinear systems is of particular
interest for the analysis of sampled-data sliding mode
controllers (Su et al., 2000) or for the stabilization of DC-
DC converters (Deaecto et al., 2010; Beneux et al., 2019).

Stabilizing switched affine systems aims at ensuring the
convergence of the state to a selected reference point
that does not necessarily coincide with the equilibria of
the modes. Several control design methods have been
considered in the literature as for instance in (Hetel
and Fridman, 2013; Skafidas et al., 1999; Seatzu et al.,
2006; Hetel and Bernuau, 2014) or in (Deaecto et al.,
2010; Albea-Sanchez et al., 2015; Beneux et al., 2019),
where a particular attention to the application to power
converters is paid. It is worth mentioning that these design
strategies are not fully satisfactory in practice because they
theoretically produce, around the equilibrium, an infinite
number of control updates, which is not reasonable because
of implementation constraints. This problem is similar to
the one arising in the implementation of sliding mode

* This work has been partially funded under grant “HISPALIS”
ANR-18-CE40-0022-01.

Copyright lies with the authors

6211

controllers, where chattering effects occur when the state
enters in the sliding surface (Edwards and Spurgeon, 1998;
Shtessel et al., 2014). To solve this issue, a possible solution
is to introduce a minimum latency between two successive
control updates, also known as a dwell time constraint
(Senesky et al., 2003; Buisson et al., 2005; Theunisse
et al., 2015; Albea-Sanchez et al., 2019). One can note,
however, that the resulting control signals updates are
sampled in an aperiodic manner and, in some occasions,
due to practical constraints, one needs to impose a periodic
implementation. Moreover, it is worth mentioning that
a robust approach with respect to aperiodic sampled-
data switching controllers was investigated in (Hauroigne
et al., 2011; Hetel and Fridman, 2013). Nevertheless, all the
previous design solutions are based on a common quadratic
Lyapunov function, which is known to be conservative
and/or restrictive even for switched linear cases.

Another solution provided in the literature consists in
considering periodic updates of the control input and the
resulting discrete-time formulation of the switched affine
system. The objective here is to ensure the stabilization
of the state to a neighborhood of the reference. Where
this solution obviously presents a Zeno behaviour at the
reference, the price to pay is that the discrete-time system
cannot be stabilized to a single point but rather to a
suitable region. In this situation, the authors of (Deaecto
and Geromel, 2017; Ventosa-Cutillas et al., 2019) provide
a solution considering a common and quadratic Lyapunov
function, which is conservative, leading to a practical
stabilization result. This approach was latter relaxed in
(Egidio and Deaecto, 2019), where the design of practi-
cally stabilizing control law was developed thanks to a
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switched Lyapunov function, reducing then the inherent
conservatism of the resulting condition.

The present paper aims at providing a novel method for
the design of stabilizing control laws for switched affine
systems. The novelty of the method relies on the use
of another switching control Lyapunov function, with a
structure that notably differs from the one proposed in
(Egidio and Deaecto, 2019). This method gives rise to
a control law resulting from a non convex optimization
problem referring to Lyapunov-Metzler conditions (see
e.g. (Geromel and Colaneri, 2006; Heemels et al., 2016)).
Thanks to a gridding technique, this problem can be solved
iteratively by producing a convex problem formulated as
a Linear Matrix Inequality (LMI). Interestingly, this new
method ensures the convergence of the trajectories of the
system to the interior of an invariant attractive region
composed of several possibly disjoint ellipsoidal regions.
A comparison with the numerical application presented
in (Egidio and Deaecto, 2019) is proposed and shows the
efficiency of our method, since it provides a smaller and
more accurate invariant set.

The paper is organized as follows: the problem is stated in
Section 2. Then, a switched control design is provided in
Section 3. Section 4 is devoted to numerical applications of
our method. The paper ends with a conclusion and several
perspectives.

Notations: Throughout the paper, N denotes the set of nat-
ural numbers, R the real numbers, R™ the n-dimensional
Euclidean space and R™ ™ the set of all real n x m
matrices. For any n and m in N, matrices I,, and 0, ,
denote the identity matrix of R™*™ and the null matrix
of R™ ™ respectively. When no confusion is possible, the
subscripts of these matrices that specify the dimension,
will be omitted. For any matrix M of R™*™, the notation
M > 0, (M < 0) means that M is symmetric positive
(negative) definite and det(M) represents its determinant.
Finally, we define A as the subset of (0,1)%X such that
an element A in A has its components, \; in (0,1) for all
icK := {1,...,K} and verifies ), p A\; = 1.

2. PROBLEM FORMULATION
2.1 System data

Consider discrete-time switched affine system

Tht1 = Aokl‘k + B, , keN,

{Jk :u(xk) e K, (1)

xo € Rn7
where x;, € R™ is the state vector, which is assumed to be
known at each time instant k in N. The switched system is
composed of K subsystems defined through the constant
and known matrices 4; € R™™ and B; € R™*! for all
i € K. The active mode is characterized by variable oy,
which can take any value in K. The particularity of this
class of systems relies on the fact that the only control
action u is performed through the selection of the active
mode oy},.

The objective of this paper is the design of a suitable
control law for system (1) that ensures the convergence
of the state trajectories to a set to be characterized in an
accurate manner. Indeed, it is well-known that asymptotic

stability of a single equilibrium of (1) cannot be achieved
in general for switched affine system (1). Due to the affine,
and consequently nonlinear nature, one has to relax the
control objective to derive an acceptable stability result.
For instance, in (Deaecto and Geromel, 2017), the authors
have derived a practical stability result. More precisely, it
is shown therein, that the solutions to the switched affine
systems converge to an invariant region characterized by
a level set of a Lyapunov function centered at a desired
operating point or at a slightly shifted point nearby this
operating point.

Here, our objective is to go deeper into the analysis
of switched affine systems and try to characterize in a
more accurate manner the region where the solutions to
the system converge to. This new analysis is achieved
thanks to a different class of Lyapunov functions than
the quadratic ones. Indeed, one has to use more advanced
tools and Lyapunov functions arising in switched affine
systems in order to derive more accurate results. A first
attempt was considered in (Geromel and Colaneri, 2006)
for switched linear systems, where the Lyapunov function
is defined using different Lyapunov matrices. It is note-
worthy that the discrete-time nature of the dynamics (1)
allows to consider classes of Lyapunov functions associated
with possibly disconnected level sets, as pointed out in
(Cavichioli Gonzaga et al., 2012). Here, we propose a
different Lyapunov function inspired from (Egidio and
Deaecto, 2019) and defined as follows

V(x) :néi]lél(x—pi)TP(x—pi), Ve e R",  (2)
K3

where P is a symmetric positive definite matrix of R™*"
and where, for any i € K, p; are vectors of R". These
vectors represent several possible shifted centers of the
Lyapunov function and are to be characterized in a dedi-
cated manner.

Remark 1. In the definition of the Lyapunov function, it
is assumed that the number of shifted centers is the same
as the number of modes. This can be seen as a restrictive
assumption that could be relaxed but this goes beyond the
objectives of this paper, which concerns the development
of a new control Lyapunov function for switched affine
systems.

As mentioned above, ensuring asymptotic stability of an
equilibrium is in general not possible for switched affine
systems. However, it is still possible to derive practical
stability result as a given level set of a Lyapunov function.
Following the same ideas as in the literature, our objective
is to guarantee the practical stability of a level set of this
new Lyapunov function. This level set, also called attractor
is defined as follows:

A:={zeR"” | V(z) <1}, (3)
where we recall that the Lyapunov function V is defined
by (2). Depending on the selection of matrix P and on
the shifted centers p;, the attractor may not be a convex
nor a connected set. Indeed, we will see in the example
section, that the level set of the Lyapunov function may
characterize several disjoint regions.

2.2 Preliminary

This preliminary is taken from (Geromel and Colaneri,
2006) and provides an equivalence between a minimum
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of a set of values and their convex linear combination. The
following lemma taken from (Cavichioli Gonzaga, 2012)
formalizes this statement.

Lemma 2. (Cavichioli Gonzaga (2012)). For any scalars
v;, where ¢ € K, the following equality holds
Bt S
€K

Remark 3. There is a small difference with respect to the
original formulation of (Cavichioli Gonzaga, 2012). Indeed,
here, A is an open set (i.e. the a;’s cannot be equal to
0 nor 1). Equality (4) will be a key element of the next
developments. In particular, the previous lemma ensures
that for any element « in A, the following inequality holds

S Z ;5. (5)

i€K

3. STATE BASED SWITCHING CONTROL

(4)

min v; =
ick

min v;
ieK

3.1 Main result

We dedicate this section to design a novel switching control
law based on the state z, from (1) which is assumed to be
known at every time instant k. This stabilization result is
stated in the following theorem.

Theorem 4. Consider parameters u € (0,1), \) € A, with
1 € K, a positive definite matrix W € R™ ™ = 0, and
p; € R™ that are the solutions to the following non convex
optimization problem

i, T ©
subject to the constraints
W =0, (7)
—A-pW 0 ALY
* —u BAD) | <0, VieK, (8)
* w  —D;(AD)
where
A = NPwal o aPwal |,

BiAD) = \D (Aupit Bi—p1) T .. M2 (Aipit Bipi)T]
D;(AD) = diag AW, ..., AP W),

Then, the switching function control law given by
u(z) € G(x) = argmin(z—p;) T W (z—p;), Yz € R", (9)
i€k
ensures that A is uniformly globally asymptotically stable
(UGAS) for system (1).

Proof. The proof aims at demonstrating that A defined in
(3) is UGAS provided that the conditions of Theorem 4
are verified. To do so, the two following items have to be
considered

e V given in (2) is a Lyapunov function for the system
(1), (9), with P =W 1.
e A is invariant for the system (1),(9).

In order to prove the first item, let us compute the
increment of the Lyapunov function. This leads to

AV (2x) = min(zp41 — pi) " P(@hs1 = py)

—min(zy = pi) Play = pi).

According to the switching control law (9), the active mode
o corresponds to the mode that minimizes the Lyapunov
function at time k, which allows us to write

AV () = min(zrr = p;) " Plarss = pg)

- (xk - pﬂk)TP(xk - pUk)'
Thanks to inequality (5), the following inequality holds for
any element A(°%) in A.

AV () < YA (@1 — p) T P(@rgs — py)
jEK
— (), — pak)TP<xk ~ Po)s
where /\5.‘7’“) is the j*" component of \(7¥).

Let us now focus on the first positive terms of the previous
expression. Replacing xp1 by its expression from (1), we
note that xx41 — pj = Ao, 2k + Bo, — pj. Our objective
is to rewrite the previous expression using xy — po,, in
order to take the full benefits of the negative terms of the
Lyapunov increment. Simple manipulations yield
Tpt1 — Pj = Aoy (Tk — poy,) + Aoy Por, + Boy — pj-

Let us now introduce a new vector, X, given by

7

X;cr = [(xk - pok)TP 1] ) (10)

and matrix W = P~! = 0 and then, we obtain the
following expression

LTk+1 — Pj = [Ao'kW Aakpak + B, — pj] Xk-

Hence, gathering all the terms in the sum and using the

notations introduced in Theorem 4, we have

AV () < X ®(0k, A7) x,

where matrix ®(oy, A(°%)) is given by

" Ay, (NF)
®(oy, X)) = LB% kEA("’C);]
o

W 0
10 0
It is worth noting that the components of A(?) are assumed
to be strictly positive. Now, that the difference Lyapunov
function has been properly expressed, the next step con-
sists in ensuring its negative definiteness only outside the
attractor defined in (3). To do so, we use notations x

and W introduced above and we note that any vector xy
outside of the attractor verifies

T
Tr — Po P 0 ||xr — po W 0
e R [ B

The previous problem can be rewritten as
Xk @0k, A7)y, <0,
for all vector xj that verifies (12). Using an S-procedure,

this problem is equivalent to the existence of a positive
scalar pu, such that,

(o, A\%)) 4 1 [Vg _OJ <0.

(11)

Ok

Ao, <A<%>>] !

D=1 (X)) [ :
B, (X))

Then, the proof of the first item is concluded by applica-
tion of Schur complement to the first term of ® (o, A(7%)),
leading to inequality (8).

To conclude the proof, it remains to prove that A is
invariant, corresponding to the second item. Assume that

6213



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

xy is in the attractor at a given instant k, i.e. V(xy) < 1.
Together with (8), we know that the following inequality

Vi(zkr) = Viaw) + AV ()
— V{aw) — p(V(e) — 1)
X (2l + [ 9]) i
< (A =p)V(er) +p
holds where the last inequality has been obtained from the

negative definiteness of inequality (8). The assumptions
that x, is in the attractor and that p € (0,1) yield

V(zggs) <1 —p)+p=1,
which guarantees that .1 also belongs to A.

3.2 Comment on the centers p; and on translated models

Usually for this class of switched affine systems, it is first
required to define a translated system where the origin
becomes located at a desired operating point. The reader
may refer to (Deaecto and Geromel, 2017), for instance. It
is then important to stress whether the attractor is affected
by this translation. To better understand this issue, let us
define the translated variable z = x — §, where § is any
vector in R™. The new dynamics are given by

Zk+1 ZAUka-i-ng, keN,
o €K,

zo € R™,

where B,, = (A,, — I)d + B,,. Then, the following
proposition holds.

(13)

Proposition 5. Assume that (i1, W, {pi, A\ };ex) is a solu-
tion to the optimization problem of Theorem 4 for the
original system (A;, B;)icx. Then, (1, W, {p; — 6, \() }icx)
is a solution to the same optimization problem but for the
translated system (A;, B;)ick-

Proof. The proof simply consists in noting that the only
difference between the original and the translated system
appears in the definition of the affine terms that are
gathered in matrices B;(A(9).

Proposition 5 stresses that the shifted centers p;’s are
intrinsically the same, whatever the translation of coor-
dinates. This is an important remark, since it proves that
there is no need to apply any change of coordinates before
applying Theorem 4.

3.3 Comments on the resolution of the non convex problem

As indicated in its statement, the optimization problem
of Theorem 4 is non convex due to the multiplication
of decision variables, such as for instance AW in the
definition of matrices ;. However, this problem can be
made convex by fixing 1 € (0,1) and A®) € (0,1)%, with
i € K. The number of these parameters is thus equal to
1+ K(K — 1). Of course, this is not realistic for large
values of K, but for K = 2, the number of parameters to
fix is only 3, which is reasonable. This is formulated in the
following proposition.

Proposition 6. For given parameters u,v1,72 € (0,1), the
solution including the symmetric positive definite matrix

W € R™*™ = 0 and the vectors p; € R™ to the convex
optimization problem

min  Tr(W) (14)
W,pi
subject to the constraints
W =0, (15)
~A=pW 0 Ay(w)
* — (i) | <0, Vi=1,2, (16)
* « —Di(v)
where

Ai(y) = [wWA] 1—v)WA]],
Bi(vi) = [vi(Aipi+Bi—p1)" (1—=7)(Aipi+Bi—p2)' ],
D;(v;) =diag(v; W, (1 — vi)W).
Then, the switching function control law o € Ga(zy)
given by
Go(x) = argmin(z — p;) ' Wl (z — p;), Vo € R", (17)

=1,

ensures that A is UGAS for system (1).

Proof. The proof is obtained by the introduction of pa-
rameters ~y;, such that, for K = 2, we have )\y) = ; and
/\(i) — 1 —~;

2 = Vi

4. SIMULATION RESULTS

Through this section, we aim at illustrating our contribu-
tions through two examples that have been already treated
in the literature.

Example 7. Consider the discrete-time switched affine sys-
tem borrowed from (Deaecto and Geromel, 2017), as mod-
eled in (1), with two modes (K = 2) and the following
matrices

T
A =T B = / FTdrg, Vie{1,2), (18)
0
where T, referring to a sampling period is taken equal to
1 and where matrices F; and g; for i € K are given by
0 1 0 01 0

F=[8 0 ], m=[00 1] a=[}]. e=[1]
In (Deaecto and Geromel, 2017), the authors considered
the convergence of the state trajectories to an invariant set
around a desired equilibrium. Therefore, they solved the
problem by introducing an auxiliary variable and defining
the translated system with that variable. In Section 3.2,
we comment and prove that the solution found for system
(1) is a solution for system (13).

As it has been commented in Section 3.3, the optimization
problem is non convex. Using a gridding procedure to fix
the parameters p and +;, the resulting optimization prob-
lem becomes convex and is solvable using SDP software as
the CVX solver in Matlab (see (Grant and Boyd, 2014)).
The following numerical results are obtained:

p=0.7929, v, =10"° A4, =1-1075,
- [ i oo = [§]e - 2]
W_[24f4?2 7‘.1212}'10 PL= sk 0P2 = [ o)

Figure 1 shows the trajectories of the system. The centers
are indicated by the two red crosses. With the full view of
the temporal evolution, we cannot see the ellipsoids draw-
ing the attractor. However, they appear after performing a
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-0.5

.

-1.5

2

Fig. 1. Trajectories of system (1) for Example 1 in the
state space. Two windows show the attractor located
around the shifted centers.

zoom of them in the two windows. These views allow us to
see the convergence of the trajectories toward the interior
of the two ellipsoids, which differ only by their center.
An alternative interpretation of the previous figure is
shown on Figure 2, where the evolution of xj, — p,, with
respect to k is plotted. One can see from this figure that
the trajectories are indeed converging to the centers p;.
It is also of interest to point out that the switching law
tends to a periodic behaviour and that the state converges
to an induced limit cycle k — ps, .

4
x2'_" .

g
k
-
3
T
1

0 5 10 15 20 25 30
Time k

Fig. 2. Evolution of i — p,, with the switching function
o € {1,2} computed at instant k for Example 1.

Ezample 8. Now, we take the example 1 given in (Egidio
and Deaecto, 2019). The considered system is a discrete-
time switched affine system discretized using (18) with
T = 0.5 which provides the following matrices :

R=[233750], R=[ %% %],

T T

g1=[0-2], ga=[-22] .
Considering the gridding procedure used in Example 1 to
find the parameters p and ; Vi € {1,2}, we have

x 8 . . .
2,k o~ oc=1 oc=2
6L-=7 "~ 1
~
4r SNL L 1 1
\\~~\
2'___.;1; ,_—:\v\-\—:‘~__ N
- SN ~ Se-a
ot + »i S~ '|":7~"\|'o\\\ Sso A
ot B N
“rl---v Sa s
_4 L L i L
-10 -5 0 5
X1k

Fig. 3. Trajectories of system (1) for Example 2 in the
state space. The switching surface (dotted line), the
centers p; and po (red crosses) and the invariant set
(dashed line) from (Egidio and Deaecto, 2019).

=0.997, 7 =107% 43 =1-1075,

1
W= (63981107 pr = [Gh7 | woe = [ 053] -

Figure 3 shows the trajectory of the state x; from the
initial state toward the two shifted ellipses. Note that
the ellipses depicted on this figure present such a re-
duced size that they are represented by a cross in each
center, p;. In addition, the dotted line S, defined by
@=p) Wl@—p1) = (@=p2) W (z—ps) por-
trays the switched surface, which separates the space into
two regions. One can see which mode is active depending
on which side the state xy, is.

Moreover, in the concerned figure, we compare the result
given in (Egidio and Deaecto, 2019) with our main result.
The readers are able to see the different set sizes. The
dashed ellipsoids represent the invariant set obtained in
(Egidio and Deaecto, 2019) while the invariant set ob-
tained from Proposition 6 is illustrated by the crosses
as commented above. Note that our approach provides a
attractor at least 10° smaller than the one provided in
(Egidio and Deaecto, 2019).

Finally, one can note the decreasing value of the Lyapunov
function on Figure 4. It is highlighted the invariant char-
acter of the attractor. Once V (z) goes under 1, it remains
under this value.

1010F ——Vix
—1
10°
100 1%
10710 :
0 50 100

Time k

Fig. 4. Evolution of the Lyapunov function V(zy) for
Example 2.
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5. CONCLUSIONS

In this paper, the problem of designing a stabilizing
switched control law for switched affine systems has been
addressed. Thanks to a new control Lyapunov function,
arising from the stability analysis of switched systems, an
accurate characterization of the attractor is formulated.
The parameters of the control law are obtained through
the solution of a non convex optimization problem, that
can be efficiently solved using a gridding procedure in the
situation of 2-modes switched affine systems.

This contribution opens many directions for future in-
vestigations. First, the numerical results exposed in this
paper lead to the reasonable idea of considering attractor
that are defined by the union of several points. A formal
proof of this needs to be investigated. A second direction
is related to the fact that the main contributions of this
paper present a non convex optimization problem that may
be difficult to solve in case of large number of modes. This
problem requires a particular attention and producing a
method that can overcome this issue would be highly
relevant.
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