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Abstract: In this paper, we present a hybrid sensorless observer for Permanent Magnet Synchronous
Machines, with no a priori knowledge of the mechanical dynamics and without the typical assumption
of constant or slowly-varying speed. Instead, we impose the rotor speed to have a constant (unknown)
sign and a non-zero magnitude at all times. For the design of the proposed scheme, we adopt meaningful
Lie group formalism to describe the rotor position as an element of the unit circle. This choice,
however, leads to a non-contractible state space, and therefore it introduces topological constraints that
complicate the achievement of global/semi-global and robust results. In this respect, we show that the
proposed observer, which augments a recent continuous-time solution, achieves semi-global practical
asymptotic stability by periodically resetting the estimates. As highlighted in the simulation results, the
novel hybrid strategy leads to improved transient performance, notably without any modification of the
gains employed in the continuous-time version. These features motivate to augment the observer with a
discrete-time identifier, leading to significantly faster rotor flux reconstruction.

Keywords: Nonlinear Observers and Filter Design; Stability of Hybrid Systems; Lyapunov Methods;
Input-to-State Stability

1. INTRODUCTION

Permanent Magnet Synchronous Machines (PMSMs) are nowa-
days widely adopted in several fields, ranging from vehicle
propulsion to industrial motion applications. In many contexts,
rotor position and speed are required to achieve accurate regula-
tion, yet the presence of mechanical sensors may pose reliabil-
ity and economic issues. Furthermore, such sensors often result
impractical because of space and weight requirements, e.g.,
in small/medium size electrically-powered Unmanned Aerial
Vehicles (UAVs). In this respect, the so-called sensorless con-
trol techniques aim to replace mechanical sensors with suitable
reconstruction algorithms and have been the subject of exten-
sive research efforts. Several design strategies from nonlinear
control theory have been applied to sensorless control. To name
a few, we recall Extended Kalman Filters (Hilairet et al., 2009),
Sliding Mode (Lee and Lee, 2013) and High Gain and Adaptive
strategies (Montanari et al., 2006; Marino et al., 2008; Khalil
et al., 2009). Recently, some works have been dedicated to In-
terior Permanent Magnet Synchronous Machines (Ortega et al.,
2019) and stator resistance estimation (Verrelli et al., 2017) (see
also Verrelli et al. (2018) for a solution with available rotor
speed).
In the field of sensorless control and observation, the capability
of dealing with highly variable speed, with little to no a priori
knowledge of the mechanical dynamics, becomes crucial to
achieve high-end, high precision algorithms when motors are
coupled with nonlinear time-varying loads. This is the case e.g.
for the electric propulsion of UAVs or Hybrid Electric Vehi-
cles (HEVs), where the environmental conditions heavily affect
the external torque. In this context, the recent works (Bobtsov

et al., 2015; Bernard and Praly, 2018) propose observers able
to reconstruct the rotor position and flux, independently of the
mechanical model. In (Tilli et al., 2019), a sixth-order observer
with unknown mechanical model is developed employing a
unit circle representation for the rotor angular configuration,
and in (Bosso et al., 2020) such design is conveniently ex-
ploited for torque control and resistance estimation. Indeed,
the unit circle (indicated with S1) is a compact abelian Lie
group, and Lyapunov-based tools can be used to derive a simple
stability analysis. Specifically, the algorithm in (Tilli et al.,
2019) exploits a high gain observer to reconstruct the back-
Electromotive Force (back-EMF), which is then used to set up
an adaptive attitude estimator on S

1. The resulting reduced-
order dynamics, corresponding to the attitude observer recon-
struction error, is shown to evolve on the cylinder S1 × R.
The use of a compact Lie group representation, however, intro-
duces some relevant challenges. In fact, it is known that when a
dynamical system evolves on a manifold that is not diffeomor-
phic to any Euclidean space, it is impossible for a continuous
vector field to globally asymptotically stabilize an equilibrium
point (Mayhew et al., 2011). This phenomenon arises in (Tilli
et al., 2019) since two isolated hyperbolic equilibria are present,
a stable node/focus and a saddle point: this restricts the basin
of attraction of the reduced-order dynamics to (S1 × R)\RU ,
where RU is a curve passing through the saddle equilibrium.
This property directly affects the full-order observer and only
regional stability can be established. We report the observers on
SO(3) studied in (Mahony et al., 2008), which display a similar
behavior in a higher dimensional context. Notably, an attempt
to break this kind of topological constraints with discontinuous
and memoryless feedback leads to non-robust solutions, induc-
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ing in practice chattering behaviors. Indeed, a dynamic hybrid
feedback law must be employed in order to achieve global and
robust results (Sontag, 1999; Mayhew et al., 2011).
In this work, we introduce a hybrid modification to the position,
speed and flux observer of (Tilli et al., 2019) intending to
establish semi-global instead of regional stability. An alterna-
tive to the continuous-time strategy is possible because both
components of the back-EMF vector are available as indirect
measurement, thus allowing to detect when the angular estima-
tion error settles to a wrong configuration. Exploiting this fact,
we introduce a simple strategy based on a clock to periodically
reset the position reconstruction. The rotor speed is restricted
to have a constant (unknown) sign and to be bounded in norm
from above and below by positive scalars. These conditions
are compatible with many applications, including the control
of propeller motors, where the sign of speed is usually not
reversed. The properties of the observer are highlighted through
two time scales arguments (see e.g. (Teel et al., 2003; Sanfelice
and Teel, 2011)), and numerically compared to the structure in
(Tilli et al., 2019). In particular, we underline the interesting
feature that, if the same tuning gains are adopted for the ob-
server flows, the new algorithm displays a consistently faster
transient response. Finally, inspired by these enhanced conver-
gence properties, we also propose an augmentation based on a
discrete-time identifier to further boost the estimation perfor-
mance, at the expense of increased computational complexity.
The structure of the paper is the following. After a brief in-
troduction to the mathematical background in Section 2, we
formally state the observer problem in Section 3. The observer
structure is presented in Section 4, while in Section 5 we outline
some concluding remarks and future research directions.

2. NOTATION

We use (·)T to denote the transpose of real-valued matrices.
For simplicity we often indicate with (v, w), for a pair of col-
umn vectors v, w, the concatenated vector (vT , wT )T . In case
of non-differentiable signals, the upper right Dini derivative,
indicated with D+, is employed as generalized derivative.

2.1 The Unit Circle Formalism

We employ the unit circle S1 to represent reference frames
involved in the manipulation of PMSM equations, as in (Tilli
et al., 2019). In particular, S1 is a compact abelian Lie group,
with the planar 2-D rotation employed as group operation. An
integrator on S1 is given by

ζ̇ = u(t)J ζ, J =

(

0 −1

1 0

)

, ζ ∈ S
1,

with u(t) ∈ R. Any angleϑ ∈ R can be mapped into an element
of S1 given by (cos(ϑ) sin(ϑ))T . Finally, to any ζ = (c s)T ∈
S1 we can associate a rotation matrix C[ζ] =

(
c −s

s c

)

, used for

group multiplication: for any ζ1, ζ2 ∈ S1, the product is given
by ζ1 · ζ2 = C[ζ1]ζ2 = C[ζ2]ζ1, with identity element (1 0)T .

2.2 Hybrid Dynamical Systems

In this paper we adopt the formalism of hybrid dynamical
systems as in (Goebel et al., 2012). In particular, a hybrid
system H can be described as

H :

{

ẋ ∈ F (x, u) (x, u) ∈ C

x+ ∈ G(x, u) (x, u) ∈ D

where x is the state, u is the input, C is the flow set, F is the
flow map, D is the jump set, and G is the jump map. The state
of the hybrid system can either flow according to the differential
inclusion ẋ ∈ F (while (x, u) ∈ C), or jump according to the
difference inclusion x+ ∈ G (while (x, u) ∈ D). For the main
concepts related to hybrid solutions, stability, robustness, and
related Lyapunov theory, we refer to (Goebel et al., 2012) and
references therein.

3. MODEL FORMULATION AND PROBLEM
STATEMENT

The electromagnetic model of a PMSM in a static bi-phase
reference frame, under balanced working conditions, linear
magnetic circuits and negligible iron losses, can be written as

d

dt
is = −R

L
is +

1

L
us −

ωϕJ ζ
L

, ζ̇ = ωJ ζ, (1)

where is, us ∈ R2 are the stator currents and voltages, respec-
tively. In particular, us is a piecewise continuous and locally
essentially bounded signal defined over [t0,∞), with initial
time t0. Furthermore, ω is the electrical angular speed, while
ζ ∈ S1 and ϕ ∈ R>0 are the angular configuration and the con-
stant amplitude of the rotor magnetic flux vector, respectively.
Finally,R is the stator resistance and L is the stator inductance.
In the field of sinusoidal machines, it is common to represent
(1) in rotating reference frames. Consider a generic frame with
orientation ζr ∈ S

1 and speed ωr. Then, (1) becomes

d

dt
ir = −R

L
ir +

1

L
ur −

ωϕJ CT [ζr]ζ

L
− ωrJ ir

ζ̇ = ωJ ζ, ζ̇r = ωrJ ζr,
(2)

where ir = CT [ζr]is, ur = CT [ζr]us. In this work, ω is
modeled as an unknown bounded input, subject to the following
regularity assumption.

Assumption 1. The signal ω(·) is defined over the interval
[t0,∞) and, in addition:

• ω(·) is C0 and piecewise C1 in its domain of existence;
• there exist positive scalars ωmin, ωmax such that, for all
t ≥ t0, it holds ωmin ≤ |ω(t)| ≤ ωmax;

• |D+ω(t)| exists and is bounded, for all t ≥ t0.

Note that these conditions ensure existence and uniqueness of
solutions on [t0,∞). Additionally, since the properties that we
specified for the input signals do not depend on t0, we can
choose t0 = 0 without loss of generality. Assumption 1 requires
the angular speed ω to have constant sign and uniformly non-
zero magnitude. This condition is slightly more restrictive
than the well-known assumption of non-permanent zero speed,
which was proven to be a sufficient condition to reconstruct
ω, ζ, and ϕ, assuming currents and voltages available for
measurement and the parameters R and L perfectly known
(Zaltni et al., 2010). Nevertheless, Assumption 1 is compatible
with significant applications such as renewables electric energy
generation and electric vehicles propulsion (UAVs, HEVs).
We finally recall the problem of sensorless observer, with
(restricted) variable speed and no mechanical model (Tilli
et al., 2019): given the PMSM model (1) or (2), design an
estimator of ζ, ω, ϕ with only stator voltages and currents
available for measurement, such that appropriate stability and
convergence properties hold under Assumption 1.
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Table 1. System and observer parameters

Stator resistance R [Ω] 0.06 kp 2.18 × 104

Stator inductance L [µH] 33.75 ki 9.34 × 103

Nominal angular speed [rpm] 6000 kη 95.7

Rotor magnetic flux ϕ [mWb] 1.9 γ 4582

Number of pole pairs p 7 Λ 200

Load Inertia [Kgm2] 2.5 × 10−5 N 2

4. THE PROPOSED HYBRID OBSERVER

In this section we present the main result of this work, and
we compare it with a preliminary continuous-time solution.
To simplify the presentation and highlight the connection be-
tween the different strategies, we embed along the text some
numerical results, based on a UAV propeller motor, whose
parameters are indicated in Table 1. Since the observer tran-
sient performance is more evident when it is disconnected from
the controller, we employ a standard sensorized field-oriented
controller to generate the speed profile ω. We omit the complete
closed-loop simulations for brevity.

4.1 The χ-Reference Frame and a Continuous-Time Solution

Let χ := |ω|ϕ ∈ R>0, ξ := (1/ϕ) sgn(ω). This allows to
replace the PMSM angular dynamics considering the particular
frame ζχ := ζ sgn(ξ) = ζ sgn(ω), which yields a simple
reformulation of the model, for a generic rotating frame ζr:

d

dt
ir = −R

L
ir +

1

L
ur −

χJ CT [ζr]ζχ
L

− ωrJ ir
ζ̇χ = χξJ ζχ, ζ̇r = ωrJ ζr.

(3)

Note that ξ ∈ R is an unknown parameter, while χ satisfies the
following properties, as a direct consequence of Assumption 1:

• χ is C0 and piecewise C1;
• χm ≤ χ ≤ χM, for some positive scalars χm, χM;
• |D+χ| ≤M , for some positive scalar M .

The main idea of the proposed observer is to design an estima-

tor of ζχ employing as representation the frame ζr = ζ̂χ, whose
dynamics is designed so that the two references synchronize
asymptotically. This synchronization problem can be recast as

the stabilization of the misalignment error η := CT [ζ̂χ]ζχ ∈ S1.
For convenience, let the subscript (·)χ̂ indicate the electric

variables in the frame ζ̂χ, leading to:

d

dt
iχ̂ = −R

L
iχ̂ +

1

L
uχ̂ − χJ η

L
− ω̂χJ iχ̂

ζ̇χ = χξJ ζχ, ˙̂
ζχ = ω̂χJ ζ̂χ,

(4)

with ω̂χ the angular speed of the frame ζ̂χ. In (Tilli et al., 2019),
the synchronization problem was addressed with a continuous-
time observer of the form

˙̂ı = −R
L
ı̂+

1

L
uχ̂ +

ĥ

L
−
(

|ĥ|ξ̂ + kηĥ1

)

J iχ̂ + kpı̃

˙̂
h = kiı̃

˙̂
ζχ =

(

|ĥ|ξ̂ + kηĥ1

)

J ζ̂χ ˙̂
ξ = γĥ1

(5)

where ı̂ is the estimated current (̃ı := iχ̂ − ı̂), ξ̂ and ĥ are the
estimates of ξ and the back-EMF h = −χJ η, respectively,

while the angular speed is ω̂χ = |ĥ|ξ̂ + kηĥ1. Finally, kp, ki,
kη and γ are positive scalars, whereas the observer outputs are

given by ω̂ = |ĥ|ξ̂, ζ̂ = ζ̂χ sgn(ξ̂) and ϕ̂ = sat(1/|ξ̂|), where
the bounds of the saturation are chosen according to the motor
parameter ranges.
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Fig. 1. Phase diagram of (6) for χ = 1, kη = 1.5, γ = 1 as
in (Tilli et al., 2019). Left: the unstable manifold (red) and
some trajectories converging to x̄s (blue), depicted on the

planar representation (ϑ̃, ξ̃), where ϑ̃ = atan2(η2, η1) is
the angle in the interval [−π;π) corresponding to η. Right:
the same objects represented on the cylinder S1 × R.

In (Tilli et al., 2019), it was proven that regional practical
asymptotic stability is ensured by proper selection of kp and
ki. This stems from the two time scales approach used to
separate the dynamics into a fast subsystem, given by a high-
gain observer for current and back-EMF estimation, and a slow
subsystem, an adaptive attitude observer on S1. From the slow
subsystem derives the inherently regional and not semi-global
result: the reduced order error dynamics, obtained under perfect
knowledge of iχ̂ and h, is written on the cylinder S1 × R as

follows (ξ̃ := ξ − ξ̂):

η̇ =
(

χξ̃ − kηχη2

)

J η ˙̃
ξ = −γχη2. (6)

Indeed, the domain of attraction of the configuration x̄s =
((1, 0), 0) ∈ S1 × R, corresponding to rotation alignment and
correct flux estimation, does not include an unstable manifold
of dimension 1 (shown in Figure 1), originating from the saddle
equilibrium x̄u = ((−1, 0), 0). Figure 2 (plots (a),(d),(g),(j))
presents the simulation results corresponding to observer (5)
with the same gains as in (Tilli et al., 2019). Note that the initial

transient (corresponding to high values of |ξ̃|) is relatively slow,
highlighting the same helicoidal shape as in Figure 1.

4.2 A Hybrid Strategy for Semi-Global Stability

With the insights provided by the above observer, we modify
system (6) enriching its dynamics with a jump policy, while
preserving the existent flows. In particular, we propose to
augment the observer with a clock, given by:

{
ρ̇ = Λ ρ ∈ [0, 1]
ρ+ = 0 ρ = 1

(7)

with Λ a positive scalar for tuning. The proposed clock can be
used to enforce jumps of the angular estimate at regular times
and thus break the cylinder topological constraint, but it seems
also convenient as a way to embed additional desirable features.
Among these, we will propose a simple identifier to enhance
the transient performance. To begin, we introduce a baseline
strategy with no identifier. In place of (6), consider system:

H0 :












η̇
˙̃ξ
ρ̇




 =






(

χξ̃ − kηχη2

)

J η
−γχη2

Λ




 =: F0





η

ξ̃
ρ



 ∈ Cs






η+

ξ̃+

ρ+




 ∈







{−Fη, χη1 ≤ 0

η, χη1 ≥ 0

ξ̃
0







=: G0





η

ξ̃
ρ



 ∈ Ds

(8)
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Fig. 2. First row: observer (5). Second row: observer (13). Third row: observer (13)-(22)-(23). (a),(b),(c): Rotor angular speed
(blue) and estimated value (red). (d),(e),(f): Rotor angular position reconstruction error. (g),(h),(i): Parameter ξ (blue) and its
estimate (red). (j),(k),(l): Back-EMF reconstruction error, with the first component in blue and the second one in red.

where F = diag{1,−1}, while Cs = S1 × R × [0, 1] and

Ds = S
1 × R × {1}. Let xs := (η, ξ̃, ρ) ∈ S

1 × R × [0, 1]. In
this structure, the angle η is always reset to a value satisfying
η1 ≥ 0, thus ensuring that the set x̄u × [0, 1] is not forward
invariant. In fact, the next result confirms that the proposed
hybrid strategy removes the unstable manifold RU .

Lemma 1. The set A0 := x̄s × [0, 1] ⊂ S1 ×R2 is a uniformly
preasymptotically stable attractor for system H0, with basin of
preattraction given by S1 × R2.

Proof: It is a direct application of the Nested Matrosov The-
orem for hybrid systems (Sanfelice and Teel, 2009, Theorem
4.1). Consider the following Matrosov functions (bounded in
any compact set of xs by Assumption 1):

W1(xs, χ) = 1− η1 +
1

2γ
ξ̃2, W2(xs, χ) = −χξ̃η1η2

W3(xs, χ) = exp(ρ)
[

η22 + ξ̃2
]

, W4(xs, χ) =
1− η1
exp(ρ)

.
(9)

It holds supf∈F0(xs,χ)〈∇Wi(xs, χ), (f,D
+χ)〉 ≤ Bc,i(xs), i ∈

{1, 2, 3, 4}, for all xs ∈ Cs, with bounds given by:

Bc,1 = −kηχmη
2
2 ≤ 0, Bc,2 = −χ2

mη
2
1 ξ̃

2 +∆2(xs)|η2|

Bc,3 = ΛW3 +∆3(xs)|η2|, Bc,4 = −Λ
1− η1
exp(ρ)

+ ∆4(xs)|η2|,

with ∆2, ∆3, ∆4 positive continuous functions in their argu-

ments. Note that Bc,2 ≤ −χ2
mξ̃

2 as η2 = 0, thus in Bc,3 and
Bc,4 the conditions 1)-2) of (Sanfelice and Teel, 2009, Theorem

4.1) must be checked in particular for η1 = −1, η2 = 0, ξ̃ = 0,
for any ρ ∈ [0, 1]. Similarly, it holds supg∈G0(xs,χ)Wi(g, χ)−
Wi(xs, χ) ≤ Bd,i(xs), i ∈ {1, 2, 3, 4}, for all xs ∈ Ds, with the
following bounds (let ∆g = exp(1)− exp(0) > 0):

Bd,1 = min{0, 2η1} ≤ 0, Bd,2 = max{0,−2χM|ξ̃||η2|η1}

Bd,3 = −∆g(η
2
2 + ξ̃2), Bd,4 =

∆g

exp(1)
(1 − |η1|).

It can be verified from the first three bounds that the conditions
1)-2) of (Sanfelice and Teel, 2009, Theorem 4.1) are satisfied
for all xs ∈ Ds\A0. Finally, note that uniform global stability
is easily established with Bc,1, Bd,1, in connection with the
fact that W1 is positive definite (considering a proper indicator
function) with respect to the attractor A0, for all xs ∈ Cs∪Ds∪
G0(Ds). Since all sufficient conditions in (Sanfelice and Teel,
2009) are verified, the statement follows immediately. �

To derive the observer structure, we now compute the jumps

of ζ̂χ corresponding to η+ = −Fη using ĥ as a proxy of

h = −χJ η. For, note that −Fη = CT [ζ̂+χ ]ζχ = C[ζχ]F ζ̂+χ ,

therefore it is possible to express ζ̂+χ as:

ζ̂+χ = −FCT [ζχ]Fη = −C[ζχ]η = −CT [ζ̂χ][C[ζχ]ζχ]. (10)

Furthermore, a “fast” estimate of the rotor position (rescaled

by χ) can be retrieved from ĥ and ζ̂χ, since J h = χη, and

therefore χζχ = C[ζ̂χ]J h. These considerations yield Gζ :
R2 × S1 ⇒ S1:

Gζ(ĥ, ζ̂χ) ∈







−CT [ζ̂χ]

(

cos(2θχ(ĥ, ζ̂χ))

sin(2θχ(ĥ, ζ̂χ))

)

, ĥ2 ≥ 0

ζ̂χ, otherwise

θχ = atan2(yχ, xχ) ⊂ [−π, π], (xχ yχ)
T = C[ζ̂χ]J ĥ

(11)

where we let atan2(0, 0) = [−π, π] and atan2(y, x) =
{−π, π}, for all (x, y) in the set S = {(x, y) ∈ R2 : x <

0, y = 0} 1 . Let Gf(ĥ, ζ̂χ) = CT [Gζ(ĥ, ζ̂χ)]C[ζ̂χ] indicate the

change of coordinates from the ζ̂χ-frame to the ζ̂+χ -frame. This
map, available for observer design, is employed to describe the
jumps that occur both to iχ̂ and h:

i+χ̂ = CT [ζ̂+χ ]is = CT [Gζ(ĥ, ζ̂χ)]C[ζ̂χ]CT [ζ̂χ]is = Gfiχ̂

h+ = −χJCT [ζ̂+χ ]ζχ = Gfh.
(12)

1 Clearly, atan2 can be implemented as single-valued in the actual algorithm.
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It follows that the overall observer structure is given by:










˙̂ı
˙̂
h
˙̂
ζχ
˙̂
ξ
ρ̇











=











−R
L
ı̂+

1

L
uχ̂ +

ĥ

L
− ω̂χJ iχ̂ + kpı̃

ki ı̃

ω̂χJ ζ̂χ
γĥ1
Λ











ρ ∈ [0, 1]










ı̂+

ĥ+

ζ̂+χ
ξ̂+

ρ+










∈










Gf(ĥ, ζ̂χ)̂ı

Gf(ĥ, ζ̂χ)ĥ

Gζ(ĥ, ζ̂χ)

ξ̂
0










ρ = 1

(13)

with ω̂χ = |ĥ|ξ̂+kηĥ1 as before. Let xf := T (̃ı, h̃) ∈ R4, with

h̃ := h− ĥ and T a matrix such that (Tilli et al., 2019):

xf = T

(
ı̃

h̃

)

=

(
ε−1I2 02×2

−ε−1I2 L
−1I2

)(
ı̃

h̃

)

, (14)

with ε a positive scalar such that R/L + kp = 2ε−1, ki =
2Lε−2. We can define the overall error dynamics as follows:

(

D+xf

ẋs

)

=








ε−1

(
−I2 I2
−I2 −I2

)

︸ ︷︷ ︸

Af

xf +

(
02×2

L−1I2

)

︸ ︷︷ ︸

Bf

fh

Fs(xf, χ, xs)








xs ∈ Cs

(
xf+
x+s

)

∈
(
diag{Gf, Gf}xf

Gs(xf, χ, xs)

)

xs ∈ Ds

(15)
with fh = D+h defined exactly as in (Tilli et al., 2019), and Fs,
Gs the flows and jumps of the attitude estimation error (which

correspond to the data in (8) if h̃ = 0), respectively. Note that it
holdsAf+A

T
f = −2I4, while the jump x+f preserves the norm:

|x+f |2 = |ε−1ı̃+|2 + |L−1h̃+ − ε−1ı̃+|2

= |Gfε
−1ı̃|2 + |Gf(L

−1h̃− ε−1ı̃)|2

= |ε−1ı̃|2 + |L−1h̃− ε−1ı̃|2 = |xf|2.
(16)

This means that on the one hand, during flows, the xf-subsystem
can be made arbitrarily fast by choosing ε sufficiently small,
while on the other hand the jumps do not cause any increase
of |xf|, and thus they do not represent an obstacle to time scale
separation. We summarize the stability properties of the above
hybrid system in the following theorem, which represents the
main result of this work.

Theorem 1. Consider system (15) with inputs χ(·), D+χ(·),
satisfying Assumption 1 and let (ψf(·), ψs(·)) indicate its so-
lutions, with initial conditions (xf,0, xs,0). Denote with ρ0 the
initial condition of the clock. Then, the attractor 04×1 × A0 is
semi-globally practically asymptotically stable as ε→ 0+, i.e.:

• there exists a proper indicator σs of A0 in S1 × R2;
• there exists a class KL function βs;

such that, for any positive scalars ∆f, ∆s, δ, there exists a scalar
ε∗ > 0 such that, for all 0 < ε ≤ ε∗, all (ψf(·), ψs(·)) satifying
ρ0 = 0, |xf,0| ≤ ∆f and σs(xs,0) ≤ ∆s, the following bounds
hold, for all (t, j) ∈ dom(ψf(·), ψs(·)):

|ψf(t, j)| ≤ exp
(
−t/ε

)
|xf,0|+ δ

σs(ψs(t, j)) ≤ βs(σs(xs,0), t+ j) + δ.
(17)

Figure 2 (plots (b),(e),(h),(k)) presents the simulation results
corresponding to observer (13), with Λ selected as in Table

1. Notably, this new solution enhances the convergence per-
formance of the previous continuous-time algorithm. This is
motivated by the intuition that the jumps, for Λ sufficiently
large, impose the position estimation error η to be close during
transients either to (0, 1) or to (0, −1): these configurations

are associated with the maximal value of | ˙̂ξ|. For this reason,

we can expect that there exists a range for |ξ̃| where the conver-
gence properties of this observer are optimized. In particular,
this range is expected to be between large errors, where the
continuous time angular “wraps” dominate the behavior, and
small errors, where jumps do not cause any correction.

4.3 A Mini-Batch Identifier for Enhanced Initial Convergence

We conclude this section with a modification of the above strat-
egy to ensure a faster observer response, obtained by means of
a discrete-time identifier. The need to employ a higher number
of state variables, in addition to performing the minimization
of a cost function, clearly makes this method more compu-
tationally intensive. However, some strategies can be adopted
to mitigate the online burden and enable implementation in
embedded computing systems (e.g., moving the procedure in
a lower priority/frequency task).
Firstly, recall that a perturbed estimate of χζχ can be computed

as C[ζ̂χ]J ĥ. From the solutions of system (3) it can be noted
that, for any positive scalar T , for all t ≥ T :

ζχ(t)− ζχ(t− T ) = ξJ
∫ t

t−T

χ(s)ζχ(s)ds. (18)

Multiplying both sides by χ(t − T )χ(t) it follows (y(s) =
χ(s)ζχ(s)):

χ(t−T )y(t)−χ(t)y(t−T ) = ξχ(t−T )χ(t)J
∫ t

t−T

y(s)ds,

(19)
which can be constructed with division-free estimates, since χ

can be replaced with |ĥ| and y with C[ζ̂χ]J ĥ. Indeed, between
jumps of the clock (7), we can compactly rewrite (19) as
X(t, j) + eX(t, j) = (Φ(t, j) + eΦ(t, j))ξ, where X and Φ

are only function of ĥ, ζ̂χ, their past values and their integrals,

while eX and eΦ are disturbances depending on h and h̃. For
N ∈ N≥1, let τN (·) be a moving window operator such that,
for a hybrid arc ψ satisfying jumps according to the clock (7)
(with ρ(0, 0) = 0), and for all (t, j) ∈ domψ such that j ≥ N :

τ(ψ)(t, j) =







ψ
(
(j −N + 1)/Λ, j −N

)

...

ψ
(
j/Λ, j − 1

)






. (20)

Choosing T = 1/Λ as interval of integration in (19), we obtain
an estimate of ξ through a batch least-squares algorithm as
follows (see Bin et al. (2019) for the same structure in the
context of output regulation):

ξ∗(t, j) = argmin
θ∈R

JN (θ)(t, j)

JN (θ)(t, j) :=
∣
∣τN (X)(t, j)− τN (Φ)(t, j)θ

∣
∣
2
.

(21)

To implement the above strategy, the hybrid observer in (13)
is augmented with an identifier based on the shift register vari-

ables Y µ = (Y µ
0 , . . . , Y

µ
N ) ∈ R2(N+1), Zµ = (Zµ

0 , . . . , Z
µ
N ) ∈

RN+1, Φµ = (Φµ
1 , . . . ,Φ

µ
N ) ∈ R2N , related to the moving

window operator as τN (Φ) = Φµ, τN (X) = (Xµ
1 , . . . , X

µ
N),

Xµ
i = Zµ

i−1Y
µ
i − Zµ

i Y
µ
i−1, i ∈ {1, . . . , N}:
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{

ν̇ = C[ζ̂χ]J ĥ
(Ẏ µ, Żµ, Φ̇µ) = 0

ρ ∈ [0, 1]







ν+ = 0

(Y µ
i )+ = Y µ

i+1, i ∈ {0, . . . , N − 1}
(Y µ

N )+ = C[ζ̂χ]J ĥ
(Zµ

i )
+ = Zµ

i+1, i ∈ {0, . . . , N − 1}
(Zµ

N )+ = |ĥ|
(Φµ

i )
+ = Φµ

i+1, i ∈ {1, . . . , N − 1}
(Φµ

N )+ = J ν|ĥ|Zµ
N

ρ = 1

ξ∗(t, j) = G[Y µ, Zµ,Φµ](t, j) = argmin
θ∈R

JN (θ)(t, j),

(22)

where the standard Moore-Penrose pseudoinverse can be em-

ployed to compute ξ∗. The jump of ξ̂ is then modified as a

function of ξ̂ and ξ∗. Without intending to provide a stability
analysis, we propose to jump according to two criteria, i.e. the

“readiness” of the shift register and the norm of the error ξ̂−ξ∗:

ξ̂+ =

{

ξ̂ j ≤ N + 1 or |ξ̂ − ξ∗| ≤ 4
√
γ

ξ∗ otherwise.
(23)

This way it is possible to ensure that, if the errors eX , eΦ
are sufficiently small, the above jump improves the estimate ξ̂,
guaranteeing x+s to be close to the set W1 ≤ 2 in (9) (where
4
√
γ accounts for the worst case). Within such set, the local

behavior of the attitude observer becomes dominant, ensuring a
desirable behavior. Note that eX and eΦ can be made arbitrarily

small since eX , eΦ vanish as h̃ → 0: by proper selection of kp

and ki, h̃ is forced to converge during flows in an arbitrarily
small ball, before any jump occurs. Finally, Figure 2 (plots
(c),(f),(i),(l)) presents the simulations of the observer (13)-(22)-
(23), with N as in Table 1. As expected, the proposed identifier
improves the previous solution in terms of estimation speed,

and a fast reduction of ξ̃ is obtained after a brief waiting time.

5. CONCLUSIONS

We presented a hybrid sensorless observer for PMSMs, with no
a priori knowledge of the mechanical model. The rotor speed
was assumed to have an unknown sign and a persistently non-
zero magnitude. Here, we showed that a clock allows achiev-
ing semi-global practical stability. Motivated by the resulting
convergence properties, we also proposed a speed-up strategy
based on a discrete-time identifier. Future efforts will be dedi-
cated to further investigating this identification approach.
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