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Abstract: Opacity is an information flow property characterizing whether a system reveals its secret
to an intruder. Verification of opacity for discrete-event systems modeled by automata is in general a
hard problem. We discuss the question whether there are structural restrictions on the system models
for which the opacity verification is tractable. We consider two kinds of automata models: (i) acyclic
automata, and (ii) automata where all cycles are only in the form of self-loops. In some sense, these
models are the simplest models of (deadlock-free) systems. Although the expressivity of such systems
is weaker than the expressivity of linear temporal logic, we show that the opacity verification for these

systems is still hard.
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1. INTRODUCTION

In practical applications, it is desirable to keep some infor-
mation about a system secret. Such a requirement results in
additional restrictions on the information flow. Several informa-
tion flow properties studied in the literature include anonymity
of Schneider and Sidiropoulos (1996), noninterference of Hadj-
Alouane et al. (2005), secrecy of Alur et al. (2006), security
of Focardi and Gorrieri (1994), and opacity of Mazaré (2004).

Opacity is the property whether a system prevents an intruder
from revealing the secret. The intruder is modeled as a passive
observer with the complete knowledge of the structure of the
system but with only limited observation of its behavior. Based
on its observation, the intruder estimates the behavior of the
system, and the system is opaque if the intruder’s estimation
never reveals the secret. In other words, for any secret behavior
of the system, there is a non-secret behavior that looks the same
to the intruder.

If the secret is modeled as a set of secret states, the opacity is
referred to as state-based opacity. Bryans et al. (2005) intro-
duced state-based opacity for systems modeled by Petri nets,
Saboori and Hadjicostis (2007) adapted it to systems modeled
by (stochastic) automata, and Bryans et al. (2008) generalized
it to transition systems. If the secret is modeled as a set of
secret behaviors, the opacity is referred to as language-based
opacity. Language-based opacity was introduced by Badouel
etal. (2007) and Dubreil et al. (2008). Many researchers studied
opacity from different perspectives, including its verification
and the synthesis of opacity-ensuring controllers. For more de-
tails, we refer the reader to the overview by Jacob et al. (2016).

Several notions of opacity have been discussed in the litera-
ture, e.g., current-state opacity, initial-state opacity, initial-and-
final-state opacity, language-based opacity, K-step opacity, or
infinite-step opacity. Current-state opacity asks whether the in-
truder cannot, based on its state estimation, in any instance of
time decide whether the system is currently in a secret state.
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Initial-state opacity asks whether the intruder can never reveal
whether the computation started in a secret state. Initial-and-
final-state opacity of Wu and Lafortune (2013) is a generaliza-
tion of both current-state opacity and initial-state opacity. The
difference is that the secret is encoded as a pair of an initial and
a marked state. Consequently, initial-state opacity is a special
case of initial-and-final-state opacity where the marked states
do not play a role. Similarly, current-state opacity is a special
case where the initial states do not play a role.

While current-state opacity is a property to prevent the intruder
from revealing whether the current state of the system is a secret
state, initial-state opacity prevents the intruder from revealing
whether the system started in a secret state, that is, at any time
during the computation. In more detail, the difference between
initial-state opacity and current-state opacity is that initial-state
opacity requires that the intruder cannot reveal the secret neither
at the beginning of the computation nor in any state later during
the computation, while current-state opacity only requires that
the intruder cannot reveal the secret in the current state. It may,
however, happen that the intruder may reveal in the future that
the system was in a secret state. For instance, assume that the
intruder estimates that the system is in one of two states, and
that the system proceeds in the next step by an observable event
that is possible only from one of the states. Then, the intruder
reveals the state in which the system was one step ago.

This problem has been considered in the literature and led
to the introduction of two notions: K-step opacity of Saboori
and Hadjicostis (2007) and infinite-step opacity of Saboori
and Hadjicostis (2009). While K-step opacity requires that the
intruder cannot reveal the secret in the current and K subsequent
states, infinite-step opacity requires that the intruder can never
reveal that the system was in a secret state.

The complexity of opacity verification has widely been inves-
tigated in the literature and is often based on the computation
of observer. Thus the problem belongs to PSPACE. It is actually
PSPACE-complete for most of the discussed notions. Indeed,
Cassez et al. (2012) showed that the verification of current-
state opacity is at least as hard as deciding universality, which
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is PSPACE-complete for nondeterministic automata as well as
for deterministic automata with partial observation.

However, PSPACE-completeness of universality requires a non-
trivial structure of the model and the ability to express all
possible strings. This give rise to a question whether there are
structurally simpler systems for which the verification of opac-
ity is tractable. We investigate the problem for, in our opinion,
structurally the simplest systems: for acyclic automata (that do
not have the ability to express all strings, and actually express
only a finite number of strings) and for automata where all
cycles are in the form of self-loops (which may still seem trivial
in the structure, because as soon as the system leaves a state, it
can never return to that state).

In this paper, we study the effect of those structural restrictions
on the verification of current-state opacity. Notice first that
using the polynomial reductions of Wu and Lafortune (2013)
among current-state opacity, initial-state opacity, initial-and-
final-state opacity, and language-based opacity, allows us to
deduce immediate consequences of our study for other notions
of opacity as well. We discuss these consequences in Section 6.

Our contribution is as follows. We show that deciding language-
based weak opacity for systems where both the secret and the
non-secret languages are modeled by NFAs is NL-complete
(Theorem 4). Then we show that deciding current-state opacity
for deterministic finite-state systems with only three events, one
of which is unobservable, is PSPACE-complete (Theorem 6).
Considering systems with only one observable event, we show
that the complexity decreases to CONP-complete (Theorem 7).
Then we study acyclic systems that have only a finite amount of
different behaviors and show that deciding current-state opac-
ity for acyclic systems with at least two observable events
is CONP-complete (Theorem 8), and that the complexity de-
creases to NL-complete in the case the systems have a single
observable event (Theorem 9). Finally, we investigate the sim-
plest deadlock-free systems, that is, systems where all cycles
are self-loops, and show that whereas deciding current-state
opacity of such systems with a single observable event is NL-
complete (Theorem 12), the problem for systems having three
events, one of which is unobservable, is PSPACE-complete
(Theorem 13) even for deterministic systems.

2. PRELIMINARIES

We assume that the reader is familiar with the basics of au-
tomata theory, see Cassandras and Lafortune (2008) for details.
For a set S, |S| denotes the cardinality of S, and 25 the power set
of S. An alphabet ¥ is a finite nonempty set of events. A string
over X is a sequence of events from X. Let ¥* denote the set
of all finite strings over X; the empty string is denoted by €. A
language L over X is a subset of X*. The set of all prefixes of
strings of L is the set L = {u | uv € L}. For a string u € £*, |u|
denotes its length, and # the set of all prefixes of u.

A nondeterministic finite automaton (NFA) over an alphabet X
isastructure o7 = (Q,X,6,1,F), where Q is a finite set of states,
I C Q is a set of initial states, F C Q is a set of marked states,
and §: Q x £ — 22 is a transition function that can be extended
to the domain 2€ x £* by induction. Equivalently, the transition
function is a relation 6 C Q x X x Q, where, e.g., §(q,a) = {s,t}
denotes two transitions (g,a,s) and (q,a,t). For a state ¢ € Q,
the language marked by .o from g is the set L,, (<7, q) = {w €
Y*| 6(q,w)NF # 0}, and the language generated by <7 from

q is the set L(<7,q) = {w € X* | 6(q,w) # 0}. The language
marked by .7 is then the union U, c; Ln (%, qo); similarly for
the language generated by .<7.

The NFA  is deterministic (DFA) if |I| = 1 and |6(q,a)| < 1
for every g € Q and a € X. For DFAs, we identify singletons
with their elements and simply write p instead of {p}. Specifi-
cally, we write 6(gq,a) = p instead of 6(g,a) = {p}.

A discrete-event system (DES) G over X is an automaton (NFA
or DFA) together with the partition of the alphabet X into
two disjoint subsets ¥, and X,, = £\ X, of observable and
unobservable events, respectively. In the case where all states
of the automaton are marked, we simply write G = (Q,X, 8,/)
without specifying the set of marked states.

The opacity property of a DES is based on partial observation
of events described by the projection P: X* — X%, which is a
morphism defined by P(a) = € for a € ¥,,, and P(a) = a for
a € ¥,. The action of P on a string 6106 :--0, with 0; € X
for 1 <i < nis to erase all events that do not belong to ¥,;
namely, P(010,---0,) = P(01)P(02) -+ P(0,). The definition
can readily be extended to languages.

A decision problem is a yes-no question. A decision problem is
decidable if there is an algorithm that solves it. Complexity the-
ory classifies decidable problems to classes based on the time
or space an algorithm requires to solve the problem. The com-
plexity classes we consider are NL, PTIME, NP, and PSPACE
denoting the classes of problems solvable by a nondeterminis-
tic logarithmic-space, deterministic polynomial-time, nondeter-
ministic polynomial-time, and deterministic polynomial-space
algorithm, respectively. The hierarchy of the classes is NL C
PTIME C NP C PSPACE. Which of the inclusions are strict
is an open problem. The widely accepted conjecture is that
all are strict. A decision problem is NL-complete (resp. NP-
complete, PSPACE-complete) if (i) it belongs to NL (resp. NP,
PSPACE) and (ii) every problem from NL (resp. NP, PSPACE)
can be reduced to it by a deterministic logarithmic-space (resp.
polynomial-time) algorithm. Condition (i) is called membership
and condition (ii) hardness.

3. OPACITY

As explained in the introduction, up to one exception, we study
in the sequel the complexity of verification of current-state
opacity, the definition of which we now recall.

Definition 1. (Current-state opacity). Let G = (Q,X,9,]) be a
DES, P: ¥* — X} aprojection, Qs C Q a set of secret states, and
Ons C Q a set of non-secret states. System G is current-state
opaque if for every string w such that 6(I,w) N Qs # 0, there
exists a string w' such that P(w) = P(w') and 6 (I,w') N Qps # 0.

The exception is language-based weak opacity. Language-
based (weak) opacity is defined over a set of secret behaviors.
We recall the most general definition by Lin (2011).

Definition 2. (Language-based opacity). LetG=(Q,X,5,I) be
aDES, P: ¥* — X} a projection, Lg C L(G) a secret language,
and Lyg C L(G) a non-secret language. System G is language-
based opaque if Ly C P~'P(Lys).

Informally, the system is language-based opaque if for any
string w in the secret language, there is a string w’ in the non-
secret language with the same observation P(w) = P(w'). In
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this case, the intruder cannot conclude whether the secret string
w or the non-secret string w’ has occurred.

The system is language-based weakly opaque if some strings
from the secret language are confused with some strings from
the non-secret language.

Definition 3. (Language-based weak opacity). Let G = (Q,X,
6,1) be a DES, P a projection, Ls C L(G) a secret language,
and Lys C L(G) a non-secret language. System G is language-
based weakly opaque if LN P~'P(Lys) # 0.

It is worth mentioning that the secret and non-secret languages
are often considered to be regular, since for non-regular lan-
guages, e.g., for deterministic context-free languages, the in-
clusion problem is undecidable. Asveld and Nijholt (2000) give
a broader picture on (un)decidability of the inclusion problem.

4. LANGUAGE-BASED WEAK OPACITY

Lin (2011) has shown that deciding language-based weak
opacity is polynomial for the secret and non-secret languages
given by finite automata. The idea is based on the observa-
tion that Ls N P~ P(Lys) # 0 if and only if P(Ls) N P(Lys) #
0, where the later can be checked in polynomial (quadratic)
time by representing P(L;), i € {S,NS}, as an NFA (with &-
transitions), computing the product of such NFAs, and deciding
non-emptiness of the resulting automaton.

However, is the problem the hardest problem in the class of
polynomially solvable problems? Equivalently, is the problem
of deciding language-based weak opacity PTIME-complete? If
it were, its verification would probably not be parallelizable.
Notice the word “probably” referring to the longstanding open
problem from complexity theory similar to the famous problem
whether PTIME = NP. We now show that the problem is NL-
complete and, consequently, can be efficiently solved on a
parallel computer, see Arora and Barak (2009).

Theorem 4. Deciding language-based weak opacity for a DES
where both the secret language Lg and the non-secret language
Lys are modeled by NFAs is NL-complete.

Proof. Lin (2011) has shown that Lg NP~ P(Lys) # 0 is equiv-
alent to P(Lg) N P(Lys) # 0. Let Lg and Lyg be represented
by NFAs G| = (Ql 7Za 5] s QO,] ) Qm,l) and G, = (QZazv 527 Q0,27
Om.2), respectively. To check that P(Lg) N P(Lys) # O is satis-
fied, the NL algorithm guesses two pairs of states (go.1,90,2) €
Q0,1 X Qo2 and (gm,1,9m2) € Om,1 X Om 2 and verifies that the
pair (¢m,1,gm2) is reachable from (qgo.1,q02) in the product
automaton. For more details how to check reachability in NL,
the reader is referred to Masopust (2018).

To show NL-hardness, we reduce the DAG reachability prob-
lem: given a directed acyclic graph G = (V,E) and two ver-
tices s, € V, the problem asks whether vertex ¢ is reach-
able from vertex s. From G, we construct an NFA A = (V U
{t'},{a,b},8,s,VU{r'}), where a is an observable and b an
unobservable event, and for every edge (p,r) € E, we add the
transition (p,a,r) to 8. Moreover, we add a new state ¢’ and a
new transition (7,b,1’). Let Lg be the language of the automaton
(VU{r'},{a,b},8,s,{t}) and Lys the language of the automa-
ton (VU{t'},{a,b},8,s,{t'}). Obviously, Ls is nonempty if
and only if Lyg is nonempty, which is if and only if 7 is reach-
able from s. Then, if &* is the label of transitions from s to
t, then P(a*) = d* € P(Ls) and P(a*b) = a* € P(Lys). Hence
P(Ls)NP(Lys) # 0 if and only if 7 is reachable from s. O

We point out that using a unique observable event for every
transition can show NL-hardness for DESs modeled as DFAs.

5. OPACITY VERIFICATION

In the section, we discuss several structural restrictions on the
systems and the effect of these restrictions on the complexity
of verification of current-state opacity. Namely, we discuss
the restriction on the number of observable and unobservable
events, then we combine this restriction with the requirement
on acyclicity of the system model, and finish the section by
relaxing the restriction on acyclicity to allow deadlock freeness.

To simplify the proofs, we first reduce current-state opacity to
the language inclusion problem. This reduction is similar to that
of Wu and Lafortune (2013) reducing current-state opacity to
language-based opacity.

Lemma 5. Let G = (Q,X,06,I) be a DES, P: ¥* — X} a pro-
jection, and Qg,Ons C O sets of secret and non-secret states,
respectively. Let Lg denote the marked language of the automa-
ton Gs = (Q,X,0,1,0s) and Lys denote the marked language of
the automaton Gys = (Q,X,8,1,0ns). Then G is current-state
opaque if and only if P(Lgs) C P(Lys)."

Proof. Assume that w is such that §(7,w) N Qg # 0. This is if
and only if P(w) € P(Lg). Then, by definition, there is a string
w’ such that P(w) = P(w') and 8(I,w') N Qng # 0, which is if
and only if P(w) € P(Lys). a

Furthermore, Cassez et al. (2012) pointed out that the verifi-
cation of current-state opacity is at least as hard as deciding
universality. Indeed, fora DES G = (Q,X,0,1,F), L(G) =X* if
and only if G is current-state opaque with respect to Qs = Q\ F
and Qys = F.

This observation and Lemma 5 together with the results on the
complexity of deciding universality and inclusion give us strong
tools to show lower and upper complexity bounds for deciding
(current-state) opacity.

5.1 Restriction on the number of events

Our first restriction concerns the number of observable and
unobservable events in the system. The following result thus
improves the general case in two ways: (i) compared to the
general settings where more than a single initial state is allowed,
although the transitions are all deterministic, we allow only a
single initial state, and hence keep the system deterministic,
and, mainly, (ii) we restrict the number of observable events
to two and the number of unobservable events to one.

Theorem 6. Deciding current-state opacity for a DES modeled
by a DFA with three events, one of which is unobservable, is
PSPACE-complete.

Proof. Membership in PSPACE was shown by Saboori (2011),
and also follows directly from Lemma 5.

To show hardness, we reduce the DFA-union universality prob-
lem shown to be PSPACE-complete by Kozen (1977). Thus,
let «71,...,47, be DFAs over the alphabet ¥ = {0,1}. We let
both events of X be observable. Without loss of generality, we
may assume that the initial state of <7;, for i = 1,...,n, is not

I Here, P(Ls) is represented by an NFA with e-transitions obtained from Gg
by replacing transition (p,a,q) with (p,P(a),q); analogously for P(Lys).
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reachable from any other state.? Let G denote the nondeter-
ministic union of all «7;’s, that is, L(G) = U/, L(</;). Kozen
(1977) showed that deciding whether L(G) = X* is a PSPACE-
hard problem, and hence deciding current-state opacity of G
is PSPACE-hard by the observation of Cassez et al. (2012)
formulated below Lemma 5.

Notice that although the transitions of G are deterministic, G
may have more than a single initial state, say I = {q1,...,qn}-
We now further modify G by adding a new unobservable event
a and the transitions (g;,a,q;+1), fori=1,...,n— 1, and let ¢;
be the sole initial state. Denoting the result by G’, we can see
that G’ is a DFA, and that the observers of G and G’ coincide;
indeed, the initial state of the observer of G is I, because both
events of G are observable, and the initial state of the observer
of G’ is the set of states reachable from g under the sequences
of unobservable event a, that is, it is / as well. Notice that here
we needed the assumption that the initial state of 7; is not
reachable from other states of .o7;; otherwise, the observers of
G and G’ could be different. Altogether, G is opaque if and only
if G’ is opaque, which completes the proof. a

Notice that an unobservable event in the previous theorem is
unavoidable because any DFA with all events observable is
always in a unique state, and therefore never opaque. However,
the reader may wonder what happens if we further restrict the
number of observable events to one. We now show that having
only one observable event makes the problem computationally
easier unless CONP = PSPACE. This result holds even without
any restriction on the number of unobservable events, and for
nondeterministic automata.

Theorem 7. Deciding current-state opacity of a DES modeled
by an NFA with a single observable event is CONP-complete.

Proof. Membership in CONP follows from Lemma 5 and the
fact that inclusion for unary NFAs is CONP-complete, and
hardness follows from the complexity of deciding universality
for unary NFAs. For both the claims used here, the reader is
referred to Stockmeyer and Meyer (1973). O

5.2 Restriction on the structure — acyclic automata

The previous results show that only restricting the number of
events does not lead to tractable complexity. But it gives rise to
another question whether there are structurally simpler systems
for which the opacity verification problem is tractable.

Structurally the simplest systems we could think of are acyclic
DFAs with full observation, recognizing only finite languages.
However, these systems are never opaque, since they are deter-
ministic and fully observed. Nontrivial structures to be consid-
ered could thus be acyclic NFAs that still recognize only finite
languages, and hence do not possess the ability to express all
strings over the alphabet. We combine this restriction with the
restriction on the number of events.

Theorem 8. Deciding current-state opacity of a DES modeled
by an acyclic NFA with at least two observable events is CONP-
complete.

2 Otherwise, we can modify .7; by adding a new state qp; that is marked if
and only if the initial state go; is marked, add, for every transition (go , ¢, p), a
new transition (q()'l.,e7 p), and let qéﬁ,- be the only initial state. This modification
does not change the language of <7;. Moreover, we put ¢ ; to the set Os, Ons
or O\ (QsUQys) to which gq; belongs, which preserves the opacity property.

Proof. Assume that the acyclic NFA has n states. Then any
string from its language is of length at most n — 1. Thus, to show
that the system is not opaque, an NP algorithm guesses a subset
of secret states and a string of length at most n — 1 and verifies,
in polynomial time, that the guessed subset is reachable by the
guessed string. This shows that verifying opacity is in CONP.
Notice that membership in CONP can also be directly derived
from Lemma 5 and the complexity of inclusion for so-called
rpoNFAs of Krotzsch et al. (2017) that are more general than
acyclic NFAs.

To show CONP-hardness, we reduce the complement of CNF
satisfiability. > The proof is based on the construction showing
that non-equivalence for regular expressions with operations
union and concatenation is NP-complete even if one of them
is of the form X" for some fixed n, see Hunt III (1973) or
Stockmeyer and Meyer (1973).

Let {xj,...,x,} be a set of variables and ¢ = @; A--- A @, be
a formula in cnf, where every ¢@; is a disjunction of literals.
Without loss of generality, we may assume that no clause ¢;
contains both x and —x. Let —~¢ be the negation of ¢ obtained by
de Morgan’s laws. Then —@ = —¢; V- - -V =@y, is in disjunctive
normal form.

For every i = 1,...,m, we define a regular expression ; =
Bi1Bi2 - Bin, where
(0+1) if neither x; nor —x; appear in —¢;
Bij= 0 if —x; appears in ~¢;
1 if x; appears in —¢;

for j=1,...,n. Let B = U L(B;) be the union of languages
defined by expressions ;. Then we have that w € L(f3) if and
only if w satisfies some —¢;. That is, we have that L(f}) =
{0,1}" if and only if —¢ is a tautology, which is if and only
if @ is not satisfiable. Notice that the length of every string
recognized by f; is exactly n.

Let M be an NFA consisting of m paths of length n, each
corresponding to the language of f§;, and make the last state
of each of these paths non-secret, that it, it is placed to Qys. In
addition, add a path consisting of n+ 1 states {ayg, o1, .., 0}
and transitions (0y,a,q4), for 0 < ¢ < n, where a € {0,1}.
Let o, be the sole secret state, i.e., Qs = {a, }. Notice that the
language of M marked by the states in Qg is {0, 1}", whereas
the language marked by the states in Qys is L(f3). By Lemma 5,
M is current-state opaque if and only if {0,1}" C L(f3), which
is if and only if ¢ is not satisfiable. This completes the proof of
CONP-completeness. O

Again, we can show that the situation is computationally sim-
pler if only one observable event is allowed.

Theorem 9. Deciding current-state opacity of a DES modeled
by an acyclic NFA with a single observable event is NL-
complete, and hence solvable in polynomial time.

Proof. Membership in NL follows from Lemma 5 and the
complexity of inclusion for unary languages, see Krotzsch et al.
(2017).

3 A (boolean) formula consists of variables, operators conjunction, disjunction
and negation, and parentheses. A formula is satisfiable if there is an assignment
of true and false to its variables making it true. A literal is a variable or its
negation. A clause is a disjunction of literals. A formula is in conjunctive
normal form (cnf) if it is a conjunction of clauses; e.g., ¢ = (xVyVz) A (—xVyV
z) is a formula in cnf with two clauses xVyV z and —x VyV z. Given a formula
in cnf, the CNF satisfiability problem asks whether the formula is satisfiable.
The formula ¢ is satisfiable for, e.g., (x,y,z) = (0,1,0).
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To prove NL-hardness, we reduce the DAG-reachability prob-
lem. Let G be a directed acyclic graph with n vertices, and let
s and t be two vertices of G. We define an acyclic NFA o/
as follows. With each node of G, we associate a state in .o7.
Whenever there is an edge from i to j in G, we add a transition
(i,a,j) to <. The resulting automaton < is an acyclic NFA.
Let ¢ be the sole secret state, i.e., Qg = {t}, and let Qyg be
empty. Obviously, .27 is not current-state opaque if and only if
there is a string w € {a}* such that (s, w) N Qg # 0. Hence <
is not current-state opaque if and only if # is reachable from s in
G. O

Remark 10. Notice that the choice of Qs = 0 reduces current-
state opacity to non-reachability of states from Qg. Since this
is independent on the automata models, recent results by Czer-
winski et al. (2019) on the lower-bound complexity of reach-
ability in Petri nets gives that deciding current-state opacity is
not elementary for Petri nets. *

5.3 Restriction on the structure — deadlock-free automata

Above, we considered systems generating only finitely many
behaviors. However, real-world systems are usually not that
simple and often require additional properties, such as deadlock
freeness. Therefore, we now consider a kind of automata where
all cycles are only in the form of self-loops. Such automata are,
in our opinion, structurally the simplest DES where deadlock
freeness can be ensured (by adding a self-loop). Their mark
languages form a subclass of regular languages strictly included
in star-free languages, see Brzozowski and Fich (1980) and
Schwentick et al. (2001). Star-free languages are languages
definable by linear temporal logic that is often used as a
specification language in automated verification.

We now formalize our model. Let & = (Q,X,8,1,F) be an
NFA. The reachability relation < on the state set Q is defined
by p < g if there is w € L* such that ¢ € §(p,w). The NFA
& is partially ordered (poNFA) if the reachability relation <
is a partial order. If 7 is a partially ordered DFA, we use the
notation poDFA.

We then immediately obtain the following result for nondeter-
ministic partially ordered automata.

Theorem 11. Deciding current-state opacity of a DES modeled
by a poNFA with only two events, both of which are observable,
is PSPACE-complete.

Proof. Membership in PSPACE follows from Lemma 5 and
the results on the complexity of inclusion for poNFAs, and
hardness from the fact that deciding universality for poNFAs
with only two events is PSPACE-complete. For both claims see
Krotzsch et al. (2017). O

The situation is again easier if the model has only a single
observable event.

Theorem 12. Deciding current-state opacity of a DES modeled
by a poNFA with a single observable event is NL-complete.

Proof. Membership in NL follows from Lemma 5 and the cor-
responding complexity of inclusion, and hardness from the fact
that deciding universality for unary poNFAs is NL-complete,
see Krotzsch et al. (2017). O

We now consider DES modeled by poDFAs. Since every DFA
with all events observable is always in a unique state, and hence

4 For the notion of elementary complexity, we refer to the referenced paper.

) 2 =)
@Q@ @Q’@

Fig. 1. The ’determinization’; ¥’ and p’ are a new event and a
new state

®L, = O-E0=®

Fig. 2. The encoding enc(x) = aa and enc(y) = aaa

never opaque, some unobservable events are necessary to en-
sure opacity. We show that even one unobservable event makes
the opacity verification PSPACE-complete. Consequently, the
problem is hard for basically all practical cases.

Theorem 13. Deciding current-state opacity for systems mod-
eld by poDFAs over an alphabet with three events, one of which
is unobservable, is PSPACE-complete.

Proof. Membership in PSPACE follows from Lemma 5 and the
corresponding complexity of inclusion.

Let & = (0,{0,1},8,1,F) be a poNFA. By Theorem 11, de-
ciding current-state opacity for poNFAs with two events, both
observable, is PSPACE-complete. From <7, we now construct
a poDFA 2 = (QUQ',{0,1,a},8',s,F) by ’determinizing’ it
with the help of new events that we then encode in unary. In
more detail, for every state p with two transitions (p,x,r) and
(p,x,q) with p # g, we replace the transition (p,x,q) with two
transitions (p,x’,p’) and (p’,x,q), where x’ is a new event and
p’ anew state (added to Q'); see Fig. 1 for an illustration.

In this way, we eliminate all nondeterministic transitions. The
automaton is now deterministic with the set of initial states
I. Let T" be the set of all the new events we created by the
construction. Notice that the number of these events is bounded
by the number of edges in the original automaton, and hence
polynomial.

We now show how to encode the new events as strings over a
unary alphabet {a}. Let m = |I'| be a number of new events
and enc: I' — {a,aa,...,a™} be an arbitrary encoding (injec-
tion). We replace every transition (p,x’, p’), for x' € T, by the
sequence of transitions (p,enc(x’), p'), which requires to add up
to m new states to Q'. For instance, if (p,x, p’) and (p,y, p”) are
two transitions with x,y € T, and enc(x) = aa and enc(y) = aaa,
then (p,x,p’) is replaced by transitions (p,a,p1),(p1,a,p’),
where p; is a new state added to Q’, and (p,y, p") is replaced
by transitions (p,a, p1), (p1,a,p’), (p’,a, p"); see Fig. 2. Notice
that we have not set the secret status of states of Q’, and hence
we have that the states of Q' are neither secret nor non-secret.

Assume that I = {q1,...,q,}. To obtain a single initial state
(labeled by qf)), we add, fori =1,...,n, a new state q; and two
transitions (¢;_,,a,q;) and (q},0,q;) as depicted in Fig. 3. The
resulting automaton, 2, is a poDFA over the alphabet {0, 1,a}
with polynomially many new events and states, and a single
initial state gj,.

Let P be the projection from {0, 1,a}* to {0,1}*, and let P(2)
denote the poNFA obtained from & by replacing every tran-
sition (p,a,q) by (p,P(a),q). Then 2 is current-state opaque
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Fig. 3. Construction of an automaton with a single initial state
from an automaton with four initial states

with respect to P if and only if P(2) is current-state opaque
(with respect to the identity map), which is if and only if <7 is
current-state opaque (with respect to the identity map). a

6. CONSEQUENCES

Wu and Lafortune (2013) provided polynomial reductions
among several notions of opacity, including current-state opac-
ity, language-based opacity (for regular languages), initial-state
opacity, and initial-and-final-state opacity. Inspecting the re-
ductions, it can be seen that they preserve both acyclicity and
partial order. Moreover, eliminating the unnecessary Trim op-
erations, we obtain deterministic logarithmic-space reductions,
see Masopust (2018) for more details. Consequently, the results
for current-state opacity also hold for language-based opac-
ity (for regular languages) and initial-and-final-state opacity.
Moreover, the lower bounds also hold for K-step opacity, since
current-state opacity is a special case thereof.

The only problematic construction of Wu and Lafortune (2013)
is the reduction from language-based opacity (LBO) to initial-
state opacity (ISO), which requires that the languages are prefix
closed. We briefly depict a general reduction from LBO to ISO.

Let G = (Q,X,8,]) be a DES, P: £* — X% a projection, and
Os, Ons C I sets of secret and non-secret initial states. System G
is initial-state opaque if for every i € Qg and every w € L(G, i),
there is j € Qns and w' € L(G, j) such that P(w) = P(w').

Let the languages Lg and Lys of LBO be given by nonblocking
automata Gy and Gy, respectively. Let x;, x,,; be two new states,
and let @ be a new observable event. To every marked state r,
we add a transition (r, @,x;) if r is in Gy, and (r, @, x,,) if r is
in Gys. Then L(Gy) = LsULg@ and L(G,;) = Lys ULys@. Let
G denote G and Gy, considered as a single automaton, and let
Qs be the initial states of Gy, and Qpg the initial states of G;.
Then, P(Ls) C P(Lys) if and only if P(L(Gy)) C P(L(Gps)),
which is if and only if G is ISO.

Notice that the reduction does not preserve the number of
observable events. This could be solved by encoding the events
of G in binary, but then the reduction may not preserve partial
order and the number of events if the languages Lg and Lyg are
unary. However, adjusting the results for current-state opacity
according to the suggested reduction, we obtain similar results
also for initial-state opacity.
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