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1. INTRODUCTION

Proving the asymptotic stability of a non-linear differential
equation follows often along the following lines. After
existence is shown, a Lyapunov function V is constructed
which along solutions satisfies V̇ ≤ 0. Next the largest
invariant subset of {x | V̇ (x) = 0} is shown to consist
of only the equilibrium point. Finally, LaSalle’s invariance
principle is used to conclude that the equilibrium point
is asymptotically stable, see e.g. (Curtain & Zwart, 2020,
Chapter 11).

This procedure is almost the same for systems described
by ordinary- and by partial differential equations. The
only difference is one but important condition in LaSalle’s
invariance principle. Namely the solution must be pre-
compact. Meaning that its closure should be compact.
For ordinary differential equations (ode’s) this condition is
satisfied whenever the solution stays bounded, because in
Rn any bounded set is pre-compact. For systems described
by partial differential equations (pde’s) this needs not to
hold, for a simple example see Zwart (2016). Hence it
is important to know conditions which imply the pre-
compactness.

In this paper we shall give some sufficient conditions. As
shown in the examples, checking of these conditions can be
done by looking at the expression for V̇ . The outline of the
paper is as follows. In the next section we introduce our
(abstract) differential equation, and the assumptions. We
end that section with its main theorem, stating the pre-
compactness of a trajectory. In Section 3 we shall give the
proof of this theorem. Section 4 contains some examples
showing how the result can be applied. We end the paper
with the conclusion.

2. DIFFERENTIAL EQUATION AND
PRE-COMPACTNESS

We consider the semi-linear differential equation

ż(t) = Az(t) +Bf(z(t)), z(0) = z0, (1)

where A generates a bounded semigroup on the Hilbert
space Z, and B maps from the input (Hilbert) space U
into the state space Z. We assume that B is an admissible
operator for the semigroup.

Definition 1. Let A with domain D(A) be the infinitesimal
generator of the C0-semigroup (T (t))t≥0 on the state space
Z, and let A∗ be its dual. Furthermore, let B be a bounded
linear operator from U to D(A∗)′ (the dual of D(A∗)).
B is said to be infinite-time Lp-admissible, if for all u ∈
Lp((0,∞);U) and t > 0 there holds

∫ t
0
T (τ)Bu(τ)dτ ∈ Z

and

sup
t>0
‖
∫ t

0

T (τ)Bu(τ)dτ‖ <∞,

where the norm is the Z-norm. 2

For more detail on admissible input operators, we refer the
interested reader to Staffans (2000) or Tucsnak and Weiss
(2009). Note that we will take p ∈ [1,∞). By the uniform
boundedness theorem, we see that if B is infinite-time Lp-
admissible, then there exists a Mp such that

‖
∫ t

0

T (τ)Bu(τ)dτ‖ ≤Mp‖u‖Lp , (2)

with Mp independent of u and t.

Although in this paper we shall not study the existence of
solutions of the (abstract) differential equation we have to
say what we mean with a solution of (1).

Definition 2. Let A be the infinitesimal generator of a C0-
semigroup on Z, and let B be infinite-time Lp-admissible
for some p ∈ [1,∞). We call z(·; z0) a solution of (1) if

(1) The function t 7→ z(t; z0) is continuous and z(0; z0) =
z0;
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(2) For every t1 > 0, the function t ∈ [0, t1] 7→ f(z(t; z0))
is in Lp((0, t1);U);

(3) For every t1 > 0 the following equality holds on [0, t1]

z(t; z0) = T (t)z0 +

∫ t

0

T (t− s)Bf(z(s; z0))ds. (3)

Now we have introduced all necessary concepts and can
formulate the main theorem of this section.

Theorem 3. Consider the semi-linear differential equation
(1) where A generates a bounded semigroup on Z, and
A has compact resolvent. Furthermore, assume that B is
infinite-time Lp-admissible for some p ∈ [1,∞).

Suppose that for a z0 ∈ Z, the solution z(t; z0) exists
for all t ≥ 0 and this solution is such that f(z(·; z0)) ∈
Lp((0,∞);U), then the trajectory set {z(t; z0), t ≥ 0} is
bounded and pre-compact. 2

Since the identity is an infinite-time L1-admissible oper-
ator, provided the semigroup is uniformly bounded, we
immediately obtain the following corollary, see Dafermos
& Slemrod (1973).

Corollary 4. Consider the semi-linear differential equation
(1) where A generates a bounded semigroup on Z, has
compact resolvent, and B = I. Suppose that for a z0 ∈ Z,
the solution z(t; z0) exists for all t ≥ 0 and this solution is
such that f(z(·; z0)) ∈ L1((0,∞);Z), then the trajectory
set {z(t; z0), t ≥ 0} is bounded and pre-compact.

3. PROOF OF THEOREM 3

The proof is divided into four steps. By Definition 2 we
know that the solution can be written as

z(t; z0) = T (t)z0 +

∫ t

0

T (t− s)Bf(z(s; z0))ds. (4)

Since the semigroup (T (t))t≥0 is bounded and B is infinite-

time Lp-admissible, we see from (2) that the trajectory is
uniformly bounded. So it remains to show that it is pre-
compact.

So we have the sequence {z(tn; z0), n ∈ N}. If the sequence
{tn, n ∈ N} has a converging subsequence, then the
continuity of the solution implies the convergence of the
state along these time instances. So it remains to prove the
assertion when the sequence {tn, n ∈ N} is unbounded,
i.e., when tn → ∞. In part a. and b. we construct
a subsequence such that T (tn)z0 converges along this
subsequence. In part c. we show that for any given time-
sequence there exists a subsequence, such that the integral
part in (4) converges along this subsequence. In the final
part we combine parts b. and c. to conclude that there
exists a subsequence such that z(tn; z0) converges along
this subsequence as n→∞.

We denote by M the uniform bound of the semigroup, i.e.,
M = supt≥0 ‖T (t)‖.

a. Let {tn, n ∈ N} be a time sequence converging to infinity
as n→∞. If zk ∈ D(A), then

‖AT (tn)zk‖ = ‖T (tn)Azk‖ ≤M‖Azk‖,
where we have used the uniform boundedness of the
semigroup. Hence T (tn)zk and AT (tn)zk are bounded
sequences, and since A has compact resolvent, there exists

a subsequence {τn;k, n ∈ N} ⊂ {tn} such that {T (τn;k)zk}
converges as n → ∞. Note that the subsequence will in
general depend on zk. Furthermore, since the sequence is
converging, we can always choose it such that

‖T (τn;k)zk − T (τm;k)zk‖ ≤
1

min {n,m}
. (5)

b. Let z0 ∈ Z and the sequence {tn, n ∈ N} be given. We
begin by choosing a sequence {zk, zk ∈ D(A), k ∈ N} such
that

‖zk − z0‖ ≤
1

k
, k ≥ 1. (6)

Since D(A) is dense in Z this is possible. Now z1 ∈ D(A),
and so by part a. there exists a subsequence {τn;1, n ∈
N} ⊂ {tn, n ∈ N} such that the sequence {T (τn;1)z1}
converges. For the second element, z2, we consider the
time sequence {τn;1, n ∈ N}. Again from part a. we find
a subsequence {τn;2, n ∈ N} ⊂ {τn;1, n ∈ N} such that
the sequence {T (τn;2)z2} converges. As explained in part
a. we can also adjust the subsequence such that (5) is
satisfied. We repeat this process and find a sequence of
subsequences, such that {τn;k, n ∈ N} ⊂ {τn;`, n ∈ N} for
all k ≥ ` and (5) holds. Now we claim that T (τn;∞)z0

with τn;∞ = τn;n is a Cauchy sequence. So we take the
n’th element from the n’th subsequence. For n < m

‖T (τn;n)z0 − T (τm;m)z0‖
≤ ‖T (τn;n)z0 − T (τn;n)zn‖+
‖T (τn;n)zn − T (τm;m)zn‖+
‖T (τm;m)zn − T (τm;m)zm‖+
‖T (τm;m)zm − T (τm;m)z0‖

≤ M

n
+ ‖T (τn;n)zn − T (τm;m)zn‖+

2M

n
+
M

m
,

where we have used (6) combined with the bound on
the semigroup. Since τm;m is an element of the n’th
subsequence, we can estimate ‖T (τn;n)zn−T (τm;m)zn‖ by
1
n . Combining this with the above estimate, we find that
{T (τn;∞)z0, n ∈ N} is a Cauchy sequence, and hence is
converging.

c. In this part we consider the integral term of (4)
and, for simplicity, we write f(s) instead of f(z(s; z0)).
Furthermore, we define

κ := max{M,Mp}.

So let f ∈ Lp((0,∞);U) and the sequence {tn, n ∈ N} be

given. Assume that we have a subsequence {t(k)
n , n ∈ N} ⊂

{tn, n ∈ N} such that for n,m ∈ N∥∥∥∥∥
∫ t(k)n

0

T (t(k)
n − s)Bf(s)ds− (7)

∫ t(k)m

0

T (t(k)
m − s)Bf(s)ds

∥∥∥∥∥ ≤ κ‖f‖2−k+1,

where ‖f‖ is the Lp((0,∞);U)-norm of f . Now we shall

construct a new subsequence {t(k+1)
n , n ∈ N} ⊂ {t(k)

n , n ∈
N} such that for n,m ∈ N
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∥∥∥∥∥
∫ t(k+1)

n

0

T (t(k+1)
n − s)Bf(s)ds− (8)

∫ t(k+1)
m

0

T (t(k+1)
m − s)Bf(s)ds

∥∥∥∥∥ ≤ κ‖f‖2−k.
Choose N such that for all n ≥ N

p

√∫ ∞
t
(k)
n

‖f(s)‖pds ≤ ‖f‖2−k−2. (9)

Since t
(k)
n is an unbounded sequence, p < ∞, and since

f ∈ Lp((0,∞);U) this is possible. Next define zN ∈ Z by

zN :=

∫ t
(k)

N

0

T (t
(k)
N − s)Bf(s)ds.

The sequence {T (t
(k)
n − t

(k)
N )zN , n ≥ N} is a bounded

sequence in Z, and by part b, there exists a subsequence

{t̃(k+1)
n , n ∈ N} ⊂ {t(k)

n , n ≥ N} such that T (t̃
(k+1)
n −

t
(k)
N )zN converges as n → ∞. In particular, there exists a
N1 > 0 such that for n,m ≥ N1

‖T (t̃(k+1)
n − t(k)

N )zN − T (t̃(k+1)
m − t(k)

N )zN‖ (10)

≤ κ‖f‖2−k−1.

Now we define t
(k+1)
n := t̃

(k+1)
n+N1

, n ∈ N. We show that
along this subsequence (8) holds. For this we also use the
following equality∫ t

0

T (t− s)Bf(s)ds = (11)

T (t− t(k)
N )zN +

∫ t

t
(k)

N

T (t− s)Bf(s)ds, t ≥ t(k)
N .

Combining (9), (10) and (11), we see that∥∥∥∥∥
∫ t(k+1)

n

0

T (t(k+1)
n − s)Bf(s)ds−

∫ t(k+1)
m

0

T (t(k+1)
m − s)Bf(s)ds

∥∥∥∥∥
=

∥∥∥∥∥T (t(k+1)
n − t(k)

N )

∫ t
(k)

N

0

T (t
(k)
N − s)Bf(s)ds+

∫ t(k+1)
n

t
(k)

N

T (t(k+1)
n − s)Bf(s)ds−

T (t(k+1)
m − t(k)

N )

∫ t
(k)

N

0

T (t
(k)
N − s)Bf(s)ds+∫ t(k+1)

m

t
(k)

N

T (t(k+1)
m − s)Bf(s)ds

∥∥∥∥∥

≤‖T (t(k+1)
n − t(k)

N )zN − T (t(k+1)
m − t(k)

N )zN‖+∥∥∥∥∥
∫ t(k+1)

n

t
(k)

N

T (t(k+1)
n − s)Bf(s)ds−

∫ t(k+1)
m

t
(k)

N

T (t(k+1)
m − s)Bf(s)ds

∥∥∥∥∥
≤κ‖f‖2−k−1 +Mp

p

√√√√∫ t
(k+1)
n

t
(k)

N

‖f(s)‖pds+

Mp
p

√√√√∫ t
(k+1)
m

t
(k)

N

‖f(s)‖pds

≤κ‖f‖2−k−1 + 2Mp‖f‖2−k−2

≤κ‖f‖2−k,
where we have used (2). So we have proved (8).

By the bound on the semigroup, we see that if we take

t
(0)
n = tn, n ∈ N, then (7) is satisfied. Hence we have

made a nested sequence of subsequences. We now define

t
(∞)
n := t

(n)
n , n ∈ N. Given an ε > 0, there exists a k ∈ N

such that κ‖f‖2−k+1 ≤ ε. By construction, we have that
for n,m ≥ k∥∥∥∥∥

∫ t∞n

0

T (t∞n − s)Bf(s)ds−
∫ t∞m

0

T (t∞m − s)Bf(s)ds

∥∥∥∥∥
≤ κ‖f‖2−k+1 ≤ ε.

Hence {
∫ t∞n

0
T (t∞n − s)Bf(s)ds, n ∈ N} is a Cauchy se-

quence.

d. Now let {tn, n ∈ N} be an unbounded sequence. By
part b. we can construct a subsequence {τn;∞, n ∈ N}
such that T (τn;∞)z0 converges. In part c. we showed that
for any sequence there exists a subsequence such that
the integral part in (4) converges. We take as the initial
sequence {τn;∞, n ∈ N}, and we construct a subsequence

{t∞n , n ∈ N} such that
∫ t∞n

0
T (t∞n − s)Bf(s)ds converges

as n → ∞. Combining the above two facts, we see that
z(t∞n ; z0) converges as n → ∞. Hence for every sequence
{tn, n ∈ N} we can construct a subsequence such that
z(tn; z0) converges along this subsequence.

4. EXAMPLES

Consider the coupled (undamped) strings as shown in Fig-
ure 1. Every (undamped) string is modelled using the state
variables z1(ζ, t) = ρ∂w∂t (the momentum) and z2(ζ, t) =
∂w
∂ζ (the strain). The port-Hamiltonian representation of

the model is given by

∂z

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)z(ζ, t)) , (12)

where z(ζ, t) = [z1(ζ, t) z2(ζ, t)]
T
, P1 = [ 0 1

1 0 ] and H(ζ) =[
1
ρ(ζ)

0

0 T (ζ)

]
. So the total string modelled using three copies

of the single model. We introduce the state z(ζ, t) =

[z1,I(ζ, t), · · · , z2,III(ζ, t)]
T

, and the total model is again
of the form (12). From the picture we see that the following
static boundary conditions hold
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I

III

II
u

Fig. 1. Three controlled strings

z1,I(a, t) = 0, z1,II(b, t) = 0, z1,III(b, t) = 0,

z1,I(b, t) = z1,II(a, t),

z1,I(b, t) = z1,III(a, t),

where the index I denote the most left string. Index II and
III denote the lower and upper right string, respectively.
The final boundary condition comes from the force applied
in the middle

u(t) = TI(b)
∂wI
∂ζ

(b, t)− TII(a)
∂wII
∂ζ

(a, t)−

TIII(a)
∂wIII
∂ζ

(a, t). (13)

For the total energy, we find that (see e.g. Jacob and Zwart
(2012))

Ė(t) =
∂wI
∂t

(b, t)

[
TI(b)

∂wI
∂ζ

(b, t)− TII(a)
∂wII
∂ζ

(a, t)

−TIII(a)
∂wIII
∂ζ

(a, t)

]
(14)

=
∂wI
∂t

(b, t) · u(t). (15)

We define the velocity of the connecting bar as our output,
i.e., y(t) = ∂wI

∂t (b, t). Introduce v(t) = u(t) + y(t), then by
(15) we see that

Ė(t) = −y(t)2 + v(t)y(t) ≤ −3

4
y2(t) + v(t)2.

Thus for t > 0

E(t)− E(0) ≤ −3

4

∫ t

0

y2(τ)dτ +

∫ t

0

v(τ)2dτ.

So if v ∈ L2(0,∞), then the state stays bounded. This
combined with the fact that the system is a boundary
control system, see Jacob and Zwart (2012), shows that
the system with input v is infinite-time L2-admissible.

As it is clear from (15) when the input u is identically
zero, the system does not loose energy, and so no non-zero
state will converge to zero. Thus to stabilise the system
damping must be applied. This damping force we choose

u(t) = −f(y(t)), or v(t) = −f(y(t)) + y(t).

Here we assume that f is a non-decreasing continuous
function from R to R satisfying αy2 ≤ yf(y) ≤ βy2 for
some α, β > 0.

Applying this damping to our system, we find by equation
(15) that

Ė(t) = −y(t)f(y(t)). (16)

Thus we have the following energy balance for t > 0

E(0) = E(t) +

∫ t

0

y(τ)f(y(τ))dτ. (17)

In particular, this implies that∫ ∞
0

y(τ)f(y(τ))dτ <∞ (18)

Using the bounds on f we find that∫ ∞
0

αy(τ)2dτ ≤
∫ ∞

0

y(τ)f(y(τ))dτ (19)∫ ∞
0

f(y(τ))2dτ ≤β2

∫ ∞
0

y(τ)2dτ. (20)

Combining these three inequalities we find that y and f(y
are in L2(0,∞). In particular, we find that v ∈ L2(0,∞).
By Hastir et al. (2019) we know that the closed loop system
possesses a unique solution, in the sense of Definition
2. Thus applying Theorem 3 gives that the closed loop
trajectory is pre-compact. Applying LaSalle’s invariance
principle, we conclude that every solution converges to the
largest invariant subset in which Ė = 0. In other words,
to a solution of (12), satisfying the original boundary
conditions,

z1,I(a, t) = 0, z1,II(b, t) = 0, z1,III(b, t) = 0,

z1,I(b, t) = z1,II(a, t),

z1,I(b, t) = z1,III(a, t).

and the extra “zero” boundary conditions

0 = TI(b)
∂wI
∂ζ

(b, t)− TII(a)
∂wII
∂ζ

(a, t)−

TIII(a)
∂wIII
∂ζ

(a, t)

0 =z1,I(b, t).

These two are the consequence of Ė = 0. Although
there is one boundary condition too many, this does not
necessarily imply that the state must be zero. For instance,
if the strings II and III are identical, and move anti-
phase, whereas string I is standing still, all seven boundary
conditions are satisfied. So without extra information on
the system, we cannot conclude stability.

In the above we assumed that the connecting bar had
no mass. In the following we make the more realistic
assumption that it has a mass, which we denote by m. Let
us denote the velocity of the bar by ν(t), then Newton’s
law gives

mν̇(t) = Ftot(t)

= u(t)− TI(b)
∂wI
∂ζ

(b, t) + TII(a)
∂wII
∂ζ

(a, t)+

TIII(a)
∂wIII
∂ζ

(a, t). (21)

We have that ν(t) = ∂wI
∂t (b, t), which still equals the output

y(t).

Since we have added a mass, the energy get an extra term,
i.e., the total energy equals

Etot(t) = E(t) +
1

2
mν(t)2. (22)

Using (14) and (21), a simple calculation gives

Ėtot(t) =
∂wI
∂t

(b, t)u(t) = y(t)u(t). (23)
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By a similar argument as in the first case, this equality
shows that v(t) := u(t) + y(t) is an infinite-time L2-
admissible input.

We again try to stabilise the system by applying a damping
force, i.e.,

u(t) = −f(y(t)), or v(t) = −f(y(t)) + y(t).

However, now we will weaken the conditions on f . We
assume the following

• f is a (locally) Lipschitz continuous non-decreasing
function with f(0) = 0;
• There exists a α, δ > 0 such that yf(y) ≥ αy2

whenever |y| ≤ δ.
Note that the above assumptions allow for the damping
force to saturate.

By (23) we find, see also (17) and (18),

Etot(0) = Etot(t) +

∫ t

0

y(τ)f(y(τ))dτ. (24)

This implies that∫ ∞
0

y(τ)f(y(τ))dτ <∞ and Etot(t) ≤ Etot(0). (25)

Define the following subsets of [0,∞)

Θ = {t ∈ [0,∞) | |y(t)| ≤ δ}
Ω = {t ∈ [0,∞) | |y(t)| > δ}.

On these sets we find∫
Θ

y(t)2dt ≤
∫

Θ

1

α
y(t)f(y(t))dt <∞, (26)

where we have used the second assumption, and (25).
Furthermore, using the fact that f is non-decreasing,∫

Ω

αδ2dt ≤
∫

Ω

y(t)f(y(t))dt <∞.

This implies that Ω has finite measure.

From the second inequality in (25) and the expression of
Etot, we see that ν2(t) is bounded on [0,∞). Since ν equals
the output and Ω has finite measure, we find that∫

Ω

y(t)2dt <∞. (27)

Combining (26) and (27) gives that y ∈ L2(0,∞).

Since f is locally Lipschitz continuous and f(0) = 0, there
exists a β > 0 such that

|f(y)| ≤ β|y|
whenever |y| < δ. This implies that

∫
Θ
f(y(t))2dt < ∞.

Using once more the continuity of f , the boundedness of
y, and the fact that Ω has finite measure, we find that∫

Ω
f(y(t))2dt < ∞. So we conclude that y and f(y) are

elements of L2(0,∞). Using a similar argument as in the
first case, we have that every solution converges to the
largest invariant subset in which Ėtot = 0. This leads to
the same ω-limit set as in the previous case.

5. CONCLUSION

We have presented a sufficient condition for the pre-
compactness of a trajectory, and we illustrated our re-
sult by two examples of a simple network of vibrating
strings with damping at the boundary. We remark that

these models falls in the well-established class of linear
port-Hamiltonian systems on 1-D spatial domain, and so
our results are easily applicable for these systems. The
examples show how the energy, together with its derivative
can help to prove pre-compactness of the trajectories. It
is clear that this technique is not restricted to pde’s in a
one-dimensional spatial domain.
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