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Abstract: Improving the powertrain control of heavy-duty vehicles can be an efficient way to
reduce the fuel consumption and thereby reduce both the operating cost and the environmental
impact. One way of doing so is by using information about the upcoming driving conditions,
known as look-ahead information, in order to coast in gear or to use freewheeling. Controllers
using such techniques today mainly exist for vehicles in highway driving. This paper therefore
targets how such control can be applied to vehicles with more variations in their velocity. The
driving mission of such a vehicle is here formulated as an optimal control problem. The control
variables are the tractive force, the braking force, and a Boolean variable representing closed or
open powertrain. The problem is solved by a model predictive controller, which at each iteration
solves a mixed integer quadratic program. The fuel consumption is compared for four different
control policies: a benchmark following the reference of the driving cycle, look-ahead control
without freewheeling, freewheeling with the engine idling, and freewheeling with the engine
turned off. Simulations on a driving cycle with a varying velocity profile show the potential of
saving 11 %, 19 %, and 23 % respectively for the control policies compared with the benchmark,

in all cases without increasing the trip time.
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1. INTRODUCTION

The road freight sector accounts for nearly 6% of the
total CO2 emissions in the EU (TNO, 2015). Therefore,
the EU has agreed that emissions for new heavy-duty
vehicles (HDVs) should be decreased compared to the 2019
level by 15% in 2025 and by 30% in 2030 (European
Parliament, 2018). One way to decrease the emissions is
to improve components, for instance by designing more
efficient engines. Another way, which is the focus of this
paper, is to improve the control of the vehicles by more
fuel-efficient software.

Many HDVs are today equipped with speed controllers
using look-ahead information, such as road grade, to
drive in a more fuel-efficient way. One example is Scania
active prediction (Scania CV AB, 2012), released in 2011,
which can save 3% fuel by adapting the speed profile to
changes in the altitude. This is mainly done by coasting
ahead of downhills in order to avoid braking. A few
years later, freewheeling, i.e., decoupling the engine from
the rest of the powertrain, was added to the controller.
With this functionality, the fuel consumption was further
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reduced by 2% (Scania CV AB, 2013). Even though
controllers such as these already exist for commercial
use, their applications are limited to driving conditions
where the velocity only deviates by a few percent from
a fixed set-point. This is typically the case for vehicles
in highway driving. Many other vehicles, for instance in
mining applications or vehicles delivering goods, typically
have large variations in their velocity. For these vehicles,
such controllers do not exist to the same extent, which is
one motivation for the work in this paper.

The focus of this paper is fuel-efficient powertrain control
of heavy-duty wvehicles with varying velocity demands.
An example of such a scenario can be seen in Fig. 1.
The vehicle has access to information about the speed
limits and the road grade of the upcoming downhill by
using a map and GPS communication. While approaching
new speed restrictions and sections with significant road
grade, the vehicle can be controlled in different ways such
as braking, coasting in gear and freewheeling. For fuel
efficient driving, braking should in most cases be avoided,
but deciding when to use coasting in gear and when to use
freewheeling is not trivial. In addition, the decision may
depend on whether the engine is idling or turned off during
freewheeling.
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Fig. 1. A heavy-duty vehicle in a driving mission involving
varying velocity constraints and significant road slope.

The approach for fuel reduction in this paper is, given a
driving mission of a heavy-duty vehicle, to formulate it as
an optimal control problem. This has previously been done
in Held et al. (2019), where the problem was solved us-
ing both Pontryagin’s Maximum Principle and Quadratic
Programming (QP). The analysis was done from an energy
perspective, and did not take the powertrain into account.
Therefore, in this paper, a variable for whether the power-
train is closed or not is added to the QP-formulation. The
main benefit of this is that the vehicle can save fuel by free-
wheeling with low engine speed and thus reduce the drag
losses in the engine. With the new variable, the problem
becomes a Mixed Integer Quadratic Program (MIQP).

Mixed integer programming has been used to solve similar
problems before. A Model Predictive Controller (MPC)
solving a mixed integer nonlinear program was applied
to a heavy-duty vehicle in Kirches et al. (2011) in order
to find the optimal gear shifting policy. The application
was highway driving and freewheeling was not considered.
Mixed integer programming has also been applied to the
lateral movement of vehicles in order to avoid obstacles
(Qian et al., 2016). Another application was made for
trains in Wang et al. (2011), where a mixed integer
formulation was used in order to approximate nonlinear
functions by a piecewise affine function.

One method for reducing the fuel consumption of HDVs
is to reduce the total energy lost due to drag losses in the
engine by decreasing the engine speed. This can be done
by alternating between tractive power and freewheeling,
known as Pulse-and-Glide (PnG). Four different cases of
PnG were specifically studied in Xu et al. (2015). One
optimal cycle of PnG was performed for each case and
they were then compared in terms of fuel consumption.
External effects from road grade and varying velocity
constraints, which might influence the timing of the PnG
phases, were not considered. Another example is Li and
Peng (2011), where PnG strategies were compared for
different velocities in a car-following scenario. The engine
drag torque at idling was not considered, and a continuous
function could therefore be fitted to the fuel rate.

One motivation for the work in this paper is the potential
of decreasing the fuel consumption by reducing the drag
losses in the engine, i.e., the losses caused by friction and
gas exchange etc. For these kind of losses, the potential
savings increase with decreasing gear numbers. This is be-
cause lower gear numbers mean more revolutions of the en-

gine for the same driven distance. The vehicles considered
in this paper drive at lower velocities and thus lower gear
numbers than vehicles in highway applications. Therefore,
reducing the drag losses is even more important for such
vehicles compared to vehicles in highway driving, for which
controllers using PnG already exist commercially.

A similar problem to the one in this paper was solved
in Henriksson et al. (2017) using Dynamic Program-
ming (DP). The main drawback of using DP is that the
computation time can be very large due to the curse of
dimensionality, i.e., the fact that the computation time
grows exponentially with the number of states and control
signals. Furthermore, the velocity in Henriksson et al.
(2017) is discretized and is thus no longer a continuous
variable.

The main contributions of this paper are:

(1) To find the optimal control of an HDV with the
possibility to coast in gear, freewheel with idle engine
and freewheel with engine off, applied to a driving
cycle with both significant road slope and varying
velocity requirements.

(2) Compared to Henriksson et al. (2017), to solve the
problem with continuous velocity, to avoid the curse
of dimensionality and to investigate the effects of
freewheeling with the engine off.

The outline of this paper is the following. The model
of the vehicle and its engine is introduced in Section 2.
The optimal control problem is presented in Section 3,
followed by simulation results in Section 4, and conclusions
in Section 5.

2. MODELLING

The vehicle model is first described in terms of external
forces, constraints, and time consumption in Section 2.1. In
Section 2.2, the drag losses in the engine are being modeled
and the conversion from energy to fuel is discussed in
Section 2.3.

2.1 Vehicle model

The kinetic energy
K(s) = mv*(s)/2 (1)
is used as state variable as a function of position s, with m
being the vehicle mass and v the velocity. The dynamics
of the vehicle are given by
dK (s)
7 = Frw(s) + Fi(s) + Fa(K(s)) + Fr(s) + Fy(s) (2)
where F't,,(s) is the force at the flywheel, Fy(s) the force
caused by the brakes, F,(K(s)) by the air resistance,
F,(s) by the rolling resistance, and Fy(s) by gravity. The
resulting force on the flywheel is given by

Fru(s) = {7 ™ 3

where F,(s) is the force at the piston of the engine
generated by the combustion and Fj, is the drag force
for closed powertrain which is discussed further in section
2.2.

powertrain closed
powertrain open
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Table 1. Parameters related to the vehicle and
the environment. The parameters for the drag
torque are not given due to confidentiality.

Parameter Value
m - vehicle mass 26 000 kg
Pp,..« - maximum piston power 265 kW
Pmax - Maximum piston force 49kN
bmax - Maximum braking force 7T0kN
rw - wheel radius 0.5m

cq - air drag coefficient 0.5

p - air density 1.292kg- m™—3
Ay - vehicle cross-sectional area 10 m?

¢ - rolling resistance coefficient 0.006

we - engine speed powertrain closed 1100 RPM

idle 500 RPM

wo - engine speed powertrain open engine off 0 RPM

Je - moment of inertia engine 4kg-m?
T4,0 - constant drag torque n/a
T4,1 - linear drag torque n/a

In (2), F,(K(s)) represents the air resistance such that

pAscaK(s)
B— (4)
m
where p is the air density, Ay is the vehicle frontal area,
and cg is the air drag coefficient. The contribution from
rolling resistance is given by

F,.(s) = —mgc, cos(a(s)) (5)
where ¢, is the coefficient for the rolling resistance, g is

the gravitational constant and « is the road slope. The
gravitational force Fy(s) is given by

Fo(K(s)) =

Fy(s) = —mgsin(a(s)). (6)
The brake force in (2) is constrained by
—Fp,.. < F(s) <0. (7)

By writing the inverse of the velocity as

1
SR ®)

the force at the piston is constrained by the maximum
power at the piston P, as

max

[fmo .
Fp(s) S Ppmax ?K 1/2' (9)

By driving a distance ds with velocity v, the consumed
time dt using (8) becomes

dt = ds, /%K*W.

The parameters used in the vehicle model can be seen in
Table 1.

(10)

2.2 Engine drag losses

The energy losses due to engine drag are modelled as a
force Fy in (3). It can be calculated using the relation

P

Fa=— (11)

where the power P is calculated from the engine drag
torque Ty(w) and engine speed w as

P =T(w)w. (12)
The drag torque can be modelled to be linear in engine
speed such that

Ty(w) = Ty + Taaw (13)

where Ty and T, are found using least squares fit to
experimental values from a Scania engine. Combining (8)
and (11)-(13) gives

(Ta,0 + Ta1we) wey | %K‘l/z powertrain closed

F —
¢ (Ta,0 + Ta1wo) wor | %Kflm powertrain open

0 engine off

(14)
where w, is the engine speed with closed powertrain and
w, is the engine speed with open powertrain. These are
both set to constant values. For w,, this is a simplification
since it varies continuously between gear changes. The
range of typically used engine speeds for HDVs is about
800-1500 RPM and thus much smaller than the range
used by engines in personal cars. The chosen value of
w. =1100 RPM is a commonly used and efficient engine
speed. The Boolean variable z € {0, 1} is introduced such
that it attains the value z = 1 if the powertrain is closed
and z = 0 if the powertrain is open. The force at the piston
is non-negative and can attain values up to its maximum
F,,... only if the powertrain is closed. If the constraint

0 < F,(s) < Fp,..~2 (15)
is introduced, then (3) can be written
Fry(s) = Fy(s) — Fg, 2. (16)

The piston force F, and its maximum value Fj,__  are
expressed in terms of the force they generate at the wheel.
The work done by this force is given by multiplication by
the distance at the wheel, which is the distance driven by
the vehicle.

When the powertrain is open, the engine is either turned
off or runs at idle. The energy needed for this is represented
by the constant drag force Fy_, which is taken into account
in the cost function of the optimal control problem.

2.8 Energy to fuel

The vehicle has so far been modelled from an energy per-
spective. At the end of the day however, fuel consumption
is what matters to the haulers. The fuel that is combusted
in the engine performs a work that is transferred to the
piston. As discussed in Heywood (1988), not all this work
is available at the flywheel. The difference between the
energy transformed to the piston and the one measured at
the flywheel is a friction work. This work consists mainly of
overcoming resistance due to relative movement of parts in
the engine, but also of gas-exchange and auxiliaries. These
losses are modelled through the drag forces Fy, and Fy, in
this paper. Because of this, what is needed to calculate the
fuel consumption is to convert to fuel, the work done by the
forces at the piston: I}, when the powertrain is closed and
Fy, when the powertrain is open. The work done by these
forces is made using different engine speed and torque.
However, the efficiency with which fuel is transformed to
energy at the piston, the combustion efficiency, differs
only within the measurement uncertainty. Therefore, all
energy transformed at the piston is here modelled to
have the same efficiency. This means that even though
the optimal control problem is modelled to minimize the
energy consumption, it is equivalent to minimizing the fuel
consumption.
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Table 2. Settings for creating the velocity cor-

ridor.
Benchmark | Policy 2-4
Avkm/h] | 1 4
ny [-] 0.5 1
a; [m/s?] 0.3 0.25
a,, [m/s?] 0.4 0.6

3. PROBLEM FORMULATION

This section first describes how the constraints on velocity
are set based on the driving cycle and statistics from real
HDV operations. Next, the problem is formulated and
solved as an MIQP.

3.1 Velocity constraints

The driving cycle used for the simulations in this paper
is based on a cycle with frequent velocity variations used
at Scania CV AB. The cycle contains the road grade and
a piecewise constant velocity reference. The original cycle
contains a few stretches where the velocity is constant for
more than 1km. Such stretches are here reduced to be only
1km long. The motivation for this removal is that look-
ahead control with constant velocity profile is already a
well-studied topic, see for instance Hellstrom et al. (2009).

The constraints on the velocity are set based on the
method introduced in Held et al. (2019). In that paper,
a statistical analysis was performed to find average and
standard deviation of decelerations of HDVs for different
start and end velocities. Now in this paper, these data are
fitted to a 2-dimensional polynomial using a least squares
method such that the average deceleration d,(vi,v2) in
m/s? when decelerating from v; to ve in m/s is given by

d,(v1,v2) = 0.366 4+ 0.0771v; — 0.0849v, a7
—0.00185v7 + 0.00348v;v9 — 0.00214v3

and the corresponding standard deviation X(vi,vq) is
given by
Y (v1,v2) = 0.187 + 0.0250v, — 0.0327v

> > (18)

—0.000734v7 + 0.00187v;v9 — 0.00101w5.
These functions are used to create a velocity corridor, i.e.,
a lower and an upper constraint v; and v, for the velocity.
Following the methods developed in Held et al. (2019), the
procedure can be summarized as follows:

(1) Starting with a piecewise constant velocity reference
Uref given by the driving cycle.

(2) Set vp = vyef — Aw.

(3) Set vy = Vper + Awv.

(4) For each deceleration from vy to ve, set v; according
to the deceleration d,(vi,v2) — nyX(vi,vs) and vy,
according to the deceleration d,, (v, v2) +nx3 (v, v2),
with d,, and ny given by (17) and (18).

(5) For each acceleration, set v; and v,, such that they fol-
low the constant acceleration a; and a,, respectively.

In the algorithm above, Av and ny are settings for the
width of the corridor in terms of deviation during constant
velocity and during deceleration respectively.

Four different control policies are evaluated and compared
in terms of their fuel consumption:

60
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Fig. 2. The altitude of the driving cycle in the top figure
and the velocity corridor in the bottom figure.

(1) Benchmark, no freewheeling,

(2) No freewheeling,

(3) Freewheeling with idling engine,

(4) Freewheeling with engine off.

For policy 2-4, the velocity corridor is constructed ac-
cording to the steps above using the parameters in the
right column of Table 2. The benchmark policy is derived
by solving the same optimal control problem without the
possibility to freewheel. In addition, the velocity corridor is
very narrow, such that the velocity only deviates slightly
from the reference of the driving cycle. The parameters
for the benchmark solution are given in the left column of

Table 2.

The road grade of the driving cycle has a maximum
inclination of 4.3 % in an uphill. Such sections can possibly
reduce the velocity of the vehicle significantly. Setting the
lower velocity constraint directly as above might therefore
result in infeasibility. To mitigate this, the lower constraint
is modified in order to always contain a feasible solution.
This is done by discretizing the constraint and for each
step k setting

v[k] = min (vi[k], vi[k — 1] + Awv;) (19)
where Avy is the acceleration yielded by maximum tractive

power. The altitude and the resulting velocity constraints
can be seen in Fig. 2.

3.2 Mized Integer Quadratic Program

The problem is discretized with As = 15m using zero
order hold and formulated as an MIQP. In order to do this,
the cost function needs to be quadratic in the continuous
state and control variables, the constraints need to be
linear, and a continuous variable cannot be multiplied by
the Boolean variable. The time consumption (10) is used in
the cost function while (9) and (16) are used as constraints.
They all contain the expression K /2, and need to be
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approximated by the second, first, and zeroth order Taylor
approximation respectively.

The second order Taylor approximation of the inverse of
the square root of the kinetic energy around a reference
trajectory K, is given by
_ _ 1.
K V2 K12 L YUK - K,)

3
+ gK;5/2(K - K,)2

The Taylor approximations of different degrees at step k
become

(20)

O + 01 kK + 02, K7 second order

Kk_l/2 ~Qdok+ DKk first order (21)
©0.k zeroth order,
where the second order coefficients are given by
15 m —-1/2
0o,k = 3\ 3 Kk (22a)
10 m -3/2
917k == —§ 5Kr,k (22b)
3 [m___5/2
O = FAVAC (22¢)
the first order coefficients are given by
3 /m___1/2
¢0,1€ = 5 ?Kﬂk (23&)
1 /m___3/2
d)l,k - _5 5 rk (23b)
and the zeroth order coefficient is given by
m__
Por =175 7 (24)

The optimal control problem is solved in a receding horizon
approach using an MPC with a control horizon of Ny =
60steps. This leads to a control horizon with distance
AsNg = 900 m which is enough for reaching the optimum
value within a few parts per thousand (Held et al., 2019).
Solving the optimal control problem using an MPC instead
of offline as an optimization problem is motivated by
the MIQP-solver not converging to a solution within a
reasonable amount of time when solving over the full
driving distance.

For each discretized step k, the problem is formulated as

an MIQP as:
k+Ng—1
Ao Zk As (Fp,; + woTa(wo)po,; (1 — zj)(R5a)
j=

+ ByAz; (25b)
+ 5tAS (Go,j + 91,jKj + 92,jK]2025C)
— Ky Ny (25d)

s.t. Kj+1 :AKj+B(Fp7j 7ch,jzj +Fb7j)+w]‘
(25e
Fy. ;= wcTa(we) (¢o,; + ¢1,;K;) (25¢

K ; <K; <Ky (25
Fpj < Py,.. (60 + &1,;K;) (

0 S Fp’j S ZjFpmax (251
—Fy < Fp; <0 (25j
K}, given (25k

where A, B and w; are given by

A= e Achs (26a)
1

B=—(1-A 26b
2= (26b)

w; = —Bmyg (sina; + ¢, cos o) (26¢)

where A, is the state dependent coefficient in the contin-
uous model (2) which is given by (4) as

_ pAyca
—

The cost function is the sum of the energy used for traction
and idling (25a), the cost for gear changes (25b) with
Az; = |zj4+1 — zj|, and the cost for time consumption
(25¢). The kinetic energy at the end of the horizon (25d)
is added such that it is not always optimal to coast at
the end of the horizon. The constraints consist of the
dynamics of the vehicle (25e) with the drag force given by
(25f), the constraints on velocity (25g), maximum power at
the piston (25h), maximum force at the piston (25i), and
maximum braking force (25j). The constant S, in (25b)
is a penalty for activating or deactivating freewheeling.
The motivation for this penalty is that when again closing
the powertrain, the rotational speed of the engine must be
increased such that an amount of energy corresponding to
the difference in rotational energy is consumed. Since both
engaging and disengaging a gear is penalized in (25b), the
difference in rotation energy is divided by two such that
2 2

. (25)

where J. is the engine moment of inertia. For the policy
with the engine off, w, in (28) is set to zero. The penalty for
time consumption §; in (25c¢) is set such that the different
control policies obtain similar trip times in order to make
a fair comparison of their fuel consumption.

4. SIMULATION RESULTS

Simulations were performed in Matlab using the toolbox
Yalmip (Lofberg, 2004) with the solver Gurobi (Gurobi
Optimization, 2018). The energy/fuel consumption can be
seen in Fig. 4 for the four compared policies normalized
with the consumption of the benchmark. The consumption
is split into the parts originating from rolling resistance, air
resistance, braking, engine drag, idling and freewheeling
on/off. As can be seen, the losses due to rolling resistance
is the same for all control policies and the losses due to
air resistance only have small deviations. The savings by
using a wider velocity corridor found by comparing policy
1 and 2 come from reduction of the losses due to braking,
as found in Held et al. (2019).

The savings when allowing freewheeling come from reduc-
tion of engine drag. As can be seen, the losses due to
braking actually increase when freewheeling with engine
off compared to freewheeling with idling. This is because
when freewheeling with idling, it is beneficial to stop
freewheeling if braking is necessary. With the engine off on
the other hand, the vehicle may continue to freewheel when
braking, in order to avoid the penalty for gear changes. In
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Fig. 3. Simulation results showing road altitude, velocity, closed powertrain, and control force.

the end, the sum of losses from braking and from engine
drag are approximately the same for the two freewheeling
policies. A summary of the resulting normalized fuel con-
sumption together with the corresponding trip time can
be seen in Table 3.

The resulting trajectories can be seen in Fig. 3 for the
benchmark and for freewheeling with engine off. It can be
seen that by using the latter control policy, the vehicle
lowers the velocity ahead of downhills in order to avoid
braking. The difference with the benchmark can be seen
in the force plot at three locations during the first two
kilometers. Fuel is also saved by using PnG which can be

Table 3. Resulting fuel consumption and trip
time as percentage of the benchmark for the
different control policies.

seen in the frequent switching in the powertrain plot, even

Bench. | No freew. | Idling | Eng. off
Fuel %] 100 88.8 81.5 77.1
Time [%] | 100 99.4 99.7 99.7

at locations without significant changes in altitude.
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Fig. 4. Losses divided into categories for the different
control policies.

5. CONCLUSIONS

The driving mission of a heavy-duty vehicle with varying
velocity demands is formulated as an optimal control
problem on MIQP form. The fuel savings for the four
different control policies are: 11.2 % for look-ahead control
without freewheeling, 18.5% for freewheeling with the
engine idling, and 22.9 % for freewheeling with the engine
turned off. These results indicate great potential in fuel
savings by using look-ahead control for applications with
large velocity variations. However, the fuel savings in real
driving might be less due to simplifications in the vehicle
model and the presence of other traffic participants.
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