
A Network SIS Meta-Population Model
with Transportation Flow ?

Mengbin Ye ∗, Ji Liu ∗∗∗, Carlo Cenedese ∗∗, Zhiyong Sun ∗∗∗∗,
Ming Cao ∗∗

∗Optus-Curtin Centre of Excellence in Artificial Intelligence, Curtin
University, Perth, Australia

∗∗ Faculty of Science and Engineering, ENTEG, University of
Groningen, Groningen 9747 AG, Netherlands

∗∗∗Department of Electrical and Computer Engineering, Stony Brook
University, New York, USA

∗∗∗∗Department of Electrical Engineering, Eindhoven University of
Technology, the Netherlands.

E-mail: mengbin.ye@curtin.edu.au, {c.cenedese, m.cao}@rug.nl,
ji.liu@stonybrook.edu, z.sun@tue.nl

Abstract: This paper considers a deterministic Susceptible-Infected-Susceptible (SIS) meta-
population model for the spread of a disease in a strongly connected network, where each
node represents a large population. Individuals can travel between the nodes (populations).
We derive a necessary and sufficient condition for the healthy equilibrium to be the unique
equilibrium of the system, and then in fact it is asymptotically stable for all initial conditions
(a sufficient condition for exponential stability is also given). If the condition is not satisfied,
then there additionally exists a unique endemic equilibrium which is exponentially stable for all
nonzero initial conditions. We then consider time-delay in the travel between nodes, and further
investigate the role of the mobility rate that governs the flow of individuals between nodes in
determining the convergence properties. We find that sometimes, increasing mobility helps the
system converge to the healthy equilibrium.
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1. INTRODUCTION

The mathematical modelling of disease outbreaks in a
large interconnected population is a fundamental area of
research in epidemiology and public health studies (An-
derson and May, 1991; Nowzari et al., 2016), in part
because experimental approaches are either too expen-
sive or impossible in large human populations. Various
models have been proposed to capture such epidemic
outbreaks, with the Susceptible-Infected-Susceptible (SIS)
and Susceptible-Infected-Removed (SIR) models being two
fundamental ones (Pastor-Satorras and Vespignani, 2001;
Kermack and McKendrick, 1927; Mieghem et al., 2009).

Both deterministic and probabilistic versions of networked
SIS models exist (Fagnani and Zino, 2017; Mieghem et al.,
2009; Fall et al., 2007; Lajmanovich and Yorke, 1976).
Deterministic models are often easier to analyse, especially
when the modelling context is considering a large popu-
lation interacting over a network (Mei et al., 2017), and
can be captured by either a discrete-time system (Ahn
and Hassibi, 2013) or a continuous-time system (Mieghem
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et al., 2009). This paper will consider a deterministic
continuous-time networked SIS model from the following
perspective: spreading of a disease across a network of
interconnected populations, viz. a meta-population (each
node represents one large and well-mixed population).

Among deterministic networked SIS models, the most
popular version dates back to (Lajmanovich and Yorke,
1976). Various versions have since been studied (Mei
et al., 2017; Mieghem et al., 2009). These models capture
disease spreading from interaction between the nodes, i.e.,
via physical contact between individuals from different
populations in the meta-population network.

However, one can appreciate that if individuals can travel
between populations (nodes), such as if the populations are
geographically separated, then disease spread occurs due
to infected individuals flowing between populations. Sev-
eral works, primarily focusing on SIR models, have used
statistical analysis on real-world data, and computational
frameworks to illustrate how meta-population epidemic
models that explicitly consider individual flow between
populations can accurately capture real-world epidemics
such as the H1N1 (Swine Influenza) and SARS (Severe
Acute Respiratory Syndrome) viruses (Khan et al., 2009;
Brockmann and Helbing, 2013; Colizza et al., 2006).
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In terms of modelling individual flow between populations
in the SIS framework, one model was proposed in (Arino
and Van den Driessche, 2003). However, the model had
high complexity, and the focus was on establishing the
convergence of the flow dynamics; only some limited local
stability results were obtained for the epidemic dynamics.
A “patchy environment” model was proposed and studied
in (Wang and Zhao, 2004; Jin and Wang, 2005). It is
found that either the healthy equilibrium (the disease is
eradicated from each node) is the unique equilibrium and
it is asymptotically stable for all 1 initial conditions, or,
and in addition to the healthy equilibrium, there exists
a unique endemic equilibrium (the disease exists in a
nonzero proportion of the population of each node) which
is convergent for all nonzero initial conditions.

In this paper, we derive, using an approach inspired by
Brockmann and Helbing (2013), a deterministic meta-
population SIS networked model with individual trans-
port flow between the populations. Each population has
a constant recovery and infection parameter to capture
intra-population disease dynamics. The amount of flow
of each population is captured by a possibly heteroge-
neous mobility rate. We analyse the system on strongly
connected networks and provide a necessary and sufficient
condition for the healthy equilibrium to be unique and
asymptotically stable for all initial conditions. If the condi-
tion is not satisfied, then there additionally exists a unique
endemic equilibrium that is exponentially stable for all
nonzero initial conditions. The possible limiting behaviour
of the proposed model is therefore similar to the “patchy
environment” model. However, by using Metzler and M -
matrix theory, our equilibria and convergence analysis is
greatly simplified compared to (Wang and Zhao, 2004; Jin
and Wang, 2005), and we establish exponential stability
properties (only asymptotic convergence is obtained for
the “patchy environment” model). We then provide one
necessary and one sufficient condition for convergence to
the healthy equilibrium. Last, we analyse the role of the
mobility rate in affecting the convergence behaviour.

We conclude by introducing some mathematical prelimi-
naries. Section 2 will propose the SIS model, with analysis
presented in Section 3. Conclusions are given in Section 4.

1.1 Notation

The n-column vector of all ones and zeros is given by
1n and 0n, respectively. The n × n identity and n × m
zero matrix are given by In and 0n×m, respectively. For a
vector a ∈ Rn and matrix A ∈ Rn×m, the ith entry of a
and ijth entry of A are denoted by ai and aij , respectively.
For any two vectors a, b ∈ Rn, we write a ≥ b if ai ≥ bi
for all i ∈ {1, . . . , n}, a > b if a ≥ b and a 6= b, and
a � b if ai > bi for all i ∈ {1, . . . , n}. Similarly, for
any two matrices A,B ∈ Rm×n, we write A ≥ B if
aij ≥ bij for all i = {1, . . . ,m} and j ∈ {1, . . . , n}. We
write A > B if A ≥ B and A 6= B, and A � B if
aij > bij for all i = {1, . . . ,m} and j ∈ {1, . . . , n}. A
matrix A satisfying A > 0n×n and A � 0n×n is said
to be nonnegative and positive, respectively. A matrix
A > 0n×n is said to be column-stochastic if

∑n
j=1 aji =

1 In most epidemic models, only initial conditions which are mean-
ingful and of interest in the epidemic context are considered.

1 for all i = 1, . . . , n. For a square matrix M with
spectrum σ(M), define ρ(M) = max {|λ| : λ ∈ σ(M)}
and s(M) = max {Re(λ) : λ ∈ σ(M)} as the spectral
radius and the largest real part among the eigenvalues
of M , respectively. A matrix M is said to be Hurwitz
if s(M) < 0. For a set M with boundary, denote the

boundary as ∂M, and the interior Int(M) , M \ ∂M.
We define Ξn = {x ∈ Rn≥0 : 0 ≤ xi ≤ 1, i ∈ {1, . . . , n}}.

1.2 Metzler matrices and M -matrices

We introduce two important classes of matrices and associ-
ated results for the analysis. Let Z ⊂ Rn×n denote the set
of all matrices whose offdiagonal entries are nonpositive.
A Metzler matrix is a matrix whose offdiagonal entries are
all nonnegative (Berman and Plemmons, 1979). Clearly, if
A ∈ Z, then −A is Metzler. A matrix A ∈ Z is called an
M -matrix if it can be written as A = cIn−B, with c > 0,
B > 0n×n and c ≥ ρ(B) (Berman and Plemmons, 1979).

Lemma 1. ((Varga, 2009, Section 2.1)). Suppose that M
is an irreducible Metzler matrix. Then, s(M) is a simple
eigenvalue of M and there exists a unique (up to a scaling)
vector x � 0n such that Mx = s(M)x. Let z > 0n
be a given vector. If Mz < λz for some scalar λ, then
s(M) < λ. If Mz = λz for some scalar λ, then s(M) = λ.
If Mz > λz for some scalar λ, then s(M) > λ.

Lemma 2. ((Qu, 2009, Theorem 4.27)). Let R ∈ Z be
given. Then, the following statements are equivalent

(1) R is an M -matrix
(2) The eigenvalues of R have nonnegative real parts.

1.3 Graph Theory

Given a not necessarily symmetric matrix A > 0n×n, we
can associate with it a directed graph G[A] = (V, E [A],A),
where V = {v1, . . . , vn} is the set of nodes. An edge
eij = (vi, vj) is in the set of ordered edges E [A] ⊆ V × V
if and only if aji > 0. The edge eij is said to be incoming
with respect to vj and outgoing with respect to vi. We
define the incoming and outgoing neighbour sets of vi as

N+
i , {vj : eji = (vj , vi) ∈ E [A]} (1a)

N−i , {vj : eij = (vi, vj) ∈ E [A]} (1b)

A directed path is a sequence of edges of the form
(vp1 , vp2), (vp2 , vp3), ..., where vpi ∈ V are distinct and
epipi+1

∈ E [A]. A graph G[A] is strongly connected if and
only if there is a path from every node to every other
node, which is equivalent to A being irreducible (Berman
and Plemmons, 1979).

2. AN SIS MODEL WITH INDIVIDUAL FLOW

This section will propose a meta-population networked SIS
model, with the model analysed in Section 3. We present
the model, then provide explanations of the derivations,
and compare it to others in the existing literature.

Consider n distinct large populations of individuals. Each
population is well-mixed and represented by a node vi in
a network with i ∈ I , {1, . . . , n}, and Ni the size of the
population represented by node vi. (We will sometimes
refer to node vi as population vi for convenience). Each
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individual is either susceptible (S) to, or infected (I) with,
some disease. An individual may transition from being
susceptible to being infected, and vice versa. The total
numbers of susceptible and infected individuals in node vi
are given by Si and Ii, respectively, which implies that
Ni = Si + Ii. Let xi = Ii/Ni denote the proportion
of infected individuals in population vi. Under the mild
assumption that Ni is constant, reasonable for large pop-
ulations, modelling and analysing xi(t) fully captures the
disease dynamics over the meta-population network.

Formally, the dynamics of xi, i ∈ I, is given by

ẋi = −(δi + γi)xi +αi(1−xi)xi +

n∑
j=1,j 6=i

γjwijxj
Nj
Ni
. (2)

The parameters δi > 0 and αi > 0 capture the recovery
and infection rate of the individuals in node vi from the
disease, while γi ∈ (0, 1), for all i ∈ I is the constant
mobility rate of node vi. Roughly speaking, γi captures
the proportion of individuals who are leaving vi to travel
to another node. The quantity wij ∈ [0, 1] represents the
proportion of all individuals leaving node vj , that travel
to node vi. This implies that a natural constraint exists on
the wijs:

∑n
j=1 wji = 1 and wii = 0, for all i ∈ I.

By defining x(t) = [x1(t), . . . , xn(t)]> and X(t) =
diag(x1(t), . . . , xn(t)), the dynamics of the metapopulation
network can be expressed as

ẋ(t) =
(
−(D+Γ) + A−AX(t)+N−1WΓN

)
x(t), (3)

where the n×n diagonal matrices D, A, N , and Γ have ith
diagonal entry δi, αi, Ni, and γi, respectively. The column-
stochastic matrix W is associated with the graph G[W ],
which represents the transportation network that allows
individuals to travel between the nodes. For simplicity, we
will sometimes analyse the dynamics Eq. (3) expressed as:

ẋ(t) = (−U −AX(t) + M)x(t), (4)

where U = D + Γ − A is a diagonal matrix. The
nonnegative matrix M ,N−1WΓN has entries mii = 0
and mij = γjwijNj/Ni for i 6= j. Because mij > 0 ⇔
wij > 0, G[W ] and G[M ] have the same node and edge
set but different weights.

2.1 Derivation of Networked SIS Model with Flow

To begin, we recall the deterministic SIS model for a well-
mixed population vi (Anderson and May, 1991):

İi = −δiIi + αi
Si
Ni
Ii + πi. (5)

The recovery and infection rates are δi > 0 and αi >
0, respectively, and Ni is assumed to be constant. The
term πi represents the increase in the number of infected
individuals in vi due to effects from neighbouring nodes
vj . When πi ≡ 0, i.e., the population is isolated, Eq. (5)
reduces to the classical single population SIS model. A
specific form of πi for infection by flow of individuals
between nodes is now described, which will yield Eq. (2).

The travel of individuals between nodes occurs over a
network, captured by G[W ]. An edge eji ∈ E [W ] indicates
that individuals travel from node vj to node vi, and we
define the incoming and outgoing neighbour set N+

i and
N−i , of vi as in Eq. (1), see Fig. 1. Let F+

i and F−i

vi

vjvk F−iF+
i

Fik = γkwikNk Fji = γiwjiNi

: ∈ N+
i

: ∈ N−i
vp vq

Fig. 1. Flow in and out of a node vi. Individuals from
node vk ∈ N+

i (striped nodes) flow into vi, with a
flux Fik, while individuals leave vi and travel to node
vj ∈ N−i (yellow nodes) with flux Fji. For vi, the total
entering and leaving fluxes are F+

i =
∑
k∈N+ Fik and

F−i =
∑
j∈N+ Fji, respectively.

represent the constant flux of individuals (i.e. individuals
per unit time) entering and leaving node vi, respectively.
By denoting the flux from node vj to vi as Fij , one obtains∑
j∈N+

i
Fij = F+

i and
∑
j∈N−

i
Fji = F−i . The assumption

that Ni is constant leads to F+
i = F−i , Fi. Moreover, we

argue that it is reasonable to assume that Fi < Ni, because
Fi = Ni implies that the entire population of vi is on the
move at any given time. We define the mobility rate of
node vi as γi = Fi

Ni
, i.e. the portion of individuals in node

vi who are travelling, and it is constant since Fi and Ni
are constant. Last, for G[W ] we define the weight of the

edge eij as wji , Fji/F
−
i : the proportion of individuals

leaving vi that travel to vj . We have Fji = γiwjiNi,
and

∑
j∈N−

i
wji = 1, which implies that W is column

stochastic with zero diagonal entries.

We now show how Eq. (2) is obtained. By assuming that
infected and susceptible individuals are equally likely to
travel, we propose that Eq. (5) takes the form of

İi = −δiIi + αi
Si
Ni
Ii +

n∑
j=1,j 6=i

(Fij
Ij
Nj
− Fji

Ii
Ni

). (6)

Thus, the last term in Eq. (6) identifies the difference in

the flux of infected individuals flowing into Fij
Ij
Nj

and out

Fji
Ii
Ni

of node vi. With xi = Ii/Ni, and recalling that (i)

Fij = γjwijNj , and (ii) Si = Ni − Ii, we obtain

ẋi = −δixi +αi(1− xi)xi +

n∑
j=1,j 6=i

(γjwij
Nj
Ni
xj − γiwjixi).

Eq. (2) is recovered by recalling that
∑n
j=1,j 6=i wji = 1.

Notice that the population sizeNi appears in the dynamics
Eq. (2) explicitly. This is a direct consequence of the
method used to model individuals flowing or travelling
between nodes. Intuitively, for a fixed γi, the number of
individuals leaving node vi will increase linearly with Ni.

2.2 Existing Deterministic SIS Models

We briefly compare the dynamics in Eq. (2) with those in
the literature. The most well known networked SIS model
(Lajmanovich and Yorke, 1976) assumes that Eq. (5) is
given with πi =

∑n
j 6=i βij

Si

Ni
Ij , where βij ≥ 0 is an infec-

tion rate from vj to vi. This extends Eq. (5) by assuming
that individuals in node vj and vi come into contact if

βij > 0, since βij
Si

Ni
Ij is simply the second term in Eq. (5)
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but with Ij and βij replacing Ii and αi, respectively 2 .
Such a model may be appropriate for capturing a meta-
population where individuals from different populations
come into regular physical contact, e.g. suburbs in a city,
but not for geographically-separated populations. Our ap-
proach to modelling the flow of individuals is heavily
inspired Brockmann and Helbing (2013), who study an
SIR network model by which individuals travel between
cities and spread diseases.

Some works in the mathematical biology community have
considered flow-based “patchy” SIS models (Wang and
Zhao, 2004; Jin and Wang, 2005; Arino and Van den
Driessche, 2003, 2006) After a transient in which each
population size Ni converges to a constant, the model of
(Jin and Wang, 2005; Wang and Zhao, 2004), is given by

ẋi = −(µi + δi)xi + αi(1− xi)xi +

n∑
j=1

aijxj , (7)

where δi, αi are as in Eq. (2), µi > 0 is a natural death
rate, and aii ≤ 0 and aij ≥ 0 for j 6= i. However,
there are no constraints on the aij or aii, unlike the
constraints of γi ∈ (0, 1) and

∑n
j=1 wji = 1 in Eq. (2).

These differences arise from differences in the derivation
of the model, leading to significantly different conclusions
regarding the role of the flow rate γi in the spread of the
disease, as we will report in Section 3.2.

3. ANALYSIS

We now analyse the system in Eq. (3) and fully char-
acterise the equilibria and convergence properties. The
proof of the main convergence theorem is given in the
Appendix A, while other proofs are omitted due to spatial
constraints and will be included in an extended version of
this paper. To begin, we impose the following assumptions
on the parameters.

Assumption 1. For all i ∈ I, there holds δi > 0, αi > 0,
and γi ∈ (0, 1). The matrix W > 0n×n is irreducible, with
entries satisfying wii = 0 and

∑n
j=1 wji = 1 for all i ∈ I.

It is worth emphasising that an irreducible W implies that
the graphs G[W ] and G[M ] are strongly connected.

3.1 Equilibria and Convergence Properties

Since each xi denotes the proportion of infected individuals
in population (node) vi, it is natural to assume that
the initial value x(0) ∈ Ξn. We will now prove that Ξn
is positively invariant for the system in Eq. (3), which
ensures that xi(t) for all t ≥ 0 retains its important
physical meaning in the epidemic context. From here on,
we focus on the analysis of the system Eq. (3) only in Ξn.

Lemma 3. Suppose that Assumption 1 holds. If x(0) ∈
Ξn, then the system Eq. (3) satisfies x(t) ∈ Ξn for all
t ≥ 0. Moreover, if x(t) ∈ ∂Ξn \ 0n, then there exists a
finite κ such that x(t+ κ) ∈ Int(Ξn).

Clearly, x = 0n is an equilibrium of the system Eq. (3), in
which no population has any infected individuals. We call
this trivial equilibrium the healthy equilibrium. In contrast,
2 Often, the literature defines βii = αi as a self-infection parameter,
and combines the second and third summands of Eq. (5).

nonzero equilibria of the system (if they exist) reflect a
diseased steady state, and are called endemic or nontrivial
equilibria. An immediate consequence of Lemma 3 is the
following characterisation of endemic equilibria.

Proposition 1. Suppose that Assumption 1 holds. If x∗ is
an endemic equilibrium of Eq. (3), then x∗ ∈ Int(Ξn).

We now present a result that shows the system Eq. (4)
(equivalent to Eq. (3)) always converges, and the value
s(−U + M) uniquely determines the equilibria and asso-
ciated convergence properties.

Theorem 1. Suppose that Assumption 1 holds, and con-
sider the system Eq. (4). Then the following hold:

(1) If s(−U +M) ≤ 0, then 0n is the unique equilibrium,
and it is asymptotically stable for all x(0) ∈ Ξn. If
s(−U + M) < 0, then it is exponentially stable.

(2) If s(−U + M) > 0, then in addition to x = 0n,
there exists a unique endemic equilibrium x̄ which is
exponentially stable for all x(0) ∈ Ξn \0n. Moreover,
x = 0n is unstable.

3.2 Effective Reproduction Number and the Impact of
Changing Mobility Rates

In this subsection, we give a physically relevant interpre-
tation to the result of Theorem 1. We then explore the role
of the mobility rates γi in the epidemic process.

Because diagonal matrices commute, it follows that −U +
M is similar to −U + WΓ using the similarity trans-
formation N(−U + M)N−1. This implies the results in
Theorem 1 continue to hold if we replace s(−U + M)
with s(−U + WΓ). The convergence behaviour of the
system Eq. (3) is therefore independent of the sizeNi of the
population vi, for all i ∈ I. However, transient behaviour
may depend on Ni, i ∈ I.

Next, define the irreducible matrix W̃ = A+WΓ > 0n×n,

and the positive diagonal matrix D̃ = D+Γ, so that −U+
WΓ = −D̃ + W̃ . We define the effective reproduction
number of Eq. (3) as

R0 , ρ(−D̃−1W̃ ). (8)

It can be shown that s(−D̃ + W̃ ) < 0 ⇔ R0 < 1,

s(−D̃ + W̃ ) = 0 ⇔ R0 = 1, and s(−D̃ + W̃ ) > 0 ⇔
R0 > 1 (Liu et al., 2019, Proposition 1). Thus, the R0

defined in Eq. (8) captures the salient epidemic behaviour
in a way consistent with the general definition of the
effective reproduction number for many epidemic models:
the disease is eradicated if R0 ≤ 1 and will persist as t
goes to infinity if R0 > 1, see e.g. (Fall et al., 2007; Jin
and Wang, 2005; Nowzari et al., 2016).

We now give two conditions, one necessary and one suffi-
cient, to ensure that s(−U + M) ≤ 0, i.e., R0 ≤ 1.

Proposition 2. Suppose that Assumption 1 holds. Then:

(1) s(−U +M) ≤ 0 only if ∃ i ∈ I such that δi+γi > αi.
(2) s(−U + M) ≤ 0 if δi > αi for all i ∈ I.

The first statement establishes that a network converges to
the healthy equilibrium only if at least one population has
a combined recovery rate and mobility rate (corresponding
to the rate of decrease in infected individuals in that
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population) greater than its infection rate. The second
statement establishes that the network will converge to
the healthy equilibrium if every population has a recovery
rate greater than its infection rate. This is a sufficient
condition, although it may not be realistic.

We now provide a result which identifies explicitly the
effect of the mobility rate γi in contributing to or impeding
the convergence towards the healthy equilibrium.

Theorem 2. Suppose that Assumption 1 holds, and con-
sider the system Eq. (4). Define φ , s(−U + M), and
let r> and y be the left and right positive 3 eigenvectors
of −U + M associated with the simple eigenvalue φ,
respectively, normalised to satisfy r>y = 1. Then,

∂φ

∂γi
= −riyi

γi
(αi − δi − φ) , ∀ i. (9)

Moreover, the following hold:

(1) Suppose φ ≤ 0. Then, ∂φ
∂γi

< 0 if αi ≥ δi.
(2) Suppose φ > 0. Then, ∂φ

∂γi
< 0 only if αi > δi.

It is notable that ∂φ
∂γi

is dependent on node-level pa-

rameters δi, αi, γi and network-level parameters φ, ri, yi.
Moreover, the sign of ∂φ

∂γi
only depends on αi, δi, and φ.

Statements (1) and (2) in Theorem 2 also give illuminating
insights. Statement (1) says that if Eq. (3) converges to
the healthy equilibrium, then increasing γi at any node
vi satisfying αi ≥ δi will introduce no risk in the sense of
changing the convergence properties of Eq. (3). In fact, the
system Eq. (3) will be more robust to the possibility of an
outbreak since φ will decrease. Statement (2) elucidates
that if Eq. (3) converges to the endemic equilibrium,
then the only nodes vi for which an increase in γi might
possibly lead to a decreasing φ are those satisfying αi > δi.
Interestingly, nodes satisfying αi > δi when disconnected
from the network will generically converge to an endemic
equilibrium; limt→∞ xi(t) = 1−δi/αi if bij = 0 for all j and
xi(0) 6= 0. Similarly, one can also use Eq. (9) to determine
those nodes vj for which decreasing γj will decrease φ.

Remark 1. The conclusions of Proposition 2 and Theo-
rem 2 are different to those of the “patchy” model of (Wang
and Zhao, 2004; Jin and Wang, 2005). We first note that
the analysis of flow impact in (Wang and Zhao, 2004; Jin
and Wang, 2005) is limited only to the n = 2 node case,
whereas we consider arbitrary n nodes. In the “patchy”
model, the disease may die out in two disconnected nodes
but persist when there is a flow between the two nodes,
which directly contrasts Proposition 2, Statement (2).

4. CONCLUSION

This paper proposed an SIS networked model with flows
of individuals between the nodes. We showed that a
specific eigenvalue of a matrix of the system parameters
uniquely determines the equilibria and limiting behaviour
of the system. We then investigated the role of certain
parameters assocaited with each node (population) in
changing the limiting behaviour, including the mobility
rates. For future work, we aim to extend our results for
time-delay in system to better reflect real-world travels
between populations.
3 See Lemma 1 for the positivity property.

Appendix A. PROOF OF THEOREM 1

For simplicity, we shall analyse the system as expressed in
Eq. (4), first focusing on the existence and uniqueness of
equilibria. Observe that any equilibrium x∗ must satisfy

(−U + M −AX∗)x∗ = 0n. (A.1)

Define Q = U −M . If s(−Q) ≤ 0, then Q is nonnegative
stable, i.e. real part of every eigenvalue of Q is nonnegative.
According to Lemma 2, this is equivalent to saying that
Q is an irreducible M -matrix. Suppose to the contrary,
we have s(−Q) ≤ 0 and x∗ 6= 0n is an equilibrium of
Eq. (3). Then, AX∗ is nonnegative diagonal with at least
one positive entry. According to (Qu, 2009, Theorem 4.31),
Q + AX∗ is a nonsingular M -matrix, which implies that
there does not exist a nonzero x∗ satisfying Eq. (A.1),
and thus creating a contradiction. We have proved that
s(−U + M) ≤ 0 is sufficient for 0n to be the unique
equilibrium of Eq. (3). To prove necessity, we need only
to prove that there exists at least one endemic equilibrium
if s(−U + M) > 0, which we shall now address.

Using the approach of (Lajmanovich and Yorke, 1976,
Lemma 4.1), it can be shown that Eq. (3) has at least one
endemic equilibrium if s(−U+M) > 0, with Proposition 1
indicating that it is in Int(Ξn). Detailed steps are omitted
here due to space limitations. We prove that the endemic
equilibrium is unique by contradiction. Suppose to the
contrary that 1n � k � 0n and 1n � h � 0n are
two distinct endemic equilibria of Eq. (3). Since k 6= h,
we assume without loss of generality, that h1 > k1 and
h1/k1 ≥ hi/ki for all i ∈ I. As below Eq. (4), let
mij = γjwijNj/Ni. Then, one obtains from Eq. (2) that
−(δ1+γ1)h1+α1(1−h1)h1+

∑n
j>1m1jhj = −(δ1+γ1)k1+

α1(1− k1)k1 +
∑n
j>1m1jkj = 0. This yields

− (δ1 + γ1)k1 + α1(1− h1)k1 +

n∑
j>1

m1j
hjk1
h1

= −(δ1 + γ1)k1 + α1(1− k1)k1 +

n∑
j>1

m1jkj . (A.2)

The assumption that h1 > k1 and h1/k1 ≥ hi/ki for all i
implies that (1− h1)k1 < (1− k1)k1 and hik1/h1 ≤ ki for
all i. This in turn implies that

α1(1− h1)k1 +

n∑
j>1

m1j
hjk1
h1

< α1(1− k1)k1 +

n∑
j>1

m1jkj ,

which contradicts Eq. (A.2); there exists a unique endemic
equilibrium x̄ ∈ Int(Ξn) if s(−U + M) > 0.

Convergence when s(−U +M) ≤ 0: Since Q = U −M is
an irreducible M -matrix, there exists a positive diagonal
P such that T , PQ+Q>P is positive definite or positive
semidefinite according as s(Q) > 0 or s(Q) = 0 (see
(Berman and Plemmons, 1979, Theorem 2.3) and (Qu,
2009, Theorem 4.31), respectively).

Consider the candidate Lyapunov function V (x(t)) =
1
2x(t)>Px(t), being positive definite and decrescent in Ξn.
Differentiating V with respect to t along the trajectory of
Eq. (3) yields

V̇ (x(t)) = −x(t)>
(1

2
T + PAX(t)

)
x(t). (A.3)
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Because P and A are positive diagonal matrices, and
X = diag(x1, . . . , xn), there holds x>PAXx ≥ 0 on
the compact set Ξn, with equality if and only if x = 0n.
This implies that V̇ (x(t)) is negative definite in Ξn. The
Lyapunov Theorem (Sastry, 1999, Theorem 5.16) yields
that x = 0n is asymptotically stable for all x(0) ∈ Ξn.

We now prove the exponential stability for s(−U +M) <
0. Let λmin(·) and λmax(·) denote the smallest and largest
eigenvalue of a symmetric matrix. When s(−U + M) <
0, one has λmin(P )‖x‖2 ≤ V (x) ≤ λmax(P )‖x‖2 and

V̇ (x)) ≤ − 1
2λmin(T )‖x‖2 for all x ∈ Ξn. It follows from

(Sastry, 1999, Theorem 5.17) that x = 0n is exponentially
stable with domain of attraction Ξn, with a rate of
convergence of at least λmin(T )/(2λmax(P )).

Convergence when s(−U + M) > 0: Let x̄ ∈ Int(Ξn)
be the unique endemic equilibrium of Eq. (3). Define
the coordinate transform y(t) = x(t) − x̄, and let Y =
diag(y1, . . . , yn) and Q̄ = U −M + AX̄. Observe that

ẏ(t) = −(U −M)(x(t) + x̄)−A(Y (t) + X̄)(y(t) + x̄)

= −(Q̄ + AX̄)y(t)−AY (t)y(t), (A.4)

with the last equality holding because Eq. (A.1) yields
−Q̄x̄ = 0n. Since −Q̄ is a Metzler matrix, and because we
have −Q̄x̄ = 0n with x̄� 0n, Lemma 1 yields s(Q̄) = 0.
Lemma 2 establishes that Q̄ ∈ Z is a singular M -matrix,
and Q̄ is irreducible because M is irreducible. According
to (Qu, 2009, Theorem 4.31), L , Q̄ + AX̄ is a non-
singular M -matrix. According to (Berman and Plemmons,
1979, Theorem 2.3), there exists a positive diagonal matrix

P such that T , PL + L>P is positive definite.

Define S = Ξn−x̄ as the set of points of Ξn translated from
the origin by x̄. Clearly, S is a positive invariant set of the
transformed system Eq. (A.4), and a simple adjustment to
Lemma 3 will prove that for all y(0) ∈ ∂S\−x̄, there exists
a κ > 0 such that y(κ) ∈ Int(S). Consider the candidate
Lyapunov function V (y(t)) = 1

2y(t)>Py(t), which is
positive definite and decresent in S. Differentiating V with
respect to t along the trajectories of Eq. (A.4), leads to

V̇ (y(t)) = −y(t)>
(
1
2T + PAY (t)

)
y(t). Using the same

arguments as below Eq. (A.3), one can show that 0n
is exponentially stable for the system Eq. (A.4) for all
y(0) ∈ S\−x̄, which in turn implies that limt→∞ x(t) = x̄
exponentially fast for all x(0) ∈ Ξn \ 0n.

It remains to prove that 0n is unstable if s(−U +M) > 0.
The Jacobian of the system in Eq. (3) at x = 0n is given
by J = −U + M . Since s(−U + M) > 0, J is unstable
and by the Linearization Theorem (Sastry, 1999, Theorem
5.42), 0n is an unstable equilibrium of Eq. (3). �
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