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1. INTRODUCTION

Existence of a globally attracting set of a dynamical sys-
tem provides information about the long term behavior of
the system which is rather valuable for design of practical
systems in the framework of mathematical systems and
control theory. The study of properties of this attracting
set is of interest for applications and is a challenging
problem from the mathematical viewpoint, especially in
the case of nonlinear infinite dimensional systems. In par-
ticular its stability and robustness properties need to be
studied for any practical system. It in known that in case
of a finite dimensional system the dissipativity guarantees
the existence of a global attractor, that is an invariant
and globally attracting compact set. The existence of such
a set in the infinite dimensional case needs some additional
conditions Temam (1988), Chepyzhov et al. (2002). It is
known that a dissipative continuous dynamical system
possess a global attractor if it is asymptotically compact.
The global attractor has such important for applications
properties like stability and robustness Robinson (2001).
These properties remain valid even in the case of sys-
tems with non-unique solutions of the Cauchy problem
Kasyanov (2011), Kapustyan et al. (2014), Gorban et al.
(2014), Kalita et al. (2014), da Costa et al. (2017).

However in some practical situations the dynamics is not
always continuous due to such effects as triggered events,
collisions and other instantaneous actions causing impul-
sive transitions of states. Qualitative analysis of systems
with impulsive perturbations has been studied by many
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authors during last three decades (see, e.g., the mono-
graphs Lakshmikantham et al. (1989), Samoilenko et al.
(1995), Akhmet (2005) and references therein). One of
the most important in applications (and the least stud-
ied) class of such systems is impulsive dynamical systems
(impulsive DS), i.e., autonomous systems whose trajec-
tories undergo impulsive perturbations at the moments
of intersection of the trajectories with a certain surface
in the phase space. Stability questions for impulsive DS
in finite-dimensional spaces were investigated in Kaul
(1994), Bonotto (2007), Ciesielski (2004), Dashkovskiy
et al. (2013), Perestyuk et al. (2016), Feketa et al. (2018).

The main problem we face when we try to expand the
global attractor theory to impulsive DS is the lack of
continuous dependence on the initial data. To overcome
this difficulty two approaches exist in the literature. One
approach has been proposed and developed in Bonotto
et al. (2013)-Bonotto et al. (2019). The key idea of those
papers is to keep the invariance property in the definition
of attractor. This approach allows to construct theory of
attractors for impulsive DS similar to the classical one, but
it requires additional information about trajectories in a
neighborhood of the impulsive set and causes significant
restrictions on their behavior.

Another approach was developed in Perestyuk et al.
(2016), Kapustyan et al. (2018) and uses the notion of
uniform attractor, commonly used for non-autonomous
problems Chepyzhov et al. (2002), in particular, for sys-
tems with impulses at fixed time instants. An advantage
of this approach is that we work with a compact uniformly
attracting set without any restrictive assumptions on the
impulsive semiflow and, after that, consider the behavior
of trajectories only in the neighborhood of the attractor.
In Dashkovskiy et al. (2018) natural assumptions on dissi-
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pative multi-valued impulsive semiflow G were proposed,
which guarantee invariance of non-impulsive part of the
uniform attractor Θ, i.e.,

∀ t ≥ 0 G(t,Θ \M) = Θ \M,

where M is an impulsive set. It is also possible to prove
that Θ \M is a uniformly attracting set (see Theorem 7
below). Under another assumption, which is more suitable
for linear systems, this fact was proved in Bonotto et al.
(2019).

Having such properties the next question naturally arises:
in what sense Θ\M is stable with respect to the impulsive
semiflow G. The initial discussion of this question started
in Kapustyan et al. (2018), where for the single-valued
impulsive semiflow G the following stability property was
introduced

D+(Θ \M) ⊂ Θ \M, (1)

where

D+(A) :=
⋃
x∈A
{y | y = limG(tn, xn), xn → x, tn ≥ 0}

is G-prolongation of A Bhatia et al. (2002).

In the present paper we obtain the invariance and stability
properties of the uniform attractor for a wider class of
systems then in Bonotto et al. (2013)-Bonotto et al.
(2019), Kapustyan et al. (2018)-Dashkovskiy et al. (2019)
under verifiable forward in time conditions, that allows
to avoid conditions used Bonotto et al. (2016), Bonotto
et al. (2019) which seem to be more restrictive then
ours. We also apply the obtained results to a weakly
non-linear parabolic problem without uniqueness with
impulsive perturbation characterized by semi-norms in the
phase space.

We present our results without proofs, since they are
rather lengthy and will not fit to the size limitations. Hence
the complete proofs will be published elsewhere.

2. SETTING OF THE PROBLEM

We consider the following impulsive system

du

dt
= Au+ F (u), u 6∈M, (2)

u|t=0 = u0 ∈ X, (3)

4u|u∈M ∈ Iu− u, (4)

where (2), (3) is an evolution system in the infinite-
dimensional phase space X for which the uniqueness of
solutions is not assumed,4u(t) = u(t+0)−u(t−0) denotes
the instantaneous change of the state variable u, and M is
some subset of the phase space X. The solution u = u(t) to
the problem (2)-(4) is right-continuous function satisfying
(2) ∀t 6= τ , where τ is defined by the equation u(τ −
0) ∈ M , and jumps to the state u(τ) ∈ Iu(τ − 0) at the
moment of time τ , where I : M 7→ X is a given (maybe,
multi-valued) map. The set M is called impulsive set. The
map I is called impulsive map, points of the set IM are
called impulsive points.

Assume that the problem (2)-(4) generates a multi-valued
impulsive semiflow G : R+ × X 7→ P (X) which has a
uniform attractor Θ ⊂ X (see Definitions below). It is

known that in general case Θ is neither invariant nor
stable with respect to impulsive semiflow G Kapustyan
et al. (2018). In Dashkovskiy et al. (2018) it was proved
that some continuous properties of the function u 7→ s(u),
where s(u) ∈ (0,+∞] is the first impulsive moment for u,
can guarantee invariance properties of Θ \M . In the first
part of the present paper we show that the same properties
guarantee that Θ \ M is stable in the sense (1). In the
second part of the paper we apply the obtained results to
the following weakly non-linear parabolic problem

∂u

∂t
= a∆u− b∆v + εf1(u, v),

∂v

∂t
= b∆u+ a∆v + εf2(u, v),

u|∂Ω = v|∂Ω = 0,

(5)

on a bounded domain Ω ⊂ Rn, where ε > 0 is a small
parameter, b ∈ R, a > 0, nonlinear functions fi : R ×
R→ R, i = 1, 2 are continuous and bounded, but may be
not smooth. Solutions of (5) have jumps in the state space
X = L2(Ω)× L2(Ω) after reaching the impulsive set

M =
{
z =

(
u
v

)
∈ X | (u, ψ)2 + (v, ψ)2 = γ,

}
(6)

where γ > 0, ψ is an eigenvector of −∆ in H1
0 (Ω).

We will show that for a wide class of multi-valued impul-
sive maps I : M 7→ X the problem (5),(6) generates a
multi-valued impulsive semiflow which possess a uniform
attractor and that this attractor is stable in the sense of
(1).

3. ATTRACTORS OF M-SEMIFLOWS AND THEIR
STABILITY

Let (X, ρ) be a complete metric space, P (X) (β(X)) be
the set of all non-empty (non-empty bounded) subsets of
X, and for any A,B ∈ P (X) we denote

dist(A,B) = sup
x∈A

inf
y∈B

ρ(x, y),

Oδ(A) = {x ∈ X | dist(x,A) < δ}.

Definition. [Kapustyan et al. (1999)], [Valero et al. (2007)]
A multi-valued map G : R+×X → P (X) is called a multi-
valued semiflow (m-semiflow) if
1) ∀x ∈ X G(0, x) = x;
2) ∀x ∈ X ∀t, s ≥ 0 G(t+ s, x) ⊂ G(t, G(s, x)).

The m-semiflow is called strict if in 2) the equality takes
place.

Definition. A non-empty compact subset Θ ⊂ X is called
a uniform attractor of the m-semiflow G if Θ is uniformly
attracting set, i.e.,

∀ B ∈ β(X) dist(G(t, B),Θ)→ 0, t→∞
and Θ is minimal set among all closed uniformly attracting
sets.

Lemma 1. [Dashkovskiy et al. (2017)] Assume that the m-
semiflow G satisfies the dissipativity condition:

∃B0 ∈ β(X) ∀B ∈ β(X) ∃T = T (B) ≥ 0
∀t ≥ T G(t, B) ⊂ B0.

(7)

Then G has a uniform attractor Θ iff G is asymtotically
compact, i.e., for every tn ↗∞, B ∈ β(X)

every sequence {ξn ∈ G(tn, B)} is precompact in X.(8)
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Moreover, under the condition (7) it holds that

Θ = ω(B0) :=
⋂
τ>0

⋃
t≥τ

G(t, B0). (9)

Note that we do not assume any continuity properties for
the map G(t, ·). Therefore, in the definition of attractor
we require minimality condition instead of the invariance
property. On the other hand, if G possess a global attrac-
tor, i.e., if there exists a compact uniformly attracting set
Θ1 ⊂ X such that Θ1 ⊂ G(t,Θ1) ∀t ≥ 0 then, clearly, Θ1

is minimal among all closed uniformly attracting sets. The
converse statement is true under the following additional
assumption

∀ t > 0 the map x 7→ G(t, x) has closed graph. (10)

Indeed, if Θ is a uniform attractor for G, then from Lemma
1 follows that Θ = ω(B0) with B0 = O1(Θ). Therefore,
for any ξ ∈ Θ there is a sequence ξn ∈ G(tn, B0) with
tn → ∞, such that ξ = limn→∞ ξn. So, for every t > 0
for sufficiently large n we have ξn ∈ G(t, ηn), where
ηn ∈ G(tn− t, B0) and due to Lemma 1 up to subsequence
ηn → η ∈ Θ. Hence from (10) follows ξ ∈ G(t, η) and,
finally, Θ ⊂ G(t,Θ).

The following result is a simple generalization of the well-
known fact in the single-valued case (Bhatia et al., 2002,
Chapter 5), Ciesielski (2004):

Lemma 2. Let A ⊂ X be a compact set and let

∀xn → x ∈ A, ∀tn ≥ 0

every sequence {ξn ∈ G(tn, xn)} be precompact. (11)

Then the following stability conditions are equivalent:

1) ∀ε > 0 ∀x ∈ A ∃δ > 0 ∀t ≥ 0 G(t, Oδ(x)) ⊂ Oε(A);

2) ∀ε > 0 ∃δ > 0 ∀t ≥ 0 G(t, Oδ(A)) ⊂ Oε(A);

3) ∀x ∈ A ∀y 6∈ A ∃δ > 0 ∀t ≥ 0 G(t, Oδ(x))∩Oδ(y) = ∅;
4) A ⊃ D+(A) := {ξ | ξ = lim ξn, ξn ∈ G(τn, xn), xn →
x, τn ≥ 0, x ∈ A}.
Lemma 3. Let Θ be uniform attractor of a strict m-
semiflow G and

∀xn → x ∈ Θ ∀tn → t ≥ 0 ∀ ξn ∈ G(tn, xn)
it holds up to subsequence ξn → ξ ∈ G(t, x).

(12)

Then Θ is stable in the sense of 1)–4).

Property (12) is crucial for the classical stability. As it was
shown in Kapustyan et al. (2018) that even for a simple
impulsive semiflow, when (12) does not hold, the uniform
attractor does not satisfy any of the properties 1)–4).

However, many examples prompt that under reasonable
assumptions the embedding

D+(Θ \M) ⊂ Θ \M, (13)

which is very close to the classical stability property 4)
can be expected. In the next section this property will be
proved for general classes of impulsive m-semiflows.

4. ATTRACTORS OF IMPULSIVE M-SEMIFLOWS

Now we briefly describe a special subclass of m-semiflows
called impulsive m-semiflows. The most of facts and con-
structions are taken from Dashkovskiy et al. (2018).

Let K be some family of maps ϕ : [0,+∞) → X and the
following properties hold:

K0) every ϕ ∈ K is continuous on [0,+∞);

K1) ∀x ∈ X ∃ϕ ∈ K : ϕ(0) = x;

K2) ∀ϕ ∈ K ∀s ≥ 0 ϕ(·+ s) ∈ K.

Our impulsive m-semiflow G will be constructed with the
help of the family of maps K, a given impulsive set M ⊂ X
and a given impulsive map I : M → P (X). We denote it
by G = (K,M, I). It means that a phase point moves along
trajectories of K and when it meets the set M , it jumps
onto a new position in the set IM .

We denote
Kx = {ϕ ∈ K|ϕ(0) = x}.

For x ∈M we denote by x+ some element of Ix.

For ϕ ∈ K we denote M+(ϕ) =
⋃
t>0

ϕ(t) ∩M .

For ”well-posedness” of impulsive problem we require the
following conditions:

M ⊂ X is a closed set; (14)

I : M 7→ P (X) is a closed-valued map; (15)

M ∩ IM = ∅; (16)

∀x ∈M ∀ϕ ∈ Kx ∃τ = τ(ϕ) > 0
∀t ∈ (0, τ) ϕ(t) 6∈M.

(17)

Remark. Unlike conditions in Definition 2.7 from Bonotto
et al. (2019) we do not suppose any conditions on ϕ
before its intersection with M. It allows us to consider a
wider class of applications including non-linear evolution
problems.

Lemma 4. (Dashkovskiy et al. (2018)). If conditions (14)-
(17) hold, then for every ϕ ∈ K either M+(ϕ) = ∅ or
∃ s∗ > 0 such that

ϕ(s∗) ∈M and ϕ(t) /∈M ∀t ∈ (0, s∗). (18)

According to (18) we can define the following function
s : K → (0,+∞]

s(ϕ) =

{
s∗, if M+(ϕ) 6= ∅,
+∞, if M+(ϕ) = ∅. (19)

Let us construct an impulsive trajectory ϕ̃ starting from
x0 ∈ X. Let ϕ0 ∈ Kx0

. If s(ϕ0) = ∞, then we have non-
impulsive case:

ϕ̃(t) = ϕ0(t) ∀t ≥ 0.

Otherwise we set s0 := s(ϕ0) > 0 and

ϕ̃(t) =

{
ϕ0(t), t ∈ [0, s0),
x+

1 ∈ Iϕ0(s0), t = s0.

Let ϕ1 ∈ Kx+
1

. If s(ϕ1) = ∞, then ϕ̃(t) = ϕ1(t −
s0) ∀t ≥ s0. In the other case for s1 := s(ϕ1) > 0 we
define

ϕ̃(t) =

{
ϕ1(t− s0), t ∈ [s0, s0 + s1),
x+

2 ∈ Iϕ1(s1), t = s0 + s1.

Continuing this process we obtain an impulsive trajec-
tory ϕ̃ with finite or infinite number of impulsive points
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{x+
n }n≥1 ⊂ IM , corresponding durations between im-

pulses {sn}n≥0 ⊂ (0,∞) and functions {ϕn}n≥0 ⊂ K.

If ϕ̃ has infinite number of jumps, then it is defined for
n ≥ 0 and t ≥ 0 by the formula

ϕ̃(t) =

{
ϕn(t− tn), t ∈ [tn, tn+1),
x+
n+1 ∈ Iϕn(tn+1 − tn), t = tn+1,

(20)

where t0 = 0, tn+1 :=
∑n
k=0 sk.

By K̃x we denote the set of all impulsive trajectories
starting from x ∈ X and assume that every impulsive
trajectory is defined on [0,+∞), i.e.,

∀x ∈ X every ϕ̃ ∈ K̃x is defined on [0,+∞). (21)

Assumption (21) means that for every impulsive trajectory
ϕ̃ either the number of its impulsive points is finite

(including the non-impulsive case) or
∞∑
n=0

sn = ∞. This

excludes Zeno type solutions (see Dashkovskiy and Feketa
(2018) for stability investigations of such solutions).

Remark. According to our construction we have

∀x ∈ X ∀ϕ̃ ∈ K̃x ∀t > 0 ϕ̃(t) 6∈M. (22)

Lemma 5. (Dashkovskiy et al. (2018)). Under conditions
K0)- K2), (14)-(17), (21) the following property holds:

∀x ∈ X ∀ϕ ∈ K̃x ∀s ≥ 0 ϕ(·+ s) ∈ K̃ϕ(s). (23)

In particular, a multi-valued map G : R+ × X → P (X)
defined by the formula

G(t, x) = {ϕ̃(t)|ϕ̃ ∈ K̃x} (24)

is an m-semiflow. If, additionally, ∀ϕ,ψ ∈ K, ∀s > 0 such
that ϕ(0) = ψ(s) we have

θ(p) :=

{
ψ(p), p ∈ [0, s),
ϕ(p− s), p ≥ s ∈ K, (25)

then the m-semiflow G is strict.

Remark. In the sequel we will say that the problem (2)-
(4) generates an impulsive m-semiflow (by formula (24)) if
solutions of (2) generate a set K of maps ϕ : [0,+∞) 7→ X
satisfying K0)−K2) and for a given set M ⊂ X and map
I : M 7→ P (X) the conditions (14)-(17), (21) are satisfied.

Let us additionally assume that

K3) ∀xn → x ∀ϕn ∈ Kxn
∃ϕ ∈ Kx such that up to

subsequence ϕn → ϕ uniformly on every [a, b] ⊂ R+.

Now we are ready to discuss the invariance property of
uniform attractors for impulsive m-semiflows. Such results
has firstly appeared in Bonotto et al. (2015) for single-
valued impulsive semiflows with ”tube conditions”. For
multi-valued case it was proved in Dashkovskiy et al.
(2018), but under rather restrictive assumptions about
non-impulsiveness of the limit of non-impulsive trajecto-
ries (see Bonotto et al. (2019) for detailed comparison
analysis and examples). Here we use another conditions
which can be easily verified in applications. More precisely,
according to K3) let us consider

x ∈ Θ \M, xn → x, ϕn ∈ Kxn
and ϕ ∈ Kx such that

∀t ≥ 0 ϕn(t)→ ϕ(t).

In Dashkovskiy et al. (2018) the following assumption was
used

s(ϕ) =∞, if s(ϕn) =∞ for infinitely many n ≥ 1. (26)

Now we will use the following assumption

if s(ϕn) =∞, tn →∞, and ψn(t) = ϕn(t+ tn), t ≥ 0,

then for ψ(t) = lim
n→∞

ψn(t) we have s(ψ) =∞. (27)

Lemma 6. Assumption (26) implies (27).

Lemma 6 shows that the older assumption (26) is stronger
then the new one (27). Let us consider an example illus-
trating the difference between these two assumptions

Example.[Dashkovskiy et al. (2018),Bonotto et al. (2019)]
For λ > 0 let us consider the impulsive system{

ẋ = −λx,
ẏ = −λy, (28)

M = {x ≥ 0, y ≥ 0, x+ y = 1}, (29)

for z = (x, y) ∈M we define Iz = 2z. (30)

Such a system generates an impulsive semiflow which has
uniform attractor

Θ = {e−λτ (c1, c2) | c1 ≥ 0, c2 ≥ 0, c1 + c2 = 2,

τ ∈ [0,
1

λ
ln 2]} ∪ (0, 0)

Let us consider (− 1
n , 2)→ (0, 2) ∈ Θ \M . Then

ϕn(t) = (− 1

n
e−λt, 2e−λt)→ ϕ(t) = (0, 2e−λt),

s(ϕn) =∞, s(ϕ) =
1

λ
ln 2

So, condition (26) does not take place. On the other hand,
for tn →∞

ϕn(tn)→ (0, 0) ∈ Θ, ψ(t) ≡ (0, 0), s(ψ) =∞

Theorem 7. Let conditions K0)-K3), (14)-(17), (21) be
satisfied and the impulsive map I : M → P (X) be
compact-valued and upper-semicontinuous. Let Θ be a
uniform attractor of a strict impulsive m-semiflow G =
(K,M, I). Let the function s : K → (0,∞] defined in (19)
satisfy the following property:

∀ x ∈ IM ∀ ϕ ∈ Kx we have s(ϕ) <∞, (31)

and let the following implications hold true:

(i) For xn → x ∈ Θ \M, ϕn ∈ Kxn
and ϕ ∈ Kx with

ϕn(t)→ ϕ(t) ∀t ≥ 0,

s(ϕn) <∞, n ∈ N ⇒ s(ϕ) <∞, s(ϕn)→ s(ϕ);(32)

s(ϕn) =∞, n ∈ N, tn →∞,
ψn(t) := ϕn(t+ tn), t ≥ 0,
ψ(t) := limψn(t)

}
⇒ s(ψ) =∞. (33)

(ii) For xn → x ∈ Θ ∩M, ϕn ∈ Kxn
and ϕ ∈ Kx with

ϕn(t)→ ϕ(t) ∀t ≥ 0, follows that up to subsequence

either ∀ n s(ϕn) =∞ or s(ϕn)→ 0. (34)

Then Θ is invariant in the sense that the following
properties hold:

∀ t ≥ 0 Θ \M ⊂ G(t,Θ); (35)
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∀ t ≥ 0 G(t,Θ \M) ⊂ Θ \M. (36)

Remark. Condition (31) means that if an impulsive
trajectory has one impulsive point, then it has infinite
number of impulsive points. In particular, in condition (33)
we have

s(ϕn) =∞ ⇔ s(ψn) =∞.

Remark. If we additionally assume that

for arbitrary {xn} ⊂ B0, ϕn ∈ Kxn tn →∞
on some subsequence ϕn(tn)→ ξ 6∈M, (37)

then we can state the equality

∀ t ≥ 0 G(t,Θ \M) = Θ \M. (38)

Remark. Unfortunately, only under conditions of Theorem
7, even with additional assumption (37), we cannot ex-
pect stability property (13). Indeed, in the example, given
above, all conditions of Theorem 7 are fulfilled and, more-
over, every non-impulsive trajectory tends to (0, 0) 6∈ M
as t→∞, so (37) is also fulfilled. But we can see that for
zn := (− 1

n , 2)→ z := (0, 2) ∈ Θ \M we have

G(t, zn) = (− 1

n
e−λt, 2e−λt)→ (0, 2e−λt).

Now taking t > 1
λ ln 2, we conclude that

D+(Θ \M) 6⊂ Θ.

To guarantee the stability property, we have to impose the
condition (26).

Theorem 8. Assume that all conditions of Theorem 7 are
satisfied. Let the following implication be satisfied

xn → x ∈ Θ \M, ϕn ∈ Kxn

ϕ ∈ Kx with ϕn(t)→ ϕ(t) ∀t ≥ 0
s(ϕn) =∞ for infinitely many n

}
⇒ s(ϕ) =∞.(39)

Then the following properties hold:

∀ t ≥ 0 G(t,Θ \M) = Θ \M, (40)

Θ = Θ \M, (41)

D+(Θ \M) ⊂ Θ \M. (42)

Remark. The equality (41) means in fact that Θ \M is
uniformly attracting set. It should be mentioned that this
property was firstly proved in Bonotto et al. (2019) under
some different conditions.

5. APPLICATION TO IMPULSIVE PARABOLIC
SYSTEM WITHOUT UNIQUENESS

Let Ω ⊂ Rn, n ≥ 1 be a bounded domain. For un-
known scalar valued functions u(t, x), v(t, x) defined on-
(0,+∞)×Ω we consider the following nonlinear parabolic
problem: 

∂u

∂t
= a∆u− b∆v + εf1(u, v),

∂v

∂t
= b∆u+ a∆v + εf2(u, v),

u|∂Ω = v|∂Ω = 0,

(43)

where ε > 0 is a small parameter, a > 0, b ∈ R, nonlinear
functions fi, i = 1, 2 are continuous (smoothness is not
required) and boundeed, that is

∃C > 0 ∀u, v ∈ R |f1(u, v)|+ |f2(u, v)| ≤ C. (44)

We consider (43) in the distributional sense in the follow-

ing phase space X = L2(Ω)× L2(Ω), where for z =

(
u
v

)
we put ‖z‖ =

√
‖u‖2 + ‖v‖2, where ‖ · ‖ and (·, ·) de-

note the usual norm and scalar product in L2(Ω). It is
known, (see for example Chepyzhov et al. (2002)), that
for every ε > 0 and z0 ∈ X there exists at least one
(weak) solution z ∈ C([0,+∞);X) to the problem (43)
satisfying z(0) = z0. Thus, problem (43) generates a family
of continuous maps

Kε = {z : [0,+∞)→ X | z is a solution of (43)},
which satisfies K0)–K3).

Let {ψi}∞i=1 be an orthonormal basis in L2(Ω) such that

−∆ψi = λiψi, ψi ∈ H1
0 (Ω). (45)

We consider the following impulsive problem for fixed
numbers µ > 0, γ > 0:

M =
{
z =

(
u
v

)
∈ X | (u, ψ1)2 + (v, ψ1)2 = γ

}
; (46)

M ′ =
{
z =

(
u
v

)
∈ X|(u, ψ1)2 + (v, ψ1)2 = γ(1 + µ)

}
;(47)

I : M 7→ P (M ′) is compact-valued upper semicontinu-

ous map, such that for z =
∑∞
i=1

(
ci
di

)
ψi ∈M

Iz ⊆
{( c1

d1

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi

∣∣∣ c21 + d
2

1 = γ(1 + µ)
}
.(48)

Remark. As a particular example we can consider the
following continuous single-valued map I : M 7→ M ′

defined by

I

( ∞∑
i=1

(
ci
di

)
ψi

)
=

(√
1 + µc1√
1 + µd1

)
ψ1 +

∞∑
i=2

(
ci
di

)
ψi.

Theorem 9. For sufficiently small ε the problem (43),
(46), (48) generates an impulsive m-semiflow Gε : R+ ×
X → P (X), which possess a uniform attractor Θε satisfy-
ing the following properties

∀ t ≥ 0 Gε(t,Θε \M) = Θε \M, (49)

Θε = Θε \M, (50)

D+(Θε \M) ⊂ Θε \M. (51)

Remark. Statement of Theorem 9 remains true for a more
general class of impulsive parameters

M =
{
z =

(
u
v

)
∈ X|

p∑
i=1

(
αi(u, ψi)

2 + βi(v, ψi)
2
)

= γ
}
,

where αi > 0, βi > 0, p ∈ N are arbitrary numbers,
I : M 7→ P (X) is compact-valued upper semicontinuous

impulsive map, such that for z =
∑∞
i=1

(
ci
di

)
ψi ∈M

Iz ⊆
{ p∑
i=1

(
ci
di

)
ψi +

∞∑
i=p+1

(
ci
di

)
ψi

}
,
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where
p∑
i=1

(αic
2
i + βid

2

i ) = γ(1 + µ).

6. CONCLUSION

Our work contributes to the development of the theory of
global attractors for infinite dimensional impulsive dynam-
ical systems. This requires additional restrictions on the
systems properties compared with the case of continuous
dynamics, since for impulsive systems a global attractor in
the usual sense does not exist in many interesting cases.
In contrary to rather restrictive conditions imposed in
Bonotto et al. (2013)-Bonotto et al. (2019) our approach
leads to weaker restrictions that are easier to be verified.
The idea of this approach is to identify, whether a system
possess a weaker type of an attracting set (uniform at-
tractor) and to use its existence as an additional property
of the studied system. This allows us to obtain result
similar to Bonotto et al. (2013)-Bonotto et al. (2019)
and additionally to study the stability properties of the
attracting set.
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