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Abstract: In this paper, a distributed diffusion unscented Kalman filtering algorithm based on
covariance intersection strategy (DDUKF-CI) is proposed for object tracking. By virtue of the
pseudo measurement matrix, the standard unscented Kalman filtering (UKF) is transformed
to the information form that can be fused by the diffusion strategy. Then, intermediate
information from neighbors are fused based on the diffusion framework to attain better
estimation performance. Considering the unknown correlations in sensor networks, covariance
intersection (CI) strategy is combined with the diffusion algorithm. Moreover, it is proved that
the estimation error of the proposed DDUKF-CI is exponentially bounded in mean square
using the stochastic stability theory. Finally, the performances of the proposed algorithm and
the weighted average consensus unscented Kalman filtering (CUKF) are compared in a target
tracking problem with a sensor network.
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1. INTRODUCTION

In recent years, wireless sensor networks have attracted
considerable attention on account of a wide range of en-
gineering applications, such as collaborative surveillance,
environment monitoring, target tracking and image pro-
cessing Zhao and Guibas (2004). Distributed state es-
timation (DSE) is one of the fundamental problems in
wireless sensor networks, which can be performed in either
consensus or diffusion setting. However, consensus based
methods impose timing constraints in that the consensus
step should be executed faster than Kalman filtering op-
eration in the network because of the consensus iteration
Talebi and Werner (2018). When the fusion step is required
to be operated on the same time scale as the Kalman
filtering step, the diffusion strategy is practically more
efficient Jia et al. (2017). Diffusion Kalman filtering was
proposed in Cattivelli and Sayed (2010). The algorithm
utilizes the local Kalman filter in Olfati-Saber (2007) to
compute the prior estimate with the information from
neighbors, then as opposed to the iterative consensus
method, a convex combination of the prior estimates of
the neighbors, was applied. Compared with the consensus
strategy, the diffusion strategy can carry out real-time
fusion with the measurement streaming in and has faster
convergence speed and lower mean-square error Tu and
Sayed (2012). Based on the CI method, Hu et al. (2012)
proposed a diffusion Kalman filtering algorithm that can
⋆ This paper was supported by National Nature Science Foundation
of China (Grant No. 61873031).

guarantee the stability of estimates regardless of the lo-
cally uniform observability by the measurements of its
neighbors. Vahidpour et al. (2019) proposed diffusion al-
gorithms that allow partial exchanging of the entries of the
intermediate estimates among neighbors to reach a trade-
off between estimation accuracy and communication cost.
To avoid sharing raw measurements among neighbors,
Wang et al. (2017) derived an algorithm to calculate the
local estimate only using individual estimates rather than
individual measurements from neighbors. Lorenzo (2014)
enabled the distributed diffusion filtering in the Markov
system.
This paper proposes a novel distributed diffusion nonlinear
filtering algorithm based on CI over a sensor network. The
main contributions are threefold: (1) To the best of our
knowledge, most of the existing literature about diffusion
filtering merely consider the linear system. The diffusion
framework proposed in this paper aims at nonlinear sys-
tems. (2) The common method of proving stability of
the estimation error is to show that the error covariance
matrix recursion converges to the solution of a Lyapunov
equation, which, however, requires strong assumptions
such as the linear time-invariant model. In this paper,
we employ the stochastic stability theory to prove the
stability without these assumptions. (3) Compared with
Hu et al. (2012), we not only consider the nonlinear system
but also prove that the estimation error in this work is
exponentially bounded in the mean square.
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The rest of the paper is outlined as follows: Section 2 in-
troduces the system model and some necessary preliminar-
ies. The DDUKF-CI algorithm is presented in Section 3.
The stability analysis is provided in Section 4. Numerical
simulations are presented to show the effectiveness of the
proposed algorithm in Section 5. Finally, Section 6 gives
the conclusion remarks.

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 System model

A discrete-time dynamic system with an N -sensor network
in which each sensor possesses the capacity of sensing,
communication and computation can be described by{

xk = f(xk−1) +wk−1

zi
k = hi(xk) + vi

k

i ∈ N , (1)

where xk ∈ Rn is the state vector at discrete-time in-
stant k, zi

k ∈ Rm is the measurement vector of the ith
sensor. The process noise wk−1 and ith sensor’s measure-
ment noise vi

k are mutually uncorrelated zero-mean white
Gaussian processes with covariance matrices Qk−1 and
Ri

k, respectively. f : Rn → Rn describes the nonlinear
state transition function and hi : Rn → Rm describes
the nonlinear measurement function of the ith sensor,
respectively.

2.2 Network communication topology

In the following, the network communication topology is
denoted by an undirected graph (N , E), where N denotes
the set of all sensor nodes in the network and E ⊆ N ×N
is the edge set. N = |N |. Node j receiving data from node
i is equivalent to (i, j) ∈ E . Furthermore, for each node
i ∈ N , Ni = {j|(j, i) ∈ E}∪{i} denotes the adjacent nodes
of node i and itself.
The tracking problem investigated in this work is to
estimate the state xk from multiple sensor observations
zi
k using the diffusion strategy.

2.3 Transformation of UKF

The UKF algorithm was summarized in Li et al. (2016).
The equations will be used directly in this paper. In order
to derive the proper form that can be used in the diffusion
framework, we introduce the pseudo measurement matrix
Hi

k Li et al. (2016) defined by

Hi
k =

(
P i
xkzk

)T (
P i
k|k−1

)−1

(2)

According to matrix inversion lemma, it can be derived
that
(P i

k)
−1

=(P i
k|k−1)

−1
+ (P i

k|k−1)
−1

Ki
k((P

i
zkzk

)
−1−

(Ki
k)

T
(P i

k|k−1)
−1Ki

k)
−1(Ki

k)
T
(P i

k|k−1)
−1

=(P i
k|k−1)

−1
+ (Hi

k)
T
(P i

zkzk
−Hi

kP
i
xkzk

)
−1Hi

k

=(P i
k|k−1)

−1
+ (Hi

k)
T
(Ri

k)
−1Hi

k

(3)
where

Ri
k = P i

zkzk
−Hi

kP
i
xkzk

(4)

Next, the equivalent form of Ki
k is given as

Ki
k =P i

xkzk
(P i

zkzk
)
−1

=P i
k((P

i
k|k−1)

−1
+ (Hi

k)
T
(P i

zkzk
−Hi

kP
i
xkzk

)
−1Hi

k)

P i
xkzk

(P i
zkzk

)
−1

=P i
k((Hi

k)
T
+ (Hi

k)
T
(P i

zkzk
−Hi

kP
i
xkzk

)
−1Hi

kP
i
xkzk

)

(P i
zkzk

)
−1

=P i
k(Hi

k)
T
(P i

zkzk
−Hi

kP
i
xkzk

)
−1

(P i
zkzk

−Hi
kP

i
xkzk

+Hi
kP

i
xkzk

)(P i
zkzk

)
−1

=P i
k(Hi

k)
T
(Ri

k)
−1

(5)
Then the estimate can be calculated as

x̂i
k = x̂i

k|k−1 + P i
k(Hi

k)
T
(Ri

k)
−1(zi

k − ẑi
k) (6)

Remark 1. The purpose of this transformation is to make
the UKF possess the same structure as the linear Kalman
filter used in Cattivelli and Sayed (2010) so as to determine
the expression of the quantities that should be exchanged
between neighbours and utilize the diffusion strategy in
the nonlinear system.

3. DISTRIBUTED DIFFUSION UNSCENTED
KALMAN FILTERING BASED ON CI

In this section, the distributed diffusion unscented Kalman
filtering based on CI (DDUKF-CI) is introduced to address
the DSE problem. Before describing the algorithm, the
introduction of a diffusion matrix C ∈ Rn×n is necessary.

C1 = 1 Ci,j = 0 if j ̸= Ni Ci,j ≥ 0 (7)
where 1 is an n × 1 column vector with unit entries and
Ci,j denotes the (i, j) element of matrix C.
Remark 2. The elements of diffusion matrix C represent
the weights used to fuse the estimates and error covariance
matrices among neighboring sensor nodes in the diffusion
strategy.

Based on the transformation of UKF, the DDUKF-CI
algorithm is described below.

4. PERFORMANCE ANALYSIS

4.1 Approximation of UKF

In order to analyze the performance of UKF, we use the
technique in Li et al. (2016) to derive a pseudo system
matrix F i

k−1 and measurement matrix Hi
k for each filter

node. Hi
k is defined by Eq.(2) and F i

k−1 is defined by
F i

k−1 ≜ (P i
xk−1xk|k−1

)T (P i
k−1)

−1 (8)

where P i
xk−1xk|k−1

=
∑2n

s=0 W
s(χi,s

k−1 − x̂k−1)(χ
i,s
k|k−1 −

x̂k|k−1)
T .

Introduce the compensation instrumental diagonal matri-
ces αi

k = diag(α1,i
k , α2,i

k , · · · , αn,i
k ) and βi

k = diag(β1,i
k , β2,i

k ,

· · · , βm,i
k ) to neutralize the approximation error. Then

Eq.(1) can be rewritten as Li et al. (2016){
xk = αi

k−1F i
k−1xk−1 +wk−1

zi
k = βi

kHi
kxk + vi

k, i ∈ N
(9)
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Algorithm 1 DDUKF-CI
Step 1: Initialization

Consider the nonlinear state-space model (1). Start
with x̂i

0 = E(x0) and P i
0 = P0 for all sensors i = 1, . . . , N .

Step 2: Prediction and update steps at each node follow
the standard UKF.

For i ∈ N , calculate the P i
k|k−1, x̂k|k−1, ẑi

k, P i
zkzk

and P i
xkzk

by the corresponding procedures of standard
UKF, respectively.
Step 3: Calculate the Hi

k and Ri
k by Eq.(2) and Eq.(4),

respectively.
Step 4: Incremental update

Si
k =

∑
j∈Ni

(Hj
k)

T (Rj
k)

−1Hj
k

qi
k =

∑
j∈Ni

(Hj
k)

T (Rj
k)

−1zj
k

rik =
∑

j∈Ni
(Hj

k)
T (Rj

k)
−1ẑj

k

(P i
k,loc)

−1 =(P i
k|k−1)

−1 + Si
k

x̂i
k,loc =x̂i

k|k−1 + P i
k,loc(q

i
k − rik)

Step 5: Diffusion update with CI
(P i

k)
−1 =

∑
j∈Ni

Ci,j(P j
k,loc)

−1

xi
k =P i

k

∑
j∈Ni

Ci,j(P j
k,loc)

−1x̂j
k,loc

According to the above formulas, there exist the following
relationships in UKF:

P i
k|k−1 =αi

k−1F i
k−1P

i
k−1(F i

k−1)
Tαi

k−1 +Qk−1 (10)
x̂i
k|k−1 =αi

k−1F i
k−1x̂

i
k−1 (11)

In the fusing procedure, the equations become
Si
k =

∑
j∈Ni

(βj
kH

j
k)

T (Rj
k)

−1βj
kH

j
k (12)

qi
k =

∑
j∈Ni

(βj
kH

j
k)

T (Rj
k)

−1zj
k (13)

(P i
k,loc)

−1 =(P i
k|k−1)

−1 + Si
k (14)

x̂i
k,loc =x̂i

k|k−1 + P i
k,loc(q

i
k − Si

kx̂
i
k|k−1) (15)

(P i
k)

−1 =
∑

j∈Ni
Ci,j(P j

k,loc)
−1 (16)

x̂i
k =P i

k

∑
j∈Ni

Ci,j(P j
k,loc)

−1x̂j
k,loc (17)

Remark 3. The approximation is merely used to analyze
the performance of DDUKF-CI. Algorithm 1 is actually
used in the simulations.

4.2 Preliminaries

Proposition 1. Consider the nonlinear stochastic system
(1). The estimate error x̃i

k = xk−x̂i
k of DDUKF-CI follows

the recursion
x̃i
k =

∑
j∈Ni

Ξi,j
k x̃j

k−1 +
∑

j∈Ni
Φi,j

k wk−1 +
∑

j∈Ni
Ψi,j

k

(18)
where

Ξi,j
k =Ci,jP i

k(P
j
k,loc)

−1(I − P j
k,locS

j
k)α

j
k−1F

j
k−1 (19)

Φi,j
k =Ci,jP i

k(P
j
k,loc)

−1(I − P j
k,locS

j
k) (20)

Ψi,j
k =Ci,jP i

k

∑
l∈Nj

(βl
kHl

k)
T (Rl

k)
−1vl

k (21)
Proof 1. Firstly, Eq.(15) yields

x̃i
k,loc =xk − x̂i

k,loc

=(I − P i
k,locS

i
k)x̃

i
k|k−1 + P i

k,locS
i
kxk − P i

k,locq
i
k

(22)

Substituting Eq.(12) and Eq.(13) into Eq.(22) leads to
x̃i
k,loc =(I − P i

k,locS
i
k)x̃

i
k|k−1 − P i

k,loc

∑
j∈Ni

(βj
kH

j
k)

T

(Rj
k)

−1vj
k

(23)
According to Eq.(16) and Eq.(17), one has

x̃i
k =xk − x̂i

k

=xk − P i
k

∑
j∈Ni

Ci,j(P j
k,loc)

−1x̂j
k,loc

=P i
k

∑
j∈Ni

Ci,j(P j
k,loc)

−1(xk − x̂j
k,loc)

+ [I − P i
k

∑
j∈Ni

Ci,j(P j
k,loc)

−1]xk

=P i
k

∑
j∈Ni

Ci,j(P j
k,loc)

−1x̃j
k,loc

(24)

Substituting Eq.(23) to Eq.(24), we have
x̃i
k =P i

k

∑
j∈Ni

Ci,j(P j
k,loc)

−1[(I − P j
k,locS

j
k)x̃

j
k|k−1

− P j
k,loc

∑
l∈Nj

(βl
kHl

k)
T (Rl

k)
−1vl

k]
(25)

Noting Eq.(11), it can be derived that
x̃j
k|k−1 =xk − x̂j

k|k−1 = αj
k−1F

j
k−1x̃

j
k−1 +wk−1 (26)

Thus,
x̃i
k =

∑
j∈Ni

Ci,jP i
k(P

j
k,loc)

−1(I − P j
k,locS

j
k)α

j
k−1F

j
k−1

x̃j
k−1 +

∑
j∈Ni

Ci,jP i
k(P

j
k,loc)

−1(I − P j
k,locS

j
k)

wk−1 −
∑

j∈Ni
Ci,jP i

k

∑
l∈Nj

(βl
kHl

k)
T (Rl

k)
−1vl

k

(27)

4.3 Mean performance

Theorem 1. The estimates of DDUKF-CI are unbiased,
i.e., for all k = 0, 1, . . . and i = 1, . . . , N ,

E(x̃i
k) = 0 (28)

Proof 2. Taking expectation of both sides of Eq.(27), we
can immediately get
E(x̃i

k) =
∑

j∈Ni
Ci,jP i

k(P
j
k,loc)

−1(I − P j
k,locS

j
k)α

j
k−1F

j
k−1

(29)
E(x̃j

k−1)

Since E(x̃i
0) = 0, we can conclude by the iteration Eq.(29)

that the estimates of DDUKF-CI are unbiased.

4.4 Stability of DDUKF-CI

Prior to analysis, the following assumptions are needed.
Assumption 1. Li et al. (2016) There exist real numbers
β, f , η, h, q, r and β, f , η, h, q, r such that the following
inequalities are satisfied for every k ≥ 0, i ∈ N :

f2I ≤ F i
k(F i

k)
T ≤ f

2
I, h2I ≤ Hi

k(Hi
k)

T ≤ h
2
I

α2I ≤ αi
k(α

i
k)

T ≤ α2I, β2I ≤ βi
k(β

i
k)

T ≤ β
2
I

qI ≤ Qk ≤ qI, rI ≤ Ri
k ≤ rI

(30)

Assumption 2. The error covariances P i
k,loc, P i

k given by
Alg. 1 are uniformly bounded for all k ≥ 0, i.e., there exist
positive scalars ploc, ploc, p and p such that

pIn ≤ P i
k ≤ pIn, p

loc
In ≤ P i

k,loc ≤ plocIn (31)
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Lemma 1. Reif et al. (1999) Assume there is a stochastic
process Vk(ζk) as well as real numbers a,a,µ > 0 and
0 < α ≤ 1 such that

a∥ζk∥2 ≤ Vk(ζk) ≤ a∥ζk∥2 (32)
and

E{Vk+1(ζk+1)|ζk} − Vk(ζk) ≤ µ− αVk(ζk) (33)
are fulfilled. The stochastic process is exponentially
bounded in mean square, i.e.,

E{∥ζk∥2} ≤ a

a
E{∥ζ0∥2}(1−α)k +

µ

a

∑k−1
i=1 (1−α)i (34)

Lemma 2. Battistelli and Chisci (2014) Given an integer
N ≥ 2, N positive definite matrices M1, · · · ,MN , and N
vectors u1, · · · ,uN , the following inequality holds(∑N

i=1 Miui

)T (∑N
i=1 Mi

)−1 (∑N
i=1 Miui

)
≤
∑N

i=1 u
T
i Miui

(35)

Lemma 3. Assume that for k = 0, 1, . . . , Ak, Bk ∈ Rn×n

are invertible matrices sequence, Ak, Bk > 0 and Ak, Bk

are bounded by aIn ≤ Ak ≤ aIn, bIn ≤ Bk ≤ bIn then
there exists a positive scalar 0 < η < 1 such that

(Ak +Bk)
−1 ≤ ηA−1

k (36)
Proof 3. According to matrix inversion lemma, the follow-
ing equality is satisfied

(Ak +Bk)
−1 = A−1

k −A−1
k (A−1

k +B−1
k )−1A−1

k (37)
Assume Eq.(36) holds, i.e.

A−1
k −A−1

k (A−1
k +B−1

k )−1A−1
k ≤ ηA−1

k (38)
Then we can derive the following inequality

ηIn ≥ In − (B−1
k Ak + In)

−1 (39)
Noting that

In − (B−1
k Ak + In)

−1 ≤ In − (b−1a+ 1)−1In ≤ In (40)

Therefore, we can choose 1 − (b−1a + 1)−1 ≤ η ≤ 1 to
satisfy Eq.(36).
Theorem 2. Consider the nonlinear stochastic system (1).
When the Assumptions 1-2 hold, the estimate error x̃i

k =

xk − x̂i
k of DDUKF-CI is exponentially bounded in mean

square for any i ∈ N .
Proof 4. Let p = [p1, p2, · · · , pn]T denote the Perron-
Frobenius left eigenvector of the matrix C, pi is a strictly
positive component and pmin ≤ pi ≤ pmax. Then, we have

pTC = pT (41)
i.e. ∑

j∈Ni
pjCj,i = pi (42)

Consider the following stochastic process:
Vk(x̃k) =

∑
i∈N pi(x̃i

k)
T (P i

k)
−1x̃i

k (43)

Substituting Eq.(27) to Eq.(43), we have
E{Vk(x̃k)|x̃k−1} = ℵk + ℸk + kג (44)

where

ℵk =E{
∑

i∈N pi[P i
k

∑
j∈N Ci,j(P j

k,loc)
−1(In − P j

k,locS
j
k)

αj
k−1F

j
k−1x̃

j
k−1]

T (P i
k)

−1[P i
k

∑
j∈N Ci,j(P j

k,loc)
−1

(In − P j
k,locS

j
k)α

j
k−1F

j
k−1x̃

j
k−1]|x̃k−1}

ℸk =E{
∑

i∈N pi[P i
k

∑
j∈N Ci,j(P j

k,loc)
−1(In − P j

k,locS
j
k)

wk−1]
T (P i

k)
−1[P i

k

∑
j∈N Ci,j(P j

k,loc)
−1

(In − P j
k,locS

j
k)wk−1]|x̃k−1}

kג =E{
∑

i∈N pi[P i
k

∑
j∈N Ci,j

∑
l∈Nj

(βl
kHl

k)
T (Rl

k)
−1

vl
k]

T (P i
k)

−1[P i
k

∑
j∈N Ci,j

∑
l∈Nj

(βl
kHl

k)
T (Rl

k)
−1vl

k]

|x̃k−1}
(45)

Considering the homogeneous recursion has a great influ-
ence on the stability, we focus on ℵk firstly. Substituting
Eq.(16) to ℵk, one gets
ℵk =E{

∑
i∈N pi[

∑
j∈N Ci,j(P j

k,loc)
−1(In − P j

k,locS
j
k)α

j
k−1

F j
k−1x̃

j
k−1]

T [
∑

j∈N Ci,j(P j
k,loc)

−1]−1[
∑

j∈N Ci,j

(P j
k,loc)

−1(In − P j
k,locS

j
k)α

j
k−1F

j
k−1x̃

j
k−1]|x̃k−1}

(46)
According to Lemma 2, one has
ℵk ≤E{

∑
i∈N pi

∑
j∈N (x̃j

k−1)
T (αj

k−1F
j
k−1)

T (In

− P j
k,locS

j
k)

TCi,j(P j
k,loc)

−1(In − P j
k,locS

j
k)

(αj
k−1F

j
k−1)x̃

j
k−1|x̃k−1}

=E{
∑

i∈N pi
∑

j∈N Ci,j(x̃j
k−1)

T (αj
k−1F

j
k−1)

T (In

− Sj
kP

j
k,loc)[(P

j
k,loc)

−1 − Sj
k]α

j
k−1F

j
k−1x̃

j
k−1|x̃k−1}

=E{
∑

i∈N pi
∑

j∈N Ci,j(x̃j
k−1)

T (αj
k−1F

j
k−1)

T (In

− Sj
kP

j
k,loc)(P

j
k|k−1)

−1αj
k−1F

j
k−1x̃

j
k−1|x̃k−1}

≤E{
∑

i∈N pi
∑

j∈N Ci,j(x̃j
k−1)

T (αj
k−1F

j
k−1)

T

(P j
k|k−1)

−1αj
k−1F

j
k−1x̃

j
k−1|x̃k−1}

(47)
According to Lemma 3, there exist a positive real number
0 < η < 1 satisfying
(P j

k|k−1)
−1 ≤ η(αj

k−1F
j
k−1)

−T (P j
k−1)

−1(αj
k−1F

j
k−1)

−1

(48)
Substituting the above inequality into the inequality (47)
yields
ℵk ≤ηE{

∑
i∈N pi

∑
j∈N Ci,j(x̃j

k−1)
T (P j

k−1)
−1x̃j

k−1|x̃k−1}
=ηE{

∑
j∈N pj(x̃j

k−1)
T (P j

k−1)
−1x̃j

k−1|x̃k−1}
=ηVk(x̃k−1)

(49)

Next, the boundedness of ℸk, kג is shown. According to
the expression in Eq.(45), we have

ℸk ≤ Npmaxpp
−2
loc

q ≜ σ

kג ≤ N2pmaxβhrr
−2 ≜ τ

(50)

Combining Eq.(50) and Eq.(49), we finally deduce
E{Vk(x̃k)|x̃k−1} ≤ ηVk−1(x̃k−1) + µ (51)

where µ = σ + τ .
According to Lemma 1, the estimation error of DDUKF-CI
is exponentially bounded in mean square.
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Fig. 1. Topology of Sensor Network

5. SIMULATION RESULTS AND ANALYSIS

In this section, a target localization problem using a sensor
network is simulated to demonstrate the performance of
DDUKF-CI. It aims to locate a target executing a maneu-
vering turn in a two-dimensional space with unknown and
time-varying turn rate Jia et al. (2017) using 10 sensors
As a comparison, CUKF Li et al. (2016) algorithm is also
employed in the simulation. The target dynamics is highly
nonlinear due to the unknown turn rate and trigonometric
terms. The sensor communication topology is shown in
Fig. 1. The kinematics of the target motion can be modeled
by the following nonlinear process equation

Xk+1 =


1

sin(ΩkT )

Ωk
0

cos(ΩkT )− 1

Ωk
0

0 cos(ΩkT ) 0 − sin(ΩkT ) 0

0
1− cos(ΩkT )

Ωk
1

sin(ΩkT )

Ωk
0

0 sin(ΩkT ) 0 cos(ΩkT ) 0
0 0 0 0 1


Xk

+wk

(52)

where Xk = [xk, vx,k, yk, vy,k,Ωk]
T denotes the state vec-

tor at time k. rk = [xk, yk]
T and vk = [vx,k, vy,k]

T are the
position and velocity at time k, respectively, Ωk is the turn
rate at time k, T is the measurement interval. The initial
state is X0 = [1000m; 300m/s; 1000m; 0m/s;−π/60rad/s]T .
wk is the process noise with mean zero and covariance Qk,
where

Qk =


T 3/3 T 2/2 0 0 0
T 2/2 T 0 0 0
0 0 T 3/3 T 2/2 0
0 0 T 2/2 T 0
0 0 0 0 1.75× 10−4T


The diffusion matrix C in DDUKF-CI is chosen by the
Metropolis rule Li et al. (2016).

Ci,j =


1

1 + max {di, dj}
if {i, j} ∈ E

1−
∑

{i,j}∈E C
i,j if i = j

0 otherwise

(53)

where di is the degree of node i.
The measurements are the distance ρ and angle ϑ given
by [

ρik
ϑi
k

]
=

[√
x2
k + y2k

arctan yk

xk

]
+ vi

k (54)

vi
k is the measurement noise of the ith node at time k and

the covariances of vi
k are given as

R1
k = R2

k = R3
k = 100

[
100m2 0

0 10−5rad2

]
,

R4
k = 0.01R1

k, R5
k = 0.7R1

k, R6
k = 0.5R1

k, R7
k = 0.4R1

k,
R8

k = 0.1R1
k, R9

k = 2R1
k and R10

k = 1.5R1
k. The initial

locations and estimates of the 10 sensors are listed in Table
1 and Table 2, respectively.

Table 1. Locations of 10 sensors
Sensors Locations
Sensor1 [−1000,−1000]T m
Sensor2 [−1000, 1000]T m
Sensor3 [1000, 1000]T m
Sensor4 [1000,−1000]T m
Sensor5 [0, 500]T m
Sensor6 [500, 0]T m
Sensor7 [0,−500]T m
Sensor8 [−500, 0]T m
Sensor9 [−2000,−500]T m
Sensor10 [2000, 500]T m

Table 2. Initial estimates
Sensors Initial estimates

Sensor1 r = [1500, 1500]T m
v = [400, 40]T m/s,Ω = −π/20rad/s

Sensor2 r = [900, 800]T m
v = [200, 70]T m/s,Ω = −π/30rad/s

Sensor3 r = [1200, 700]T m
v = [500, 50]T m/s,Ω = −π/10rad/s

Sensor4 r = [700, 900]T m
v = [100, 60]T m/s,Ω = −π/80rad/s

Sensor5 r = [850, 1600]T m
v = [100, 60]T m/s,Ω = −π/50rad/s

Sensor6 r = [600, 500]T m
v = [540, 0]T m/s,Ω = −π/80rad/s

Sensor7 r = [1100, 400]T m
v = [350,−30]T m/s,Ω = −π/30rad/s

Sensor8 r = [830, 100]T m
v = [100, 60]T m/s,Ω = −π/40rad/s

Sensor9 r = [1000, 1200]T m
v = [600, 20]T m/s,Ω = −π/10rad/s

Sensor10 r = [900, 1000]T m
v = [100, 100]T m/s,Ω = −π/70rad/s

In the simulation, the sampling interval T is 1s and the
simulation time is 300s. The above same set of parameters
are used for both CUKF and DDUKF-CI. 50 independent
Monte Carlo simulations with the same conditions are
performed.
The root mean square error (RMSE) of position (PRMSE)
and root mean square error of velocity (VRMSE) are used
as the performance metrics:

PRMSEk

=

√
1

M

∑M
m=1

∑N
i=1

(x̃i
k)

2
m+(ỹi

k)
2
m

N

VRMSEk

=

√
1

M

∑M
m=1

∑N
i=1

(ṽi
x,k)

2
m+(ṽi

y,k)
2
m

N

(55)

where M = 50 is the number of Monte Carlo runs. The
subscript m and k denote the mth Monte Carlo run and
time step k, respectively. The superscript i represents the
ith node. Moreover, the symbol ~ means the deviation
between the true state and the estimate.
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ṽ
y
(m

/
s)

-40

-30

-20

-10

0

10

20
node1

(d) ṽy
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Fig. 4. RMSE of position and velocity

Fig. 2 shows the true trajectory and the estimated tra-
jectory. It can be seen that the proposed algorithm can
achieve satisfying tracking performance. Fig. 3 depicts
the estimation error between the true state xk and the
estimate x̂k of node 1 as a representative (other nodes
perform similarly). Fig. 4 shows the PRMSE and VRMSE.

From Fig. 4, it can be seen that the RMSEs of CUKF
are much larger than DDUKF-CI, and CUKF exhibits
relatively large estimation errors at some time steps.

6. CONCLUSION

This paper proposed a new distributed filtering algo-
rithm in a sensor network by modifying the UKF in the
framework of diffusion and covariance intersection. The
stochastic stability and exponential boundedness of the
estimation error are proved. A target tracking problem is
utilized to demonstrate the performance of the DDUKF-
CI. Compared with the consensus based distributed UKF,
the proposed algorithm can achieve much more accurate
results.
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