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Abstract: A low-complexity anti-windup compensation scheme for linear parameter-varying
(LPV) controllers is proposed in this paper. Anti-windup compensation usually increases
complexity of LPV controllers significantly. A synthesis algorithm is used in this paper that,
unlike conventional algorithms, splits the problem into an observer synthesis and a subsequent
state feedback synthesis. The resulting controller structure is exploited for a novel differential
implementation that allows straightforward incorporation of conventional anti-windup logics.
The method is used to design a pitch-axis flight control law for an unmanned aerobatic
aircraft, where anti-windup compensation is an important practical requirement. Applicability
is demonstrated in nonlinear simulation using a flight-test-validated high-fidelity model.
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1. INTRODUCTION

The dynamics of aircraft vary substantially with environ-
mental conditions, in particular airspeed and air density.
In conventional flight control, gain-scheduling is often used
to acknowledge this dependence. Controllers are designed
using linear techniques for a large number of different
operating points in the entire flight envelope and the
individual control laws are interpolated. This approach is
time consuming and complex. Thus, research efforts were
made during the 1980s and ‘90s to develop methods for
a single, joint design over the entire envelope with con-
troller adaptation taking place automatically. One control
paradigm that arose in this context is linear parameter-
varying (LPV) control. It can be understood as formalized
gain-scheduling with an online adaptation to the current
operating point. As of today, the framework is well devel-
oped with a large body of literature (Becker and Packard,
1994; Wu et al., 1996; Apkarian et al., 1995; Apkarian
and Gahinet, 1995; Bennani et al., 1998) and mature
computational tools (Hjartarson et al., 2015; Balas et al.,
2015). Performance is specified in terms of the induced L2-
norm, providing a natural extension of the widely popular
H∞-control framework. The present paper considers LPV
systems whose state space matrices are arbitrary functions
of the scheduling parameters. This is more general than
LPV systems modeled via lower fractional transformations
(LFT), for which the state space matrices must have a ra-
tional dependence on the scheduling parameters. For LPV
systems with arbitrary parameter dependence, the most
common way of obtaining controllers is solving a semidefi-

nite program (SDP) over a gridded parameter space using
the formulation of Wu et al. (1996). This approach has
three practical issues: 1) The SDP scales badly with the
number of state variables and scheduling parameters. 2)
The controller depends explicitly on the time-derivative
of the scheduling parameters. These parameter variation
rates are often difficult to measure and are neglected in
many application examples in the literature. 3) Including
anti-windup compensation is far from trivial, even though
solutions exist. In particular, methods usually result in
an LPV anti-windup compensator that is as complex as
the corresponding LPV controller (e. g. Lu et al., 2005;
Prempain et al., 2009). A different approach is formulated
by Wu et al. (2000), who introduce the saturation level as
an additional scheduling parameter. This, however, aggra-
vates the first two issues mentioned above.

Very recently, a novel synthesis algorithm for LPV con-
trollers was proposed by Theis and Pfifer (2020). It is
computationally less expensive than the state-of-the-art
method and yields controllers that do not depend on the
time-derivative of the scheduling parameter. In this paper,
it is shown that the novel approach also enables simple and
efficient anti-windup compensation that does not increase
controller complexity. To this end, a differential implemen-
tation, inspired by the D-implementation of Kaminer et al.
(1995), is used. It implements the observer-based controller
in a “differential” form, i. e., such that the derivative u̇
instead of the control signal u is calculated. Such imple-
mentations are also referred to as velocity or incremental
algorithms and have their roots in motor control, see e. g.
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Åström and Hägglund (2006). The paper starts with a
short review of preliminaries and the observer-based LPV
controller synthesis in Section 2. The differential imple-
mentation of such observer-based controllers is developed
in Section 3. The resultant form is then used in Section 4
to incorporate anti-windup compensation into the pitch-
axis control law for a 25 kg unmanned aerobatic aircraft.
Nonlinear simulations demonstrate the applicability of the
proposed method.

2. PRELIMINARIES

2.1 Linear Parameter-Varying Systems

LPV systems are a class of dynamic systems whose state
space representations depend continuously on a time-
varying scheduling parameter vector ρ : R 7→ P, where
P ⊂ Rnρ is a compact set of allowable parameters. Addi-
tionally, the parameter rates ρ̇ : R 7→Q are restricted to lie
in a polyhedronQ = {ρ̇ ∈ Rnρ | |ρ̇i| ≤ νi , i = 1, . . . , nρ}.
Hence, the set of all admissible parameter trajectories is
T = {ρ(t) | ρ(t) ∈ P ∧ ρ̇(t) ∈ Q ∀t ∈ R}. A state space
representation of an LPV system P with state x(t) ∈ Rnx ,
input v(t) ∈ Rnv , and output y(t) ∈ Rny is[

ẋ(t)
y(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

] [
x(t)
v(t)

]
(1)

where A : P 7→Rnx×nx , B : P 7→Rnx×nv , C : P 7→Rny×nx ,
D : P 7→ Rny×nv are continuous matrix functions. The
performance of an LPV system can be specified in terms
of its induced L2-norm

‖P‖ = sup
v∈L2\{0}, ρ∈T , x(0)=0

‖y‖2
‖v‖2

. (2)

The dependence on parameters and time is dropped where
appropriate to shorten notation.

2.2 Mixed Sensitivity LPV Control

Throughout this paper, a standard unity feedback con-
trol loop with plant P and controller K is considered.
The plant output is partitioned as y = [ y1y2 ], where y1
are (integral-) controlled outputs and y2 are additional
feedback signals. Consequently, the control error is e =[ yref−y1
−y2

]
, where yref is a reference for y1. The control signal

is denoted u. The considered mixed sensitivity formulation
characterizes performance as the induced L2-norm of the
weighted closed-loop system shown in Fig. 1. The corre-
sponding optimal controller synthesis problem is

min
K

∥∥∥∥[WeV
−1
e 0

0 WuV
−1
u

][
S SP
KS KSP

][
Ve 0
0 Vd

]∥∥∥∥ , (3)

where S = (I +PK)−1 denotes the output sensitivity
function, cf. Skogestad and Postlethwaite (2005).

P

VdWuV
−1
u

K

We V
−1
eVe

y

−

w1 w2z1 z2

e u v

Fig. 1. Weighted closed loop for mixed sensitivity design.

Performance specifications are imposed through shaping
filters We and Wu with state space realizations[

ξ̇e
z1

]
=

[
0 BWe(ρ)

CWe(ρ) DWe(ρ)

] [
ξe
ẽ

]
(4a)[

ξ̇u
z2

]
=

[
AWu(ρ) BWu(ρ)
CWu(ρ) DWu(ρ)

] [
ξu
ũ

]
. (4b)

A high gain inWe dictates a sensitivity reduction and spec-
ifies tracking and disturbance rejection capabilities. An
integrator in We enforces integral control. A high gain in
Wu dictates a reduction in control effort. Hence, the weight
Wu can enforce controller roll-off at high frequencies. The
inputs to the dynamic weights We and Wu are a statically
weighted control error ẽ = V −1e e and a statically weighted
control effort ũ = V −1u u. The static weights Ve and Vu are
tuning knobs. They can be selected based on the maximum
allowable errors (Ve) and maximum allowable inputs (Vu).
Thus, initial guesses are particularly easy. Similarly, Vd is
a tuning knob for disturbance rejection that can be chosen
based on maximum expected disturbances. For details
about this parametrization see Theis et al. (2018, 2020).

2.3 Observer-based LPV Synthesis

Theis and Pfifer (2020) recently proposed a novel synthe-
sis procedure that alleviates drawbacks of conventional
LPV output feedback synthesis. The procedure uses the
mixed sensitivity formulation (3) to solve for a structured
observer-based LPV controller of the form[

ξ̇
u

]
=

[
A(ρ) +B(ρ)F (ρ) + L(ρ)C(ρ) L(ρ)

F (ρ) 0

] [
ξ
e

]
, (5)

where L is an observer gain and F is a state feedback
gain. The structure of the controller is depicted in Fig. 2.
Its dynamic part, the observer O, is detailed in Fig. 3.

O F
ξ

e
u

K

Fig. 2. Observer-based controller.

B
∫

A+LC

L

u

e

ξO

Luenberger
Observer

BWuV
−1
u

∫
AWu

ξu

Roll-Off
Augmentation

BWeV
−1
e

∫
ξe

Integral AugmentationO

Fig. 3. Weight-augmented observer O.
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The main result of Theis and Pfifer (2020) is summarized
in the following Theorem. To simplify notation, a strictly
proper plant (D = 0) as well as weights We = I and
Wu = I are assumed.

Theorem 1. Let P and Q be given compact sets, let
P be a given LPV system with D = 0, and let the
weights We and Wu in Fig. 1 equal identity matrices of
appropriate dimensions. Denote B̄d = BVd, B̄u = BVu,
and C̄e=V −1e C. There exists an observer-based controller
K as shown in Figs. 2 and 3 such that the induced
L2-norm of the closed loop in Fig. 1 is less than γ if
there exist continuously differentiable symmetric matrix
functions Z(ρ) : P → Rnx×nx and Y (ρ) : P → Rnx×nx
such that ∀(p, q) ∈ P ×Q

Z(p) > 0 (6a)[
Z(p, q) Z(p)B̄d(p)

B̄Td (p)Z(p) −I

]
< 0 (6b)

γ > 1 (7a)

Y (p) > 0 (7b) Y(p, q) −Y (p)C̄Te (p) −Z−1(p)C̄Te (p)
−C̄e(p)Y (p) −γI I
−C̄e(p)Z−1(p) I −γI

 < 0, (7c)

with Z(p, q) = Z(p)A(p) + AT (p)Z(p) +
∑nρ
i=1

∂Z(p)
∂pi

qi −
C̄Te (p)C̄e(p) and Y(p, q) = Y (p)AT (p) + A(p)Y (p) −∑nρ
i=1

∂Y (p)
∂pi

qi−γB̄u(p)B̄Tu (p). The expression Z>0 (Z<0)

denotes positive (negative) definiteness of Z.

Proof. The proof is only outlined here due to lim-
ited space. A detailed proof of the general weighted
case is provided in Theis and Pfifer (2020). In essence,
the condition (6) establishes the existence of a contrac-
tive left coprime factorization (see Prempain, 2006) and
yields an observer gain L(p) = −Z−1(p) C̄Te (p)V −1e (p). A
state space coordinate transformation shows that condi-
tion (7) guarantees the existence of a state feedback gain
F (p) = −Vu(p) B̄Tu (p)Y −1(p) for a generalized plant that
includes the observer and represents the same performance
specifications as Fig. 1. Finally, submultiplicativity of the
induced L2-norm guarantees that γ is an upper bound on
the performance of the closed-loop system. 2

Condition (6) and (7) are coupled through Z in only one
direction. Hence, they can be solved sequentially. First, a
semidefinite program minX,Z(p) trace(X) s. t.

[
X I
I Z(p)

]
> 0

and condition (6) is used to obtain Z and, respectively, the
observer gain L. Then, a semidefinite program minγ,Y (p) γ
s. t. condition (7) is solved to obtain the state feedback gain
F . Doing so replaces the SDP of the conventional output
feedback synthesis with two smaller SDPs. As SDPs scale
badly with the number of decision variables, solving the
two smaller SDPs is much faster than solving the original
problem.

3. ANTI-WINDUP COMPENSATION WITH
DIFFERENTIAL IMPLEMENTATION

The purpose of anti-windup compensation is to prevent
integrator states in the controller from building up when
the control signal is saturated, e. g., due to actuator limits.
When the integrator dynamics are lumped at the controller

output as depicted in Fig. 4, anti-windup compensation
is easily included. In this case, the controller output u
equals the integrator state. It is then straightforward
to manipulate this state as a function of the saturation
level σ = u − usat, e. g. via backcalculation or integrator
clamping (Åström and Hägglund, 2006). Backcalculation
refers to proportional feedback of the saturation level
to the integrator input. Integrator clamping denotes a
logic that sets the integrator input to zero as long as
σ 6= 0 and therefore holds the integrator state constant.
Another popular variant is conditional integrator clamping
which additionally considers directionality. That is, the
integrator state is held constant only when both σ 6= 0
and sign(σ) = sign(u̇). Such simple modifications do not
increase controller complexity. In case the integrator is
part of the controller dynamics, anti-windup compensation
becomes severely more elaborate: For a generic dynamic
LPV controller, the anti-windup compensator itself is, in
general, LPV and has the same order as the controller (e. g.
Lu et al., 2005).

KD
∫e u̇ u

K
−σ

usat

Fig. 4. Anti-windup compensation with integrator dynam-
ics lumped at controller output.

Inspection of the observer-based controller (see Figs. 2
and 3) shows that it is not in the form of Fig. 4. Hence,
simple anti-windup schemes cannot be directly applied
to the proposed controller. However, the presence of in-
tegrator dynamics at the output can be enforced by a
differential implementation, see e. g. Osterhuber et al.
(2004). The differential implementation paradigm states
that the controller provides a differential control signal u̇
and an integrator at the output calculates u. A controller
in differential implementation is hence in the form of Fig. 4
and thus desirable for simple anti-windup compensation.
One way of implementing a differential form for general
state space controllers is the D-implementation, originally
developed by Kaminer et al. (1995) as a means to cir-
cumvent excitation of so-called hidden couplings in gain-
scheduled controllers (cf. Nichols et al., 1993; Shamma and
Cloutier, 1993). The D-implementation can be interpreted
as a clever realization of 1

s K s. That is, the error signal
is differentiated at the input of the controller and an
integrator is placed at the output of the controller, cf.
Sedlmair et al. (2019a). In other words, KD = K s in
Fig. 4. For linear time-invariant controllers, the approach
is straightforward. For time-varying controllers, however,
D-implementation is an ad hoc modification that does not
preserve the input-output behavior of the controller (cf.
also Mehendale and Grigoriadis, 2004, 2006).

In the following, it is shown how the structure of the
observer-based controller can be exploited to achieve the
form of Fig. 4 such that a simple anti-windup scheme
can be implemented. The proposed approach is based on
an exact differential implementation of the observer-based
controller followed by an approximation commonly used
in LPV control: neglecting the scheduling parameter vari-
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ation rate. For the observer-based controller, the control
signal is u = F (ρ) ξ. Differentiation with respect to time
yields

u̇ = F (ρ) ξ̇ +

nρ∑
i=1

∂F (ρ)

∂ρi
ρ̇i︸ ︷︷ ︸

∂F (ρ,ρ̇)

ξ. (8)

The differential input is a function of both the controller
state ξ and its time-derivative ξ̇. This dependence does not
increase controller complexity, as the augmented observer
is easily modified such that it provides ξ̇ in addition
to ξ, see Fig. 5. Thus, the observer-based controller is
exactly represented by the implementation in Fig. 6. Note,
however, that there is now an explicit dependence on the
scheduling parameter variation rate ρ̇ through ∂F .

The implementation in Fig. 6 still has a pure integrator
(for ξe) in the observer and therefore does not lump all in-
tegrator dynamics at the output. Thus, it is not suitable for
simple anti-windup compensation. Note that the observer
state ξ is multiplied only by ∂F , see Fig. 6. If either F is
parameter-independent or the scheduling parameter varia-
tion is assumed to be slow (ρ̇ ≈ 0), the result is ∂F = 0 and
the dotted elements in Fig. 5 are no longer required. Re-
moving said dotted parts results in an observer-based LPV
controller as shown in Fig. 7. Anti-windup compensation is
then easily added. Note that the implementation accord-
ing to Fig. 7 is only an approximation of the originally
designed controller when F (ρ) 6= const. and care has to be

B
∫

A+LC

L

ξOu

e ξ̇O

Luenberger
Observer

BWuV
−1
u

∫
AWu

ξu

ξ̇u

Roll-Off
Augmentation

BWeV
−1
e

∫ ξ̇e

ξe

Integral AugmentationO

Fig. 5. Weight-augmented observer with state derivative
output.

O

F

∂F

ξ̇

ξ

e ∫u̇

K

u

Fig. 6. Observer-based controller in exact differential im-
plementation.

taken whether the approximation is justified. Nevertheless,
it should be emphasized that rate dependence is often
ignored in the implementation of conventional LPV output
feedback controllers. Even then, the form of Fig. 7 cannot,
in general, be obtained for such controllers.

O F
ξ̇

e ∫u̇
K

u

−σ

usat

Fig. 7. Approximate observer-based controller with anti-
windup compensation.

4. CONTROL DESIGN EXAMPLE

The following design example demonstrates the applicabil-
ity of the anti-windup-compensated observer-based LPV
controller for a flight control application. The control
objective is to achieve fast tracking of commands for the
vertical acceleration. Control of the vertical acceleration is
a common way of realizing longitudinal control for aircraft.
The unmanned low-cost testing research aircraft (ULTRA)
Extra, depicted in Fig. 8, is an unmanned replica of the
aerobatic aircraft Extra 330 ML with a scale of 1:2.5.
The ULTRA Extra has a total mass of 24.6 kg and a
wingspan of 3.10 m. An extensive flight test campaign with
a total of 148 identification maneuvers was performed in
order to identify aerodynamic parameters for a nonlinear
six degrees-of-freedom gray-box model (Sedlmair et al.,
2019b). The dynamics of the control surface servos and
sensors where identified on the component level.

Fig. 8. Unmanned aircraft ULTRA Extra.

4.1 Control Design and Synthesis

The vertical acceleration and the pitch rate, both mea-
sured at the center of gravity, are used as feedback signals.
The elevator is used as the control effector such that a
multi-input-single-output controller results. The nonlinear
model of the ULTRA Extra is linearized for straight and
level flight at airspeeds V∞ ∈ {18, 20, 25, 30, 35, 40, 42}m/s
to form a grid-based LPV model with ρ = V∞. For con-
troller synthesis, the LPV model is reduced to a second-
order short period model. This short period model is aug-
mented with a fourth-order model representing parasitic
effects such as servo actuator dynamics, sensor dynamics,
signal filtering, and an input delay of 53 ms.
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The mixed sensitivity formulation (3) described in Sec-
tion 2.2 is used for control design. Parameter-independent
weights We and Wu are used to provide common perfor-
mance specifications throughout the flight envelope. The
weight We is selected to have integral behavior up to a
tracking bandwidth of 2.7 rad/s for the vertical accelera-
tion. In order to limit the peak sensitivity to a factor of
two, a gain of 0.5 is selected beyond this frequency. With
the same rationale, a constant gain of 0.5 is chosen to
weight the pitch rate. The weight Wu is selected with unit
gain up to 30 rad/s and a slope of +20 dB between 30 rad/s
and 300 rad/s. This ensures controller roll-off and reduces
noise sensitivity. Parameter-dependent static weights V
are used for tuning. Initially, the weight Ve(ρ) is selected
such that the ratios of the steady-state responses in verti-
cal acceleration and pitch rate due to a step input to the
open-loop plant model are reflected. The weight Vu(ρ) is
then selected such that it varies from 25◦ at low airspeeds
to 3◦ at high airspeeds to account for the variation in
control surface effectiveness. Finally, the weight Vd is tuned
to 0.2Vu to represent 20% actuator uncertainty.

Affine basis functions for Z(ρ) and Y (ρ) are used to arrive
at a finite dimensional formulation for Theorem 1. The
SDP solver mincx, part of the Matlab Robust Control
Toolbox (Balas et al., 2019), is used to obtain feasible Z(ρ)
and Y (ρ) from which the observer and state feedback gains
are calculated. A 10 % suboptimal solution is used in order
to improve numerical behavior, cf. Balas et al. (2015). The
resulting F and L are functions of the airspeed.

4.2 Simulation Results

Controller performance is evaluated using a nonlinear
high-fidelity simulation model of the ULTRA Extra air-
craft. The model includes actuator dynamics with rate
limits and saturation, time delay, and backlash. Channel-
specific measurement noise, transport delays, signal filters,
quantization effects, and rate transitions are also included.
Figure 9 compares simulation results for a vertical acceler-
ation tracking task with the exact implementation of Fig. 6
and the approximation of Fig. 7. The simulation starts in
a 1 g straight and level flight with an airspeed of 38 m/s.
After 1 second, a pull-up command with 4 g is issued for
1.5 s. Then, the reference is switched to a -1 g-pull-down
for another 1.5 s before returning to 1 g.

Both implementations yield very similar results: fast and
well-damped responses with excellent transient behavior.
Note that the 4 g-pull-up maneuver is quite aggressive. It
leads to a sharp drop in airspeed from 38 m/s to around
25 m/s in 3 s. During the time where the airspeed varies, no
steady state is reached and the controller cannot track the
desired acceleration of 4 g exactly. The exact implemen-
tation shows a slightly lower tracking error here, which
is achieved by continuously increasing elevator deflection.
The approximate implementation issues less deflection and
lacks the build-up characteristic. This difference is the
result of neglecting the rate-depended term ∂F . As the
acceleration of the aircraft and not its attitude is the
controlled variable, the slight difference in the accelera-
tion profiles of the two implementations integrates over
time. In other words, the aircraft’s attitude is different
at the end of the two simulations. The angle of attack
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Fig. 9. Simulation of vertical acceleration doublet.

plot illustrates this: The exact implementation results in
a steady state with about 5◦ angle of attack, whereas the
approximate implementation results in about 3◦. Hence,
the airspeed required to achieve 1 g steady-state flight also
differs, which explains the difference in the airspeed pro-
files. In summary, the error introduced by the approximate
implementation is small for the considered application and
the controller functions as expected.

In order to demonstrate anti-windup compensation, the
elevator command signal is saturated at ±5◦. A sim-
ple conditional integrator clamping logic as described by
Åström and Hägglund (2006) is used. Figure 10 shows
a simulation of the same doublet maneuver as before,
but with saturation. The available control action is not
sufficient for tracking the first step and the controller out-
put saturates. The benefit of anti-windup compensation
becomes evident at simulation time t = 2.5 s, where the
reference is changed. Without anti-windup compensation,
the controller remains in saturation for an additional 0.2 s.
This is the typical delayed response associated with the
time required to wind down the integrator state after
saturation occurs. In contrast, the controller with anti-
windup compensation reacts immediately.
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Fig. 10. Simulation of vertical acceleration doublet with
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5. CONCLUSION

The paper presents a novel differential implementation
for observer-based state space controllers. This implemen-
tation makes it possible to combine simple anti-windup
compensation strategies and LPV control. As such, the
paper contributes an important element for practical LPV
control since LPV anti-windup compensation usually in-
creases controller complexity. Applicability of the method
is demonstrated on the flight-test-validated high-fidelity
model of an unmanned aircraft in nonlinear simulation.
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