
Design of Prediction-Based Estimator for
Time-Varying Networks subject to

Communication Delays and Missing Data ⋆

Jun Hu ∗,∗∗ Guo-Ping Liu ∗,∗∗∗

∗ School of Engineering, University of South Wales, Pontypridd CF37
1DL, United Kingdom. (e-mail: hujun2013@gmail.com;

guoping.liu@southwales.ac.uk).
∗∗ School of Science, Harbin University of Science and Technology,

Harbin 150080, China.
∗∗∗ Department of Artificial Intelligence and Automation, Wuhan

University, Wuhan 430072, China.

Abstract: This paper is concerned with the robust optimal estimation problem based on
the prediction compensation mechanism for dynamical networks with time-varying parameters,
where communication delays and degraded measurements are considered. The missing measure-
ments are characterized by some random variables governed by Bernoulli distribution, where
each sensor having individual missing probability is reflected. During the signal transmissions
through the communication networks, the network-induced communication delays commonly
exist among the adjacent nodes transmissions and a prediction updating method is given
to compensate the caused impacts. Accordingly, a time-varying state estimator with hybrid
compensation scheme is constructed such that, for both the communication delays and missing
measurements, a minimized upper bound matrix with regards to the estimation error covariance
matrix is found and an explicit estimator parameter matrix is designed at each sampling step
accordingly. Finally, the comparative simulations are given to validate the advantages of main
results.

Keywords: Time-varying dynamical networks; Prediction estimation; Communication delays;
Missing measurements.

1. INTRODUCTION

The complex networks with non-trivial topological struc-
tures have successful applications in the system modelling
such as technological networks, computer networks, social
networks and so on Boccaletti et al. (2006); Yu et al.
(2017); Li and Yang (2016). Generally, the node state
information can not be always available due to various rea-
sons Huang et al. (2012). Hence, there is a need to design
estimation methods so as to provide efficient estimates for
the node state. For example, a state estimation scheme
with guaranteed H∞ performance has been given in Shen
et al. (2013) for time-invariant complex networks in order
to estimate the node state and discuss the uncertain inner
coupling influences. To save the communication resources,
an event-based H∞ estimation method has been given in
Li, Shen, et al. (2018) for time-invariant complex networks
to attenuate the effects caused by state saturation and
quantized measurements. For time-varying complex net-
works, some estimation methods under different perfor-
mance indices have been reported Dong et al. (2018); Li,
Jia, et al. (2018). In Dong et al. (2018), a new recursive
⋆ This work was supported in part by the European Regional
Development Fund and Sêr Cymru Fellowship under Grant 80761-
USW-059, the National Natural Science Foundation of China under
Grants 61673141 and 61773144, and the Alexander von Humboldt
Foundation of Germany.

estimation scheme has been presented for time-varying
networks subject to varying topological features, where
H∞ performance criterion and variance constraint have
been considered. To address the bounded constraint, a set-
membership H∞ estimation method has been developed in
Wang et al. (2018) for uncertain time-varying networks,
where major effort has been devoted to handle the ran-
domly occurring nonlinearities and fading measurements.
By considering the variance constraint, a recursive esti-
mation algorithm has been established in Li, Jia, et al.
(2018) for coupled stochastic networks with time-varying
characteristics.
During the data transmissions, the information might be
lost especially in the unreliable communication environ-
ment Duan and Shen (2019). As such, special effort has
been devoted and some estimation schemes have been
given for complex dynamical networks to deal with the
missing data Asif et al. (2016); Hu et al. (2016). In
Asif et al. (2016), the matrix and tensor based methods
have been proposed to estimate the missing values in the
intelligent transportation systems, where the algorithm
performance has been discussed by evaluating the esti-
mation accuracy, the variance of the data set as well
as the bias. In Hu et al. (2016), a recursive estimation
algorithm combining the variance constraint with local
optimal error criterion has been given to discuss the time-
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varying case, where new estimation scheme possessed the
recursive feature has been given for purpose of real-time
applications. On the other hand, it should be pointed out
that the delays would affect the estimation accuracy if not
handled properly. Recently, a great number of analysis
techniques have been proposed to deal with the impacts
from different types of delays onto the behaviours of dy-
namical networks. For instance, the sampled-data schemes
have been proposed in Ali et al. (2019); Rakkiyappan
and Sivaranjani (2016) for delayed dynamical networks.
In Wang et al. (2016); Sasirekha and Rakkiyappan (2017),
some efficient estimation results have been reported to
handle the mixed time-delays. However, it should be no-
ticed that most of the existing state estimation approaches
dealing with the time delays relied on the delay infor-
mation only, which inevitably sacrifice certain estimation
accuracy. Consequently, it is of significant importance to
properly tackle the effects from communication delays and
missing measurements and then provide a new estimation
method based on the prediction schemes in Liu (2017); Li
et al. (2019).
In this paper, we aim to handle the state estimation
problem with predication compensation ability for dy-
namical networks, where both communication delays and
missing measurements are considered within the time-
varying framework. To fulfill the major objective, a hybrid
compensation approach is given to attenuate the influences
from communication delays and missing measurements
onto estimation performance. In particular, the efficient
information of the delay upper bounds and missing prob-
ability is introduced when constructing the time-varying
estimator. Accordingly, a new recursive estimation algo-
rithm is developed to determine the optimal estimator
parameter and then propose the state estimate.

2. STATEMENT OF THE PROBLEM

In this paper, the following class of time-varying uncertain
coupled networks with missing measurements is consid-
ered:

xi,k+1 =(Ai,k +∆Ai,k)xi,k +

N∑
j=1

ωij,kΓxj,k

+Bi,kwi,k, i = 1, 2, · · · , N (1)
yi,k =λi,kCi,kxi,k + vi,k, (2)

where xi,k ∈ Rn depicts the state of the i-th node to
be estimated, the initial value is xi,0 with mean x̄i,0,
yi,k ∈ Rm stands for the measurement output of the
i-th node, Ωk = [ ωij,k ]N×N

is the coupling strength
matrix, and Γ is a known inner-coupling matrix. wi,k ∈ Rp

represents the process noise with zero mean and covariance
Wi,k. vi,k ∈ Rm denotes the zero mean measurement
noise with covariance Vi,k > 0. ∆Ai,k = Mi,kFi,kHi,k

represents the parameter uncertainty with Fi,kFT
i,k ≤ I.

λi,k (i = 1, 2, · · · , N) are the Bernoulli distributed random
variables. Ai,k, Hi,k, Mi,k, Bi,k, Γ and Ci,k are known
matrices.
A set of Bernoulli distributed random variables λi,k (i =
1, 2, · · · , N) is employed to depict the missing measure-
ments, which satisfies

Prob{λi,k = 1}= λ̄i,k, (3)

Prob{λi,k = 0}= 1− λ̄i,k, (4)

where λ̄i,k ∈ [0, 1] are known constants. In the sequel,
we assume that λi,k, wi,k, vi,k and xi,0 are mutually
independent.
In what follows, it should be mentioned that the commu-
nication delays are inevitably occurred among the commu-
nications of the state estimation, that is, there exist the
communication delays dij between the node j and the node
i during the transmissions. Thus, the following updating
rule is utilized:

x̂j,k−dij+1|k−dij
=Aj,k−dij

x̂j,k−dij
,

x̂j,k−dij+2|k−dij
=Aj,k−dij+1x̂j,k−dij+1|k−dij

,

...
x̂j,k|k−dij

=Aj,k−1x̂j,k−1|k−dij
. (5)

Then, from (5), it further yields that x̂j,k|k−dij
=

Aj,dij
x̂j,k−dij

with Aj,dij
=

dij∏
s=1

Aj,k−s.

For the i-th node, we design time-varying estimator of the
following form:

x̂i,k+1 =Ai,kx̂i,k + ωii,kΓx̂i,k +

N∑
j=1,j ̸=i

ωij,kΓx̂j,k|k−dij

+Ki,k(yi,k − λ̄i,kCi,kx̂i,k), (6)
where x̂i,k denotes the state estimation of xi,k at the
instant k, and Ki,k represents the desired estimator pa-
rameter matrix to be determined later.
Remark 1: The prediction method is given in (5) to actively
compensate the communication delays with a prediction
updating rule, where the predictive state estimation is
obtained in terms of the delayed estimations. Besides,
the statistical information of incomplete measurements is
utilized during the estimator design. In fact, the estimator
(6) is a Kalman-like estimator for dynamical networks,
where the estimations from all nodes at the last instant
and the innovations measurements are utilized. However,
it should be pointed that a predictive-compensation term
(i.e., the third term of (6)) is introduced due to the exis-
tence of communication delays dij , which is indeed new yet
different compared with existing results. Later, a hybrid
estimation scheme will be proposed to jointly improve
the estimation accuracy. In particular, major effort will
be devoted to deal with and compensate the impacts of
communication delays between the node’s transmissions
and the degraded measurements collected by sensors.
Define x̃i,k+1 = xi,k+1 − x̂i,k+1 as the estimation error
and Qi,k+1 = E{x̃i,k+1x̃

T
i,k+1} as the estimation error

covariance matrix. Now, we are ready to summarize the
objectives of this paper. 1) Construct a state estimator
of recursive form (6) such that there exists an upper
bound covariance matrix Qi,k+1 of Qi,k+1. 2) Design the
estimator gain Ki,k+1 to minimize the trace of the upper
bound covariance matrix Qi,k+1. 3) Provide the mono-
tonicity analysis between the occurrence probabilities and
the upper bound covariance matrix.
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3. DESIGN OF TIME-VARYING ESTIMATION
SCHEME

In this section, the covariance matrices of state and es-
timation error are firstly calculated. Next, the recursion
equation of an optimal upper bound matrix is derived by
choosing the state estimator gain properly.

To begin with, introduce the notation λ̃i,k = λi,k − λ̄i,k.
From (1) and (6), x̃i,k+1 can be calculated as:

x̃i,k+1 = (Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)x̃i,k

+

N∑
j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

+∆Ai,kxi,k − λ̃i,kKi,kCi,kxi,k −Ki,kvi,k. (7)

To proceed, let us calculate the state covariance and
estimation error covariance. Here, the related proofs are
omitted due to the space limitation.
Theorem 1. Consider the time-varying uncertain coupled
networks (1)-(2) with the recursive estimator (6). For a
scalar δ > 0, the state covariance matrix Xi,k+1 has the
following upper bound:

Xi,k+1

≤ 2(1 + δ)
[
Ai,kXi,kA

T
i,k + tr(Hi,kXi,kH

T
i,k)Mi,kM

T
i,k

]
+N(1 + δ−1)

N∑
j=1

ω2
ij,kΓXj,kΓ

T +Bi,kWi,kB
T
i,k

,Xi,k+1. (8)
Theorem 2. Consider the time-varying uncertain coupled
networks (1)-(2) with the recursive estimator (6). The
recursive equation of estimation error covariance matrix
Qi,k+1 is described as follows:

Qi,k+1

= (Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)Qi,k(Ai,k + ωii,kΓ

−λ̄i,kKi,kCi,k)
T +A1,k +AT

1,k +A2,k +AT
2,k

+E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]

×

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}
+A3,k +AT

3,k +∆Ai,kXi,k∆AT
i,k

+λ̄i,k(1− λ̄i,k)Ki,kCi,kXi,kC
T
i,kKT

i,k

+Bi,kWi,kB
T
i,k +Ki,kVi,kKT

i,k (9)
where

A1,k = (Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)

×E

{
x̃i,k

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}
,

A2,k = (Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)

×E{x̃i,kx
T
i,k}∆AT

i,k,

A3,k =E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]
xT
i,k

}
∆AT

i,k.

Now, we are in a position to provide the recursion of the
upper bound matrix Qi,k+1 regarding Qi,k+1.
Theorem 3. Consider the estimation error covariance ma-
trix in (9). Let δ > 0 and ϵt > 0 (t = 1, 2, 3) be constant
scalars. Assume that the following matrix difference equa-
tion with Qi,0 = Xi,0 > 0

Qi,k+1

= (1 + ϵ1 + ϵ2)(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)Qi,k

×(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)
T

+2(1 + ϵ−1
1 + ϵ3)(N − 1)

N∑
j=1,j ̸=i

ω2
ij,k

×Γ(Xj,k + x̂j,k|k−dij
x̂T
j,k|k−dij

)

+(1 + ϵ−1
2 + ϵ−1

3 )tr(Hi,kXi,kH
T
i,k)Mi,kM

T
i,k

+λ̄i,k(1− λ̄i,k)Ki,kCi,kXi,kC
T
i,kKT

i,k

+Bi,kWi,kB
T
i,k +Ki,kVi,kKT

i,k (10)
has the solution Xi,k+1 > 0. Then, it can be concluded
that

Qi,k+1 ≤ Qi,k+1.

Furthermore, if we choose Ki,k as

Ki,k = (1 + ϵ1 + ϵ2)λ̄i,k(Ai,k + ωii,kΓ)Qi,kC
T
i,kΣ

−1
i,k (11)

with

Σi,k = (1 + ϵ1 + ϵ2)λ̄
2
i,kCi,kQi,kC

T
i,k

+λ̄i,k(1− λ̄i,k)Ci,kXi,kC
T
i,k + Vi,k, (12)

then tr(Qi,k+1) is minimized at every sampling step.

Proof. The main results can be verified by using the
mathematical induction method and completing square
technique. First, let us deal with the cross and unknown
terms in (9). From simple computation, it yields

A1,k +AT
1,k

≤ ϵ1(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)Qi,k

×(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)
T

+ϵ−1
1 E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]

×

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}
, (13)

A2,k +AT
2,k

≤ ϵ2(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)Qi,k

×(Ai,k + ωii,kΓ− λ̄i,kKi,kCi,k)
T

+ϵ−1
2 ∆Ai,kE{xi,kx

T
i,k}∆AT

i,k, (14)
A3,k +AT

3,k
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≤ ϵ3E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]

×

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}
+ϵ−1

3 ∆Ai,kE{xi,kx
T
i,k}∆AT

i,k, (15)
where ϵt > 0 (t = 1, 2, 3). Then, it follows from (13)-(15)
that (9) can be rewritten as

Qi,k+1

≤ (1 + ϵ1 + ϵ2)(Ai,k + ωii,kΓ− λ̄i,kKi,k+1Ci,k)Qi,k

×(Ai,k + ωii,kΓ− λ̄i,kKi,k+1Ci,k)
T

+(1 + ϵ−1
1 + ϵ3)E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]

×

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}
+(1 + ϵ−1

2 + ϵ−1
3 )∆Ai,kXi,k∆AT

i,k

+λ̄i,k(1− λ̄i,k)Ki,kCi,kXi,kC
T
i,kKT

i,k

+Ki,kVi,kKT
i,k. (16)

Next, the second term in (16) is handled as

E

{[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]

×

[
N∑

j=1,j ̸=i

ωij,kΓ(xj,k − x̂j,k|k−dij
)

]T}

≤ (N − 1)E

{
N∑

j=1,j ̸=i

ωij,kΓ(xj,kx
T
j,k

+x̂j,k|k−dij
x̂T
j,k|k−dij

)

}

= (N − 1)

N∑
j=1,j ̸=i

ωij,kΓ(Xj,k + x̂j,k|k−dij
x̂T
j,k|k−dij

).

(17)
Moreover, the third term in (16) with parameter uncer-
tainty is described by:

(1 + ϵ−1
2 + ϵ−1

3 )∆Ai,kXi,k∆AT
i,k

≤ (1 + ϵ−1
2 + ϵ−1

3 )tr(Hi,kXi,kH
T
i,k)Mi,kM

T
i,k. (18)

Together with (16)-(18), we can get

Qi,k+1

≤ (1 + ϵ1 + ϵ2)(Ai,k + ωii,kΓ− λ̄i,kKi,k+1Ci,k)Qi,k

×(Ai,k + ωii,kΓ− λ̄i,kKi,k+1Ci,k)
T

+(1 + ϵ−1
1 + ϵ3)(N − 1)

N∑
j=1,j ̸=i

ωij,k

×Γ(Xj,k + x̂j,k|k−dij
x̂T
j,k|k−dij

)

+(1 + ϵ−1
2 + ϵ−1

3 )tr(Hi,kXi,kH
T
i,k)Mi,kM

T
i,k

+λ̄i,k(1− λ̄i,k)Ki,kCi,kXi,kC
T
i,kKT

i,k

+Ki,kVi,kKT
i,k. (19)

Then, the above results lead to
Qi,k+1 ≤ Qi,k+1.

Finally, we are ready to design the desired Ki,k in order
to minimize Qi,k+1. From the completing square method,
rewrite the upper matrix Qi,k+1 with regards to the
estimator gain matrix Ki,k. Then, we have

Qi,k+1

= (1 + ϵ1 + ϵ2)(Ai,k + ωii,kΓ)Qi,k(Ai,k + ωii,kΓ)
T

+(1 + ϵ−1
1 + ϵ3)(N − 1)

N∑
j=1,j ̸=i

ωij,k

×Γ(Xj,k + x̂j,k|k−dij
x̂T
j,k|k−dij

)

+(1 + ϵ−1
2 + ϵ−1

3 )tr(Hi,kXi,kH
T
i,k)Mi,kM

T
i,k

+[Ki,k − (1 + ϵ1 + ϵ2)λ̄i,k(Ai,k + ωii,kΓ)Qi,kC
T
i,kΣ

−1
i,k ]

×Σi,k[Ki,k − (1 + ϵ1 + ϵ2)λ̄i,k(Ai,k + ωii,kΓ)Qi,k

×CT
i,kΣ

−1
i,k ]

T − (1 + ϵ1 + ϵ2)
2λ̄2

i,k(Ai,k + ωii,kΓ)

×Qi,kC
T
i,kΣ

−1
i,kCi,kQi,k(Ai,k + ωii,kΓ)

T (20)
with Σi,k defined in (12). Now, select Ki,k as

Ki,k = (1 + ϵ1 + ϵ2)λ̄i,k(Ai,k + ωii,kΓ)Qi,kC
T
i,kΣ

−1
i,k .

Thus, the proof is complete.

To end this section, the newly prediction-based state
estimation (PBSE) algorithm is listed to facilitate future
applications.

PBST Algorithm :

S1: Initialize the related values.
S2: Calculate the estimator parameter matrix Ki,k via (11).
S3: Update the prediction estimation x̂j,k|k−dij

in view of (5).
S4: Obtain the state estimation x̂i,k+1 according to (6).
S5: Derive the estimation error covariance Qi,k+1 by

utilizing (10).
S6: Let k = k + 1. Go back to S2.

Remark 2: Notice that the PBSE problem has been solved
for uncertain dynamical networks with communication
delays and missing measurements. The communication
delays during the data transmissions between the adjacent
network nodes have been taken into account and the pre-
diction state compensation method has been given accord-
ingly. Both the probability of the missing measurements
and the predictive state estimations have been utilized
when designing the time-varying estimator and propos-
ing the estimation algorithm, which have been explicitly
reflected in the new PBSE algorithm mentioned above.

4. AN ILLUSTRATIVE SIMULATION

In this section, the following simulation experiment is
provided to show the validity of new prediction-based state
estimation scheme.
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Consider the uncertain coupled networks (1)-(2) with the
following parameters:

A1,k =

[
−0.56 −0.46
0.18 −0.15 + 0.5 cos(2k)

]
,

A2,k =

[
0.76 −0.72 + 0.12 cos(2k)
0.62 0.58 + 0.45 cos(2k)

]
,

A3,k =

[
0 −1.6

0.66 −0.06 + 0.05 sin(k)

]
B1,k =

[
0.48
0.5

]
, B2,k =

[
0.35
0.89

]
, B3,k =

[
0.3
0.37

]
,

C1,k = [ 1.6 1.5 ] , C2,k = [ 1.6 2.1 ] ,

C3,k = [ 1.9 1.4 ] ,Mi,k =

[
0.1
0.2

]
,

Hi,k = [−0.3 0.2 ] , i = 1, 2, 3.

Moreover, let Γ = diag{0.08, 0.08} and wij = 0.5 (i ̸= j)
and wii = 1 (i = 1, 2, 3).
During the simulation experiment, choose the initial con-
ditions x̄1,0 =

[
3
1

]
, x̄2,0 =

[
5
1

]
, x̄3,0 =

[
3
−1

]
, Qi,0 = 5I2,

Xi,0 = x̄i,0x̄
T
i,0, ϵi = 1 (i = 1, 2, 3), δ = 0.1, W1,k =

W2,k = 0.15, W3,k = 0.2, V1,k = V2,k = 0.2, V3,k = 0.15,

x̂i,0 = x̄i,0, x̂i,k =

[
0.1
0.1

]
(k < 0) (i = 1, 2, 3).

To validate the efficiency and advantages of the PBSE
algorithm, we compare the cases with/without predic-
tion compensation, i.e., Case I: estimation with PBSE
algorithm; Case II: estimation without the updating rule
(5). Simulation results under λ̄i,k = 0.88 and dij = 6
are presented in Figs. 1-5, where Figs. 1-3 are the state
trajectories of 3 nodes and their estimations with/without
prediction compensation. Fig. 4 depicts the log(MSEs)
of 3 nodes and their upper bounds under Case I. The
comparisons of MSE with/without delay compensation
under 500 iterations are shown in Fig. 5. It can be seen
from the simulations that the estimation performance with
the PBSE algorithm performs well than the one without
using delay prediction estimation.
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 k/time step
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Fig. 1. The curves of x1,k and x̂1,k.
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Fig. 2. The curves of x2,k and x̂2,k.
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Fig. 3. The curves of x3,k and x̂3,k.
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Fig. 4. log(MSE) and upper bounds.
5. CONCLUSIONS

In this paper, we have tackled the prediction-based es-
timation problem for time-varying uncertain dynamical
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Fig. 5. log(MSE) with/without compensation (500 itera-
tions).

networks with communication delays and missing mea-
surements. The proposed main result has the following
features: 1) a hybrid compensation estimation has been
presented, where both the communication delays and the
missing measurements have been taken into account; 2)
a local optimal upper bound matrix has been found for
the estimation error covariance and the estimator gain
matrix has been parameterized accordingly, hence a re-
cursive algorithm suitable for online application has been
established.
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