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Abstract: This paper presents a novel approach to synthesize dual controllers for unknown
linear time-invariant systems with the tasks of optimizing a quadratic cost while reducing
the uncertainty. To this end, a synthesis problem is defined where the feedback law has to
simultaneously gain knowledge of the system and robustly optimize the cost. By framing
the problem in a finite horizon setting, the trade-offs arising when the tasks include both
identification and control are formally captured in the optimization problem. Results show
that efficient exploration strategies are achieved when the structure of the problem is exploited.
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1. INTRODUCTION

One of the most widespread approaches in control is the
Linear Quadratic (LQ) regulator, whereby the goal is to
design a feedback law which minimizes deviations of the
states from a desired reference trajectory (e.g. the origin)
while keeping as small as possible the necessary action. In
the full state information case (standard LQR), when the
dynamics is exactly known the problem has a well known
optimal solution (see Bertsekas (2005)). In the infinite
horizon case, that is when transient features are negligible
and the problem is approximated in an infinitely long time
window, this consists of a static gain matrix associated
with the solution of an Algebraic Riccati Equation (ARE).
When the problem is studied on a finite horizon, the
optimal feedback law is time-varying and is associated with
a Riccati difference (or differential) equation (DRDE).

Despite important control theoretic works on robust H2

analysis and filtering problems (Sznaier et al., 2002; Sun
and Packard, 2005), the solution of the LQ control problem
when the dynamics is unknown is far less understood.
Notably, this has been used in the last few years as case
study to show possible complementarities of Reinforce-
ment Learning (RL) and control theory-based approaches
for the fundamental problem of optimally manipulating
an unknown system by using the information carried in
the collected data (Recht, 2019). Bridging these two com-
munities has been the effort of many recent works, see
e.g. (Cohen et al., 2018; Dean et al., 2019; Matni et al.,
2019), but despite the variety of techniques considered, no
strategies which allow for an easy implementation on one
hand, and provide optimal cost guarantees on the other,
have been found (Recht, 2019). Moreover, a fundamental
unsolved problem is what is the best strategy to extract
information about the system such that the performance
can be improved while preserving at the same time safety.
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In other words, borrowing terminology from the rein-
forcement learning community (e.g. multi-armed bandits,
Sutton and Barto (2018)), specifying an optimal policy
(control law) that robustly balances exploration (acquiring
knowledge of the system by testing and identification)
and exploitation (operating the system to maximize the
reward, or performance).

The approach considered here owes to the long and rich
tradition of dual control (Åström and Wittenmark, 1971),
where the problem of simultaneously identifying and con-
trolling a system was first formalized, and experiment de-
sign, whereby one attempts to determine the most suitable
inputs in order to extract information from the unknown
plant (Annergren et al., 2017). The material presented here
is also inspired by a recent publication (Ferizbegovic et al.
(2020)) where the unknown LQ problem is framed in a
dual control setting. Specifically, given an initial estimate
of the dynamics in the form of nominal state matrices and
an ellipsoidal uncertainty set, the joint optimization of two
robust feedback laws GK1 and GK2 is proposed therein
considering two distinct infinite horizon problems.

While retaining the same application-oriented philosophy,
i.e. promoting a reduction of the uncertainty which is
beneficial for the purpose of minimizing a given cost, the
work here substantially changes the synthesis approach
by framing the problem in a finite horizon setting. This
is motivated by the fact that the dual control problem
is more realistically described in a finite time window,
due to the importance of transient features. The design of
two robust static feedback laws tasked with different goals
is thus shifted to that of a single time-varying law GK,
responsible for dealing simultaneously with the two tasks.
From an optimal control perspective, but in a dual control
setting now, the problem is formulated as the solution of
an DRDE rather than of an ARE. The main advantage is
that by framing the problem in a finite horizon setting the
different trade-offs between exploration and exploitation
are captured and can be optimized over. New insights
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into these trade-offs are in turn believed to help gaining a
deeper understanding of the unknown LQ problem.

The main technical contribution of the paper is the formu-
lation of a Semidefinite program (SDP) to solve the robust
dual LQR control problem in the finite horizon setting
optimally balancing exploration and exploitation. This
is presented in Section 3, where also the corresponding
programs for the nominal and robust (but with fixed un-
certainty, i.e. without exploration) problems are derived.
The other important contribution is gathered in Section
4, where features of the synthesised policies are shown
through numerical examples. The application-oriented na-
ture of the exploration strategy proposed here is termed
structured, in order to emphasize the ability to exploit
specific properties of the analysed system.

2. PROBLEM DESCRIPTION

2.1 Background

Consider the discrete linear time-invariant system:

xt+1 = Axt +But + wt, wt ∼ N (0, σ2
wInx

), x0 = 0,
(1)

where xt ∈ Rnx is the (measured) state, ut ∈ Rnu is the
control input, and wt ∈ Rnx is the normally distributed
process noise with zero mean and covariance σ2

wInx
. Given

cost matrices Q � 0 and R � 0, the objective is to design
a feedback law minimizing the expected finite horizon
quadratic cost J in [1, T ] (with 1 < T <∞):

J = E

[
T−1∑
t=1

(
x>t Qxt + u>t Rut

)
+ x>TQxT

]
, (2)

where the expectation is with respect to w. When A and
B are known, the optimal input is given by the time-
varying state-feedback law ut = KDRDE

t xt, where KDRDE
t

is associated with the stabilizing solution of the discrete
time Riccati difference equation (DRDE) for (1).

The case of unknown A and B, where the only access to
information on (1) is through measurements of x and u, is
considered here. An estimation of the unknown dynamics
is obtained through the so-called Coarse-ID approach
(Dean et al. (2019)). Given a dataset made of N samples
S = {(xt, ut) : 1 ≤ t ≤ N}, the nominal dynamics is
estimated through the least squares problem:

(Â, B̂) = arg min
A,B

N−1∑
t=1

‖−xt+1 +Axt +But‖22 , (3)

and the true dynamics belongs to the ellipsoidal set Ω:

Ω(X,D) = {X : X>DX � I}, D ∈ Snx+nu , (4a)

X =

[
(Â−A)>

(B̂ −B)>

]
, X ∈ R(nx+nu)×nx , (4b)

where D defines the uncertainty. A possible estimate for
D can be obtained by making use of an empirical Bayes
argument and taking it as the variance of the posterior
distribution of (A,B) given S (Umenberger et al. (2019)).
Precisely, (4a) holds with probability 1-δ for:

D =
1

cχσ2
w

N−1∑
t=1

[
xt
ut

] [
xt
ut

]>
, cχ = χ2

(n2
x+nxnu),δ, (5)

where χ2
n,δ is the critical value for a Chi-squared distribu-

tion with n degrees of freedom and probability level δ.

Given this uncertainty description, the objective is to
synthesize a policy GK that minimizes the worst-case J :

JWC = min
GK

max
(A,B)∈Ω(X,D)

J. (6)

To this end, GK(Kt, St) is parametrized as:

ut = Ktxt + et, et ∼ N (0, St), St ∈ Snu . (7)

The law consists of a time-varying state-feedback part,
and a random excitation input et with time-varying co-
variance for the purpose of exploration. The time-varying
formulation of St captures the fact that, as knowledge of
the system is acquired, the random part of the excitation
should decrease. This aspect is also found in several meth-
ods proposed in the RL community, e.g. the concept of
exploration rate in ε-greedy algorithms (Sutton and Barto,
2018). Formal ways for adapting rates to the learning
progress have been proposed in the learning literature
(Auer et al., 2002; Cesa-Bianchi et al., 2017), e.g. lever-
aging the concept of regret bounds (Matni et al., 2019).
In this formulation, St will be an optimization variable
and thus its value will depend, among other things, on the
properties of the system to be identified.

2.2 Motivating example

The importance of formulating the dual control problem in
a finite horizon, rather than in an infinite one as proposed
in (Ferizbegovic et al., 2020) and in general in the recent
learning-LQR literature (Cohen et al., 2018; Dean et al.,
2019), is discussed here.

Consider the scenario where the unknown system (1)
has to be operated over a certain horizon [1, T ] while
minimizing (2). Since the dynamics are not known, a
simple strategy consists of choosing an intermediate time
Tsw < T , and dividing the horizon into two phases. In
the first (exploration, or ID-phase), the system is excited
with random input ut ∼ N (0, σ2

uI) and the measured
response (e.g. in the form of S) is used to identify the
nominal matrices through (3). In the second (exploitation,
or K-phase), a controller which optimizes (2) for the
identified nominal matrices is synthesised. One possible
option is the use of time-varying feedback KDRDE

t on the
remaining horizon [Tsw, T ]. That is, a pure exploration
phase is followed by a pure exploitation phase (often
termed explore-then-commit in the RL literature (Garivier
et al., 2016)). This clearly leads to a trade-off between
the duration of these two phases, where for high Tsw the
benefit of estimating the model more accurately contrasts
with the disadvantage of optimally controlling the plant
for a shorter time, and viceversa.

In order to exemplify this aspect, an experiment is per-
formed on a horizon of length T=100 with two randomly
generated stable plants having nx=3, nu=2, and using
σu=1, σw=0.5. Figure 1 shows the total expected cost Jtot

(obtained by averaging over 100 realizations of noise and
random excitation) as a function of Tsw. The total cost can
be broken down into JID and JK, associated respectively
with the identification part in the horizon [1, Tsw] and with
the deployment of the controller in [Tsw, T ].

It can be observed that there exists an optimal switching
time where the benefit of further exploring the unknown
dynamics is overcome by the cost of exploration. This
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Fig. 1. Expected costs for the two unknown plants as a
function of the switching time Tsw.

trade-off depends on the unknown true system, and it can
only be captured in a finite horizon setting, where distinc-
tive transient features of the ID-phase and K-phase are
retained. While the explore-then-commit strategy tested
here captures fundamental conflicting aspects arising in
the dual control problem, it has important limitations,
among which are robustness (KDRDE

t is not robust to
estimation errors) and optimality (the interplay between
identification and control is not exploited since explo-
ration and exploitation are sequentially applied). The next
section addresses these fundamental aspects of the dual
control problem by proposing a novel synthesis strategy.

3. SEMIDEFINITE PROGRAMS FORMULATIONS

The goal is to derive a convex formulation for synthesising
a feedback law GK (7) that optimizes JWC (6). In order
to clearly present the steps involved and highlight their
meaning, the presentation is broken down into 3 parts.
Section 3.1 deals with the nominal case (where the esti-

mated system coincides with the true one, i.e. A = Â and
B = B̂), conceptually equivalent to solving the associated
DRDE. Section 3.2 considers a worst-case design where the
set of uncertainty is fixed throughout the horizon, which
thus is a robust version of the DRDE. Finally, Section 3.3
establishes the dual control formulation, where exploration
is promoted and thus the uncertainty of the system can be
reduced while robustly controlling the plant.

The key idea is to use the application-oriented approach
first introduced in (Ferizbegovic et al., 2020), with the im-
portant differences that the problem is formulated in the fi-
nite horizon and a single (time-varying) policy responsible
for simultaneously exploring and controlling is synthesized.
Exploration is used only to update the uncertainty matrix
D (5), while the nominal matrices Â and B̂ are kept fixed.
This is in line with related works (Ferizbegovic et al., 2020;
Umenberger et al., 2019) that make use of the certainty
equivalence assumption.

The first step consists of deriving an expression for the cost
J which can be used in the robust optimization problem
(6). Let us begin by denoting by Pt the covariance matrix
of the state at timestep t:

Pt = E
[
xtx
>
t

]
∈ Snx . (8)

Define also Q̄t :=

[
Q

1
2

R
1
2Kt

]
∈ R(nx+nu)×nx , R̄ :=

[
0

R
1
2

]
∈

R(nx+nu)×nx . Then the following result, proved in the
Appendix, holds.

Lemma 1. The cost J in (2) is equivalent to:

J = Tr

(
T−1∑
t=1

(
Q̄tPtQ̄

>
t + R̄StR̄

>)+QPTQ
>

)
. (9)

The benefit of Lemma 1 is that it allows the finite horizon
cost to be rewritten as a function of the covariances
Pt, as it is the case for the infinite horizon cost, whose
minimization in turn is equivalent to the computation of
the H2 norm of (1).

3.1 Nominal design

The solution to the nominal problem, as in the SDP-
based computation of the H2 norm, can be obtained
by minimizing (9) while constraining the covariance Pt
to satisfy ∀t ∈ [1, T − 1] the discrete time Lyapunov
inequalities associated with the closed loop (1)-(7):

min
GK

Tr

(
T−1∑
t=1

(
Q̄tPtQ̄

>
t + R̄StR̄

>)+QPTQ
>

)
, (10a)

Pt+1 � (A+BKt)Pt(A+BKt)
> + σ2

wI +BStB
>,

(10b)

P1 � σ2
wI, (10c)

where (10c) comes from the assumed zero initial condition
on the state (that is, P0 ≡ 0). For generality, and to
make more clear the differences among the 3 synthesis
approaches, the generic policy GK(Kt, St) is considered.
However, as intuitive and confirmed later by the results,
the random excitation part St will be zero in this case.
The program in (10) is convex and can be recast as an
SDP with well known Linear Matrix Inequalities (LMI)
manipulations (Scherer and Weiland, 2000). First, (10a) is
upper bounded by replacing the argument of the summa-
tion in (10a) with Yt ∈ Snx+nu � 0, and the new objective
function (10a) is written by using Schur complement as:

min
GK

Tr

(
T−1∑
t=1

Yt +QPTQ
>

)
,[

Yt − R̄StR̄> Q̄tPt
PtQ̄

>
t Pt

]
� 0, ∀t ∈ [1, T − 1].

(11)

Note that Q̄t and Pt give rise to bilinear terms, thus
the auxiliary variable Zt = PtK

>
t is defined. As for the

inequalities (10b), they can be recast as coupled LMIs by
application of Schur complement. This leads to:

Program 1. Nominal design

min
GK

J = min
Yt,Pt,Zt,St

Tr

(
T−1∑
t=1

Yt +QPTQ
>

)
, (12a)Yt − R̄StR̄> [ Q 1

2 Pt

R
1
2 Z>

t

]
∗ Pt

 � 0, (12b)

[
Pt Ft
∗ Pt+1 − σ2

wI −BStB>
]
� 0, (12c)

Yt � 0, St � 0, Pt+1 � 0, ∀t ∈ [1, T − 1],

P1 � σ2
wI,

where Ft := PtA
>+ZtB

>. Solving Program 1 is conceptu-
ally equivalent to solving the DRDE and leads to identical
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results (see Fig. 2). The advantage of this formulation is
that it allows robustness constraints to be enforced and
the effect of exploration to be included.

3.2 Robust control design

In the unknown dynamics case, the only knowledge is that
(A,B) ∈ Ω(X,D0), where Â, B̂, and D0 are assumed
to be available from prior experiments or approximate
knowledge of the system. Therefore, the LMIs (12c) have
to be hold for all possible (A,B) inside Ω. To solve this
robust optimization problem, A and B are written as
a function of X, Â, and B̂ using definition (4b) and a
Schur complement is applied to overcome the nonlinearity
arising from BStB

>. Then, since X has to lie inside an
ellipsoidal set (4a), an extension of the S-lemma to the
matrix case, proposed in (Luo et al., 2004), is employed
and the following program is proposed.

Program 2. Robust control design

JWC = min
Yt,Pt,Zt,St,pt

Tr

(
T−1∑
t=1

Yt +QPTQ
>

)
, (13a)Yt − R̄StR̄> [ Q 1

2 Pt

R
1
2 Z>

t

]
∗ Pt

 � 0, (13b)

[ Pt 0
∗ St

]
Ht Gt

∗ Pt+1 − σ2
wI − ptI 0

∗ ∗ ptD0

 � 0, (13c)

Yt � 0, St � 0, Pt+1 � 0, pt ≥ 0,∀t ∈ [1, T − 1],

P1 � σ2
wI,

where Gt := -
[
Pt Zt

0 St

]
, Ht := -Gt

[
Â>

B̂>

]
, and pt is a mul-

tiplier from the S-lemma. The crucial feature of Program
2 is that the ellipsoid Ω(X,D0) defining the uncertainty
is fixed throughout the horizon. The consequence of this
is that exploration is not encouraged, since it has an
associated cost for which is not rewarded. In other words,
the generation of control inputs with a different goal than
just minimizing the performance objective will inevitably
incur in a higher cost (or regret). This argument has a clear
interpretation for St, where the LMIs (12b)-(13b) show
that non-zero St always determine an additional contribu-
tion to the cost via Yt. In fact, the random excitation part
St will be zero here (as it was commented on earlier for
the nominal case). As for Kt, this will correspond to the
stabilizing solution of the DRDE formed by taking at each
time-step the worst-case matrices (which are in principle
time-varying), i.e. it is the robust optimal policy.

3.3 Robust dual control design

In order to promote exploration, it is necessary to describe
how the feedback law contributes to obtain knowledge of
the system. More formally, a mapping between GK and
the uncertainty Dt at a given time t has to be formulated.
From its definition in (4), the following is proposed:

Dt =
1

cχσ2
w

t∑
l=1

[
Pl Zl
∗
(
Z>l P

−1
l Zl

)
+ Sl

]
. (14)

Note the explicit influence of St and Kt (via Zt = PtK
>
t )

on Dt, with the policy also having an indirect effect on Pt.

Due to the nonlinearity involving Zl and Pl in the lower
diagonal block, (14) cannot be readily used and thus
a convex relaxation is sought. To this end, the matrix
inequality in (Ferizbegovic et al. (2020), Lemma 1) is
employed here to formulate, for a given matrix K̄ ∈
Rnu×nx , the following lower bound on Dt:

Dt � D̂t =
1

cχσ2
w

t∑
l=1

[
Pl Zl
∗ Z>l K̄

> + K̄Zl − K̄PlK̄> + Sl

]
.

(15)
The bound is tight when K̄t = Kt. In this work K̄l is
chosen as the nominal controller from Program 1. The
following dual control design problem is then proposed.

Program 3. Robust dual control design

JWC = min
Yt,Pt,Zt,St,pt

Tr

(
T−1∑
t=1

Yt +QPTQ
>

)
, (16a)Yt − R̄StR̄> [ Q 1

2 Pt

R
1
2 Z>

t

]
∗ Pt

 � 0, (16b)

[ Pt 0
∗ St

]
Ht Gt

∗ Pt+1 − σ2
wI − ptI 0

∗ ∗ pt(D0 + D̂t)

 � 0,

(16c)

Yt � 0, St � 0, Pt+1 � 0, pt ≥ 0,∀t ∈ [1, T ],

P1 � σ2
wI.

The bilinearity between pt and D̂t is overcome by using
a line search on pt (assumed constant for simplicity, but
allowed to be time-varying).

Program 3 clearly shows that the policy GK can now
perform application-oriented exploration. The key enabler
is the policy-dependent and time-varying upper bound on
the true uncertainty D̂t in (16c). The feedback law is
indeed optimized so that the system’s response will allow
the worst-case matrices A and B to be eliminated from
the uncertainty set, to the benefit of the feasibility of the
LMIs (16c) and in turn of the achievable cost. Exploration
itself, however, has a cost and thus trade-offs will arise. The
cost associated with St is seen directly in (16b), while that
related to Kt can be interpreted as due to the deviation
of Kt from the robust optimal policy. The first trade-off
is on which part of the policy GK(Kt, St) should be used
for exploration, whether the state-feedback, the random
excitation or both. Another trade-off is on which portion
of the horizon exploration should be pursued (reminiscent
of the scenario in Figure 1). It is important in this regard to
note that a conceptually similar (convex) formulation for
the mapping (15) between the policy and the uncertainty
Dt was proposed in (Ferizbegovic et al., 2020). However,
while here the cost to pay to keep adding contributions
to D̂t is well captured in Program 3, it is not clear how
this can be accounted for in an infinite horizon setting,
where J is effectively an averaged cost and thus does not
depend on how many terms (i.e. samples) are featured in

the summation leading to D̂t.
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4. NUMERICAL EXAMPLES

Consider the following system:

A =

[
0.18 0.1 0

0 0.18 0.04
0 −0.04 0.16

]
, B =

[
0 1

0.6 0
0 0.6

]
. (17)

with cost matrices Q = Inx
and R=blkdiag(10,1), σ2

w =
0.5, and δ = 0.05. First, a Coarse-ID estimate of the
system is obtained through 100 simulated roll outs (each
of length Tr = 5) with ut ∼ N (0, σ2

uInx
), σ2

u = 1. Figure 2
shows the time-varying gains of the feedback matrix Kt

optimized on the horizon [1, 100] using different design
schemes: KDRDE by solving the DRDE associated with
(Â, B̂) (3); KNom by solving Program 1 for (Â, B̂); KRob

by solving Program 2 for (Â, B̂,D0). The SDP programs
are solved using YALMIP (Löfberg, 2004) in conjunction
with the solver SDPT3 (Tutuncu et al., 2003).

Fig. 2. Optimal controllers for the nominal and robust
(fixed uncertainty) problem.

The first observation is that, as expected, KDRDE coin-
cides with KNom. Moreover JDRDE

∼= JNom
∼= 80, where

the former was obtained from the known closed form
solution JDRDE =

∑T−1
t=1 E

(
w>t Xt+1wt

)
(where Xt is the

stabilizing solution of the DRDE, Bertsekas (2005)), while
JNom was directly provided by Program 1. As for the
robust design, which achieved JRob

∼= 240, note that KRob

is generally far from the optimal controller for the nominal
plant because of the requirement to guarantee robustness
(at the expense of nominal performance).

The dual control policy, designed using Program 3, is
illustrated in Figure 3 by comparing the state-feedback
dual controller KDc with the nominal KNom, and also by
reporting the covariance St of the excitation input. The
timestep cost J tot

t , together with its two contributions
Jxt = E

[
x>t
(
Q+K>t RKt

)
xt
]

and Jet = E
[
e>t Ret

]
, is

finally shown in the bottom right plot.

There is a clear exploration action taking place in the first
part of the finite horizon, performed only by the state-
feedback Kt, while the covariance St is practically zero.
This can also be appreciated from the plot with the costs
where Jet

∼= 0, J tot
t = Jxt , and the latter has an initially

increasing and later decreasing trend, before achieving
a constant value. Indeed, since the cost would increase
linearly in the optimal finite horizon problem, this can be
read as a qualitative indication that, after approximately
20 timesteps, Kt has stopped exploring and is only devoted
to (robust) exploitation.

Fig. 3. Dual controller and cost for system (17).

In order to emphasize the structured property of the
exploration actions, a different system is considered next:

A =

[
0.9 0.5 0
0 0.9 0.2
0 −0.2 0.8

]
, B =

[
0 .1

0.6 0
0 0.6

]
. (18)

Note that the system has now all its eigenvalues very close
to the unit disk, and that the least damped mode is close
to become uncontrollable.

Coarse-ID estimates of the system are obtained as for (17),
and the dual control policy is shown in Figure 4.

0 20 40 60 80 100

-0.1

-0.05

0

0 20 40 60 80 100

-0.4

-0.2

0

0 20 40 60 80 100

-0.1

-0.05

0 20 40 60 80 100

-0.4

-0.3

-0.2

0 20 40 60 80 100

0
0.1
0.2
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0 20 40 60 80 100

-0.4

-0.3
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0 20 40 60 80 100
0

5

0 20 40 60 80 100
0

50

100

Fig. 4. Dual controller and cost for system (18).

Exploration actions can again be detected in the first part
of the horizon, however this time they are performed by
both the state-feedback Kt and the covariance St. Two
types of trade-offs arising in the dual control problem
can be appreciated by comparing the different trends
in Figs. 3-4. The first is the one between exploration
and exploitation, captured by the fact that the former
only lasts for a certain fraction of the total mission. The
second trade-off concerns the choice, for the purpose of
exploration, between Kt and St. It is indeed observed,
as expected, that whenever it is possible to explore in
a controlled manner (i.e. without resorting to random
excitation), this is the preferred way. The best exploration
strategy inevitably depends on the true (unknown) plant
to control, for example its controllability and margin of
stability. Figs. 3-4 also show that, unlike the nominal
case where there is no sensible variation of the optimized
controller within the horizon (except for the very last
timesteps, recall Fig. 2), the dual task for which the policy
GK(Kt, St) is designed makes the most important features
of the problem (e.g. Kt, St, timestep costs J tot

t ) inherently
time-varying and thus this type of dual control problem
should be studied in a finite horizon setting.
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5. CONCLUSIONS

The paper proposes a dual control synthesis approach for
the finite horizon LQ problem. A control law is designed
with the twofold objective of minimizing the worst-case
quadratic cost in the face of an ellipsoidal uncertainty
set while reducing it based on the system response. This
is achieved by formulating an application-oriented, since
the effect of the policy on the ellipsoidal set is captured
in the optimization problem, and safe, since the designed
controller is robust, exploration action. SDP programs to
solve the nominal, robust (with fixed uncertainty) and
dual control problems are proposed, and their application
is shown. The resulting exploration encompasses different
types of trade-offs and shows how the optimal actions
depend on the features of the true plant.
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APPENDIX

Proof of Lemma 1. Recall from Section 3 the defini-

tions: Pt = E
[
xtx
>
t

]
, Q̄t :=

[
Q

1
2

R
1
2Kt

]
, R̄ :=

[
0

R
1
2

]
. Define

Mt = Q + K>t RKt. By virtue of the chosen policy (7), J
can be rewritten as:

J = E

[
T−1∑
t=1

(
x>t Mtxt + e>t Ret

)
+ x>TQxT

]
(19)

Consider the first term in the summation (i.e. the one that
depends on xt). Simple matrix manipulations give it as:

E

[
T−1∑
t=1

x>t Mtxt

]
= E

[
x> (IT−1 ⊗Mt)x

]
=E

[
Tr
(
xx>IT−1 ⊗Mt

)]
= Tr

(
E
[
xx>

]
IT−1 ⊗Mt

)
(20)

where x ∈ R(T−1)nx denotes the vector obtained stacking
the states xt, W = E

[
xx>

]
∈ S(T−1)nx denotes the

covariance matrix of the state over the horizon and ⊗ is
the Kronecker product. It follows that:

Tr (WIT−1 ⊗Mt) = Tr
((
IT−1 ⊗ Q̄t

)
W
(
IT−1 ⊗ Q̄t

)>)
(21)

Due to the block diagonal structure of
(
IT−1 ⊗ Q̄t

)
, it

follows that:

Tr
((
IT−1 ⊗ Q̄t

)
W
(
IT−1 ⊗ Q̄t

)>)
= Tr

(
T−1∑
t=1

(
Q̄tPtQ̄

>
t

))
(22)

The contribution to the cost only depends on the diagonal
terms of W, which are the covariance matrices Pt at the
various timesteps:

E

[
T−1∑
t=1

x>t Mtxt

]
= Tr

(
T−1∑
t=1

(
Q̄tPtQ̄

>
t

))
(23)

The contribution of the state to the cost at t = T directly
follows from (23) specializing it to the case when u is not
penalized and thus Q̄T ≡ Q. Therefore:

E
[
QPTQ

>] = Tr
(
QPTQ

>) (24)

Finally, the proof for the term depending on et in the cost
(19) follows along the same lines. This is further simplified
by the fact that et are uncorrelated for different times, and
thus their covariance matrix in the horizon has the block
diagonal structure (IT−1 ⊗ St).
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