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Abstract: Drug resistant pathogens are a global public health threat and their control have
become a challenging task. In this paper, a mathematical model which describes the general
dynamics of microbial resistance is employed. Utilizing a two-strain bacterial population, notions
from control engineering and positive switched systems are used to develop control strategies
aimed at minimizing the appearance of drug resistant bacteria within the host. Based on the
Lyapunov function argument, a switching strategy can be found to ensure stability of the
eradication equilibrium under given conditions. Numerical simulations compare switching under
different feedback controls and validate the use of the switching strategy in general for the
proposed model of bacterial resistance mitigation.
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1. INTRODUCTION

The alarming increase in morbidity and mortality rates
attributed to drug-resistant infections has raised global
concern in control and prevention of resistance related
infections. Proposed treatment strategies to tackle this
problem have been the subject of investigation of several
mathematical modelling evaluations. Tackling resistance,
however, will stem from understanding the mechanisms
leading to resistance evolution at within-host level.

In the literature, studies of infections have been conducted
using the notion of switched positive dynamical sys-
tems (Di Giamberardino and Iacoviello, 2018; Hernandez-
Vargas et al., 2011). A switched positive system generally
refers to a hybrid dynamical system consisting of a family
of continuous-time subsystems and a rule which brings
about the switching between them. Interest in switched
systems has increased recently due to their applications in
diverse areas such as economics, engineering and biology
to mention a few (Liberzon, 2003). The feedback stabi-
lization of such systems has received a lot of attention
and numerous tools have been developed to make such
analysis. In particular, the use of control Lyapunov func-
tions have gained wide popularity in studying the stabiliza-
tion of both linear and nonlinear switched systems (Zhao
et al., 2012; El-Farra et al., 2005). Studies show that for
switched systems, control Lyapunov functions provide a
robust feedback solution for achieving stability (Blanchini
et al., 2015). The notion of switched positive systems has
also been applied in the context of infections (Di Giamber-
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ardino and Iacoviello, 2018; Hernandez-Vargas et al., 2011)
and in epidemiological systems (Rami et al., 2013).

In this work, we use a mathematical model which captures
the mechanisms of resistance described in Hernandez-
Vargas and Olaru (2019). This model describes the inter-
action between genetic bacterial strains and helps tailor
appropriate interventions. Employing notions in control
engineering and positive switched systems, we develop a
control technique based on Lyapunov functions to min-
imize the appearance of drug resistant bacteria within
the host. The rest of this paper is organised as follows:
description of the model in Section 2, analysis of the
model without switching in Section 3, Lyapunov stability
analysis in Section 4 and description and simulations of
the switched system in Section 5. The paper ends with a
conclusion in Section 6.

2. RESISTANCE MODELLING

This paper considers a particular case of the mathematical
model proposed in Hernandez-Vargas and Olaru (2019)
for describing the global dynamics of antibiotic resistance.
The switched system is as follows

ẋi(t) = ρi,σ(t)xi(t)

(
1− xi(t)

K

)
− δxi(t)

+µ
∑
j

(Mj,ixj(t)−Mi,jxi(t))
(1)

defined for all t ≥ 0, and where xi : i = 1, 2, 3, ..., n with
n represent different bacterial strains, µ is the mutation
rate, δ is the bacterial clearance, ρi is the proliferation
rate of the strain i, Mi,j is the mutation from strain i to
strain j, K defines the maximum carrying capacity and
σ(t) denotes the switching signal based on the treatment
policy such that σ(t) = σj for j ∈ {1, 2, · · · , N} with
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N representing the number of treatment policies. Further
qualitative characterisation of the model with and without
switching is considered in the subsequent sections.

3. MODEL ANALYSIS WITHOUT SWITCHING

Here we consider the model where there is no switch
between therapies. With the use of therapy, it is possible
for a strain susceptible to one drug to generate resistant
strains which are susceptible to another drug by a phe-
nomenon known as collateral sensitivity Pál et al. (2015).
Over time, the newly developed susceptible strains can also
generate strains which are resistant to the current drug but
susceptible to a different drug. This continuous occurrence
of resistant and susceptible strains can eventually lead to
the appearance of resistant strains susceptible to the initial
drug used.

Our aim is to illustrate a hypothetical scenario of this phe-
nomenon using a two-strain bacterial population, x1 and
x2, where each strain represents a family of strains sharing
the same susceptibility to a given drug. Assuming that
each mutation changes the susceptibility of the bacteria

from one family to the other, the connection between the
families can be written by the following symmetric matrix:

M =

[
0 1
1 0

]
.

Taking K = 1, the system of equations (1) can be re-
written according to the above assumptions as:

ẋ1 = [−δ + ρ1 (1− x1)]x1 + µ(−x1 + x2) (2a)

ẋ2 = [−δ + ρ2 (1− x2)]x2 + µ(x1 − x2). (2b)

All parameters and initial conditions are assumed to be
non-negative so that x1(0) ≥ 0 and x2(0) ≥ 0.

3.1 Equilibrium points and stability

Equilibrium points The substitution method is used to
find the equilibrium points of the system. Equating the
right hand side of Eqns (2) to zero, an expression for
x2 in terms of x1 is obtained from Eqn (2b) which is
substituted into Eqn (2a) to obtain a quartic polynomial,
H(x1) described explicitly as :

H(x1) =
x1 (−µρ1x1(δ + µ))

µ2
+
x1 (ρ1 (δ + µ− ρ2) + ρ2(δ + µ)− δ(δ − 2µ))

µ

−
x1

(
ρ2

(
ρ1 (x1 − 1) (2x1(δ + µ)− µ) + x1(δ + µ)2 + ρ2

1 (x1 − 1) 2x1

))
µ2

and

x2(x1) =
δx1 + µx1 + ρ1x

2
1 − ρ1x1

µ
.

H(x1) and x2(x1) are plotted on the same axis. The
intersection of H(x1) with the abscissa gives the x1-
components of the equilibrium points. The coordinates
of these intersection points to the curve x2(x1) give the
corresponding x2-components and hence characterize the
equilibrium points. This is illustrated in Fig. 1(a), which
shows four equilibrium points: the trivial equilibrium point
E1(0, 0), where both populations are zero, two others
E2, E3 and a coexistence equilibrium at E4(k1, k2), where
both populations are positive.

Depending on the parameter values, only two or all four
equilibrium points are admissible: the origin (which always
exists) and (under certain conditions) a coexistence equi-
librium in the positive orthant. The points (E2 and E3) are
not admissible because the values of x1 and x2 are negative
at E2 and E3 respectively. Hence, the only biologically
meaningful equilibrium points are the origin E1 and the
positive coexistence equilibrium at E4. A vector field plot
of system (2) depicts these equilibrium points and gives
a hint of the nature of their stability. This is shown in
Fig. 1(b). Fig. 1(c) illustrates the dependence of E4 on
parameter values.

Stability The origin, E1(0, 0) is a common equilibrium
point which always exists independent of the parameters
thus, making it the point of interest from the stability
point of view. Since E1(0, 0) is a common equilibrium
point, once its stability is addressed, the stability of E4

can be inferred. The Jacobian matrix for Eqn (2) is

J(x1,x2) =

(
−δ − µ+ ρ1 − 2ρ1x1 µ

µ −δ − µ+ ρ2 − 2ρ2x2

)
with eigenvalues

λ1,2 =
1

2
[−2δ − 2µ+G(x1, x2)]±

√
4µ2 −G(x1, x2)2

(3)
where G(x1, x2) = 2ρ1x1 + ρ1 − 2ρ2x2 + ρ2

At the origin, the trace and determinant of the Jacobian
matrix are:

τ = −2(δ + µ) + ρ1 + ρ2,

∆ = δ2 + µ(−ρ1 − ρ2) + δ(2µ− ρ1 − ρ2) + ρ1ρ2.

Thus, for stability of E1(0, 0), the restriction of τ < 0 and
∆ > 0 is satisfied by the conditions:

C1 : µ >
(δ − ρ1)(δ − ρ2)

−2δ + ρ1 + ρ2
= µc and C2 : 2δ > ρ1 + ρ2

(4)
where µc is a critical mutation rate.

It follows that whenever both ρ1 > δ and ρ2 > δ, then
µc > 0 and −2δ+ρ1+ρ2 > 0. The former is a contradiction
to C2 and consequently E1 is not stable. However, when
both ρ1 < δ and ρ2 < δ, then −2δ+ρ1+ρ2 < 0 and µc < 0.
Thus E1 is stable for any value of µ > 0. Furthermore, if
either ρ1 > δ and ρ2 ≤ δ or ρ1 ≤ δ and ρ2 > δ but their
sum (ρ1 + ρ2) still satisfies C2, then (δ − ρ1)(δ − ρ2) < 0
and −2δ+ ρ1 + ρ2 < 0 so µc > 0. The origin is not always
stable in this case and there exist some values of µ which
make E1 stable.
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Fig. 1. Graphical view of equilibrium points for system (2).
(a) Equilibrium points as a result of substitution
method. Red lines: trace of intersection points to
x2(x1) curve. (b) Vector fields around the four equi-
librium points; two with non-negative coordinates (E1

and E4) and two with negative components (E2 and
E3). (c) Dependence of E4 on parameters. Red dots
represent the value of E4 for µ = 0 and blue dots
for µ > 0. The green lines show the translation of
equilibrium point (k1, k2) from µ = 0 to µ > 0. If
ρ1 = ρ2, E4 is unchanged for both µ = 0 and µ > 0.

Proposition 1. The stability of E4 is complementary to
that of E1 in that when E1 is stable, E4 does not exist
but whenever E4 exists, E1 is unstable. In addition, the
points E2 and E3 are saddles if they exist.

Note that the evolution of E2 and E3 as a function of
changes in µ could lead to the escape of trajectories from
the positive orthant and thus, a study of the positivity
of the solutions is necessary. The feasible region of state
space is required to be positive since the system is based
on populations. The following subsection investigates the

positivity of solutions by means of the invariance of the
feasible region.

3.2 Set-theoretic characterisation of behaviour

The notion of positive systems relates to the positivity of
solutions of the system. We aim to prove the positivity of
the system (2) by means of the invariance of the state-
space region of biological interest.

Proposition 2. (Positivity of solutions). Solutions of the
system with non-negative µ remain non-negative for any
positive initial conditions in R2 and for all time t > 0. 2

Proof : Let xi(t) > 0 ∀ t > 0 and non-negative values of µ.
From system (2) we have;

ẋi ≥ xi (−δ − µ+ ρi(1− xi))
with solution

xi(t) ≥
(ρi − δ)

ρi

(
1 +

(
(ρi−δ)
x0
− 1
)
e−t(ρi−δ−µ)

) (5)

for all ρi ≥ 0 , δ ≥ 0.

When ρi > δ, it follows (ρi−δ)
ρi

> 0.

When ρi ≤ δ all components are converging monotonically
and limt→∞ xi(t) = 0.

This proves that system (2) is non-negative ∀t > 0. �

Let us now consider the region of invariance with respect
to system (2) .

Definition 1. (Blanchini (1999)). A set X ∈ Rn is posi-
tively invariant with respect to the system ẋ = f(x(t)) if
∀ x0 ∈ X, the solution x(t, x0) satisfies x(t, x0) ∈ X ∀ t >
0.

Proposition 3. Given a set of positive parameters: ρi, δ and
µ, the set

Ω =
{

(x1, x2) ∈ R2 | 0 ≤ x1 ≤ k1, 0 ≤ x2 ≤ k2

}
(6)

is positively invariant with respect to system (2) above. 2

Proof : Consider the general dynamical system

ẋ = F (x) (7)

with F : R2 → R2 and let X be the set of all initial
conditions in R2. Following Nagumo’s theorem, assume
that for each initial condition in X , there is a globally
unique solution and let Ω ⊆ X be a closed and convex
set. The boundary of the set Ω is denoted as ∂Ω and the
tangent cone of Ω at x is denoted as TΩ(x). Then, the set
Ω is positively invariant for the system if and only if

F (x) ∈ TΩ(x), ∀ x ∈ ∂Ω,

Thus, if for every x ∈ ∂Ω, the derivative ẋ(t) points inside
the set Ω, then the trajectory x(t) remains in Ω (Blanchini,
1999).

In the particular case of Ω in Eqn (6) and ẋi in Eqn

(2) with F (x) =

[
f1(x)
f2(x)

]
, ∂Ω is defined by the four line

segments (see Fig. 1);
A = {(x1, x2) | 0 < x1 < k1, x2 = 0} ,
B = {(x1, x2) | x1 = 0, 0 < x2 < k2} ,
C = {(x1, x2) | 0 < x1 < k1, x2 = k2} and
D = {(x1, x2) | x1 = k1, 0 < x2 < k2}.
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To show that all points along ∂Ω point inwards, one has to
use normals that point inside Ω by using the dot product.
However, we recall Proposition 2, where it was shown that
the system is positive and hence the points along the
boundaries defined by A and B are proved to point inside
Ω. Thus, it remains to show that points along C and D
also point inside Ω.

For C, x2 is constant and x1 changes from 0 to k1 with
the normal vector nC = (0,−1). For any point p ∈ [0, k1],

let X =

[
p
k2

]
be the initial conditions. Then,

F (X)T .nC = F

([
p
k2

])T
.

(
0
−1

)
=

[
f1

([
p
k2

])
f2

([
p
k2

])]
.

(
0
−1

)
=−f2

([
p
k2

])
,∀p.

It remains to show now that

F (X)T .nC = −f2

([
p
k2

])
≥ 0,∀p ∈ [0, k1]. (8)

From Eqn (2b),

ẋ2 = [−δ + ρ2(1− x2)]x2 + µ(−x1 + x2). (9)

Since (k1, k2) are roots of the system (2),

ẋ2 = [−δ + ρ2(1− k2)] k2 + µ(−k1 + k2) = 0. (10)

Thus,

[−δ + ρ2(1− k2)− µ] k2 + µk1 = 0

[−δ + ρ2(1− k2)− µ] k2 =−µk1 (11)

Now from Eqn (8),

−f2

([
p
k2

])
=− [ρ2k2 (1− k2)− δk2 − µk2 + µp]

=− [ρ2k2 (1− k2)− δk2 − µk2]− µp
=−(−µk1)− µp from Eqn (11)

= µ(k1 − p) > 0 when p ∈ (0, k1)

The value of the dot product being positive, the vector
fields point in the same direction as a normal field (i.e.
inside the domain Ω).

For D, x1 is constant and x2 changes from 0 to k2 with the
normal vector nD = (−1, 0). Based on the same reasoning,
similar results are obtained:

F (X)T .nD = f1

([
k1

p

])
> 0,∀p ∈ [0, k2].

and the vector fields point inside the domain.

Eventually, since all points along ∂Ω point inwards, the
set Ω is positively invariant with respect to system (2). �
Corollary 1. In the case when there is no mutation, that
is when µ = 0, along the boundaries C and D,

f2

([
p
k2

])
= 0 and f1

([
k1

p

])
= 0

respectively. Therefore the set Ω is positively invariant
with respect to system (2). �

The invariant region Ω bounded by the line segments
A,B,C,D is illustrated in Fig. 1.

4. LYAPUNOV STABILITY ANALYSIS

We have established that all solutions of the system with
positive initial conditions are positive and remain in the
positively invariant region Ω for all t > 0. We have also
shown that the system converges to either the origin or the
coexistence equilibrium point. However, the convergence
of interest is the one at the origin which indicates the
eradication of both strains of bacteria.

The stability of the origin is analysed in this section using
Lyapunov’s theory on stability of dynamical systems. The
following lemma from Khalil (2002) states Lyapunov’s sta-
bility theorem for a general system of ordinary differential
equations.

Theorem 1. (Lyapunov theorem stability (Khalil, 2002)).
Let x̄ be an equilibrium point for the system (7) and
D ⊂ Rn be a domain containing x̄. Let V : D → R be
a continuously differentiable function such that

V (x̄) = 0 and V (x) > 0 in D \ {x̄} (12)

V̇ (x)≤ 0 in D (13)

Then, x̄ is stable. Moreover, if

V̇ (x) < 0 in D \ {x̄} (14)

then x̄ is asymptotically stable. A continuously differen-
tiable function V (x) satisfying these conditions is called a
Lyapunov function. �

Using a Lyapunov function, we can determine the Lya-
punov stability of the equilibrium point, E1 for system (2).

Theorem 2. The system (2) under the conditions (4) has
x̄ = 0 as stable equilibrium with a domain of attraction
ΩD = {(x1, x2) ∈ Ω | (x1, x2) 6= (k1, k2)}. 2

Proof: Starting from the positive invariance of Ω ⊂ R2, we
construct a candidate Lyapunov function in the form

V (x) = (x1 − x̄1)2 + (x2 − x̄2)2. (15)

Over the domain ΩD, V (x) is continuously differentiable,
V (x̄) = 0 and V (x) > 0 for all x 6= x̄. Thus V (x) is

a valid Lyapunov candidate. The derivative, V̇ (x) of the
Lyapunov function V (x) is calculated along the trajecto-
ries as

V̇ (x) = 2(x1 − x̄1)ẋ1 + 2(x2 − x̄2)ẋ2 (16)

Clearly, V̇ (x) = 0 for x = (0, 0) and x = (k1, k2). Next, we
consider the Lyapunov stability of the origin and develop
Eqn (15) for x ∈ ΩD and the equilibrium point x̄ = (0, 0)

V̇ (x) = 2x1ẋ1 + 2x2ẋ2

= 2x1 [(−δ + ρ1 (1− x1))x1 + µ(−x1 + x2)]

+ 2x2 [(−δ + ρ2 (1− x2))x2 + µ(x1 − x2)]

= 2x2
1(ρ1 − δ) + 2x2

2(ρ2 − δ)
− 2(ρ1x

3
1 + ρ2x

3
2)− 2µ(x1 − x2)2

Let µ be expressed in terms of the critical mutation rate
µc from Eqn (4) as µ = µc+ ε. Substituting this into V̇ (x)
yields:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16273



V̇ (x) = 2x2
1(ρ1 − δ) + 2x2

2(ρ2 − δ)− 2
(
ρ1x

3
1 + ρ2x

3
2

)
−2(x1 − x2)2

(
(δ − ρ1)(δ − ρ2)

−2δ + ρ1 + ρ2
+ ε

)
=−2ρ1x

3
1 − 2ρ2x

3
2 − 2εx2

1 − 2εx2
2 + 4εx1x2

+
2(δ − ρ1)2x2

1 + 2(δ − ρ2)2x2
2 + 4(δ − ρ1)(δ − ρ2)x1x2

−2δ + ρ1 + ρ2

=−2ρ1x
3
1 − 2ρ2x

3
2 − 2ε(x1 − x2)2

+
2((δ − ρ1)x1 + (δ − ρ2)x2)2

−2δ + ρ1 + ρ2

When C1 is satisfied then 2((δ−ρ1)x1+(δ−ρ2)x2)2

−2δ+ρ1+ρ2
< 0. When

C2 is satisfied then ε > 0 and −2ε(x1 − x2)2 < 0.

Therefore satisfying both conditions (4) ensures that

V̇ (x) < 0, ∀ x ∈ Ω. �

When any of the conditions (4) are not satisfied, there
exists at least one combination of (x1, x2) ∈ ΩD which
makes the expression (16) non-negative, thus invalidating
the stability of the origin over this domain.

5. SWITCHING TO SCHEDULE THERAPIES

5.1 Model description with therapies

By considering the switched system (2), we introduce here
a mechanism for improving the stabilisation and the rate
of convergence of the system (2) when more than one
treatment policy is employed.

Definition 2. A switching signal is defined as the con-
secutive choice between therapies at the rate T and is
represented by a piecewise constant function

σ(t) : R→ {σ1, σ2, . . . , σN}
such that σ(t) is constant for all switch times

tk ∈ [kT, (k + 1)T )

and for k = 0, 1, 2, . . .

The objective next is to employ switching for the gradual
eradication of resistant strains in a system on the long
term based on a feedback decision. We denote a periodic
switching as the switching between therapies at regular
intervals.

5.2 Switching based on control Lyapunov function

The use of the Lyapunov function serves as a tool for
improving the convergence. Based on the Lyapunov func-
tion argument, we can have a switching strategy which
ensures the stability of the origin under a given choice of
the parameters.

Proposition 4. The system (2) has the origin as a stable
equilibrium if ∀x ∈ ΩD there exists at least one therapy
σi such that V̇ (x, σi) < 0. 2

Proof. Let the Lyapunov function defined as in Eqn (15)
be with respect to the dynamics of system (2) changing
V (x) into V (x, σ). If for every x ∈ ΩD there is at least

one therapy σi that yields V̇ (x, σi) < 0 at any switching
time, we can construct a switching policy by choosing the
therapy such that

σ(t) = arg min
σi

V̇ (x, σi).

This constructive solution proves the existence of a switch-
ing policy σ(t), such that V̇ (x, σ(t)) < 0,∀x ∈ ΩD. �

Hence, the system has a stable equilibrium at the origin
if there exists a ρi,σ which makes V̇ (x, σ) < 0. Thus,
given two configurations both with the common equilib-
rium point (0, 0), a policy based on the Lyapunov func-
tion derivative can be used to stabilize the system pro-
vided that at least one of the configurations guarantees
V̇ (x(t), σ(t)) < 0. In addition, switching based on the Lya-
punov function derivative can lead to faster convergence
than periodic switching. In the following, some scenarios
of these conditions are discussed.

5.3 Discussion on switching therapies

If the switching system (2) has a common Lyapunov
function, then the system is asymptotically stable at
the origin for any switching signal σ(t). To illustrate
this, we consider three different scenarios with different
proliferation rates and under two treatment policies (see
Table 1). For all simulations, an initial condition vector
x = [103, 10] is chosen and the following parameter values
are used: δ = 0.25,K = 105, T = 10 days and µ = 10−4.

Table 1. Proliferation rates for bacterial strains
under therapy combinations

Case Therapy x1 x2 E1

1 1 ρ1,1 = 0.2 ρ2,1 = 0.1 Stable
2 ρ1,1 = 0.1 ρ2,1 = 0.2 Stable

2 1 ρ1,1 = 0.5 ρ2,1 = 0.1 Unstable
2 ρ1,1 = 0.1 ρ2,1 = 0.2 Stable

3 1 ρ1,1 = 0.35 ρ2,1 = 0.1 Unstable
2 ρ1,1 = 0.1 ρ2,1 = 0.35 Unstable

In case 1, both subsystems are asymptotically stable at the
origin. Therefore, any switching policy leads to eradication
of both strains. In case 2, the first subsystem is unstable
at the origin but the second is stable. Switching periodi-
cally between therapies will not stabilize the entire system
unconditionally. In cases 1 and 2, switching based on the
Lyapunov function argument not only ensures convergence
to the origin but also achieves convergence at a faster
rate compared to switching periodically between policies.
We can see in Fig. 2(a) and 2(b) switching results for
cases 1 and 2 respectively. For case 3, the two subsys-
tems are not stable at the origin and thus, using the
policies independently does not lead to eradication. How-
ever, switching between the two policies periodically leads
to a convergence at the origin. Moreover, the Lyapunov
switching converges to such a periodic stabilizing sequence
implicitly and additionally ensures a better convergence of
the closed-loop system (see Fig. 2(c)).

For this last case, subsystems a priori unstable at the origin
can be brought to convergence under the Lyapunov switch-
ing argument based on feedback. Moreover, an analysis
of the Lyapunov function derivative shows that a sliding
mode can occur at the intersection of the two configuration
as shown in Fig. 3(b). Thus, the feedback switching can
be seen as a reaching law to the sliding surface. Once the
sliding mode is reached, the control can be completed with
a sliding law defined based on periodic switching.
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Fig. 2. Illustration of therapy switching for all three cases.
(a) Case 1; (b) Case 2; (c) Case 3. Solid lines: periodic
switching. Dashed lines: Lyapunov based switching.
Blue lines: strain x1. Red lines: strain x2.

tr

(b)

(a)

x(0)

Fig. 3. A sliding mode for case 3 occurs at the intersection
of V̇ (x1, x2) for therapy 1 and 2 when the minimum of

V̇ (x1, x2) for each pair (x1, x2) with respect to both
therapies is plotted. The right hand side shows the
values of V̇ (x1, x2) under therapy 1 and the left hand

side shows the values of V̇ (x1, x2) under therapy 2. tr
denotes the time to reach the sliding mode.

6. CONCLUSION

Switching therapies can be considered as a mechanism
for improving the stabilisation and rate of convergence of

a positive system when more than one treatment policy
is used. For the particular case of antibiotic resistance
infections, switching can be employed for the gradual
eradication of resistant strains on the long term based on a
feedback decision. Our numerical simulations suggest that
switching between therapies based on the switching rule
from the Lyapunov function leads to a better convergence
at the origin than an open-loop periodic switching.

A key biological aspect of the proposed control-theoretical
approach is that in a first stage one needs to identify
the distribution of the bacterial population. Based on this
initial information, a switching trajectory (see Fig. 3(a))
can be computed to indirectly define a sliding mode
(see Fig. 3(b)). Once on the sliding mode, a periodic
switching between therapies can be employed to eradicate
the bacterial colony. In conclusion, this approach can be
used as an instrument in the future to guide therapies
to tackle bacterial resistance with a minimal collection of
information.
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