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Abstract: This paper studies the distributed formation control of multiple differential-drive
robots. To solve such problem, we propose a novel class of distributed population dynamics,
formulated in discrete-time, and we obtain sufficient conditions to guarantee asymptotic stability
in practical implementations where computations are necessarily discrete. Moreover, we apply
the proposed dynamics to a real multi-robot platform where robots achieve geometric formations
under partial information and limited communication capabilities. Our proposed method
achieves comparable and even better performance than other distributed methods, and displays
some invariance properties that make it attractive for several other engineering applications.
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1. INTRODUCTION

The automatic control of multi-robot systems is an im-
portant research topic in the field of distributed robotics.
When compared to a single robot, a coordinated team
of robots can provide several advantages in surveillance,
transportation, exploration and even rescue applications.
However, when it comes to the design of automatic con-
trollers, the decentralized nature of multi-robot systems
imposes some significant challenges for control engineers.
Factors such as partial information and restricted com-
munication forbid the application of centralized methods
to multi-robot control, and require the design of novel
control techniques that can cope with the informational
constraints of distributed systems.

In this work, we focus on the distributed formation control
of multiple mobile robots under a leader-follower scheme.
More precisely, a leader robot moves through a pre-defined
trajectory and some follower robots have to follow the
leader while maintaining a desired geometric formation.
Moreover, the problem is hardened by the fact that not all
followers have information about the leader. Typically, this
problem has been solved using the consensus algorithm of
Olfati-Saber et al. (2007), however, some recent researches
have solved this problem using distributed nonlinear model
predictive control (Xiao and Chen (2019)); designing dis-
tributed estimators for the leader’s state (Miao et al.
(2018)); and applying game-theoretical continuous-time
distributed population dynamics (Barreiro-Gomez et al.
(2016)). As we show in this paper, the formation control
problem can be formulated as a distributed optimization
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problem whose solution leads to the achievement of a de-
sired collective behavior among the robots. Following the
approach of Barreiro-Gomez et al. (2016), in this work we
apply population dynamics to solve the distributed forma-
tion control problem. In contrast with the previous work,
however, we propose a novel class of dynamics, formulated
in discrete-time, and we provide sufficient conditions to
guarantee the asymptotic stability of our method in prac-
tical implementations where computations are necessarily
discrete. Furthermore, we apply our proposed method to
a real multi-robot platform composed by six e-puck v2
robots, and we compare it against the classical consensus
algorithm of Olfati-Saber et al. (2007), and against a game-
theoretical distributed optimization method proposed by
Li and Marden (2013). Our approach not only outper-
forms the other game-theoretical method, but also achieves
a performance comparable to the consensus algorithm.
Moreover, our method displays some invariance properties
that make it suitable for other types of distributed con-
trol applications including distributed resource allocation
(Quijano et al. (2017)). In summary, this paper proposes a
novel class of discrete-time distributed population dynam-
ics as a game-theoretical method for decentralized control,
and depicts the application of the method to a real multi-
robot platform.

The rest of this paper is organized as follows. In Section
2 we present the problem statement and the general
structure of the proposed control architecture. In Section
3 we explain our proposed method based on discrete-
time distributed population dynamics, and we develop the
corresponding stability analysis. Afterwards, in Section 4
we show the application of our theoretical developements
to a real multi-robot platform. Finally, Section 5 concludes
the paper and presents some future directions.
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2. PROBLEM STATEMENT AND CONTROL
ARCHITECTURE

In this work we study the distributed formation control of
multiple differential-drive robots that move over R2 under
a leader-follower scheme. For such, we consider a set of
n robots (one leader and n − 1 followers) and define the
following notations: R = {1, 2, · · · , n} is the entire set
of robots, ` = 1 is the index of the leader robot, and
F = {2, 3, · · · , n} is the set of follower robots. As robots
can move over R2, the location of the i-th robot at time k
is given by the tuple (xi[k], yi[k]) where xi[k], yi[k] ∈ R for
all i ∈ R and all k. In this work, we assume that the leader
robot follows a pre-defined trajectory within a rectangle of
R2. Without loss of generality, such rectangle is defined as

X =
{

(x, y) ∈ R2
+ : x < βx, y < βy

}
, (1)

where x and y denote the coordinate dimensions of R2; R2
+

denotes the strictly positive quadrant of R2; and βx and
βy are positive scalars that define the width and height of
the rectangular region X , respectively. On the other hand,
the goal of the follower robots is to follow the leader while
maintaining a given geometric formation within X . In this
work, we assume that robots can communicate with each
other through bidirectional communication channels. In
general, the interaction between robots can be modeled as
an undirected time-varying graph G[k] = (R, E [k],A[k]),
where the set of robots R is the set of nodes; E [k] is
the set of communication links between the robots at
time k; and A[k] = [aij [k]] is an n × n adjancency
matrix whose elements are aij [k] = aji[k] = 1 if the i-
th robot communicates with the j-th robot at time k,
and aij [k] = aji[k] = 0 otherwise. Moreover, we define
Ni[k] = {j ∈ R \ {i} : aij [k] = 1} as the set of robots
that communicate with the i-th robot at time k. The
communication between robots is used to obtain the x
and y coordinates of other robots, and, in consequence,
we assume that at time k the robot i ∈ R sends the
coordinates (xi[k], yi[k]) to all robots j ∈ Ni[k], and
receives the coordinates (xj [k], yj [k]) of each robot j ∈
Ni[k]. Whether two robots can communicate might depend
on factors like the spatial distance between the robots (as
in Barreiro-Gomez et al. (2016)), or the topology of an
available cloud-based communication network (as in Liu
et al. (2014)). To keep our framework general, in this work
we develop our theoretical analyses for arbitrary connected
and undirected time-varying graph topologies.

Assumption 1 : The undirected communication graph G[k]
is connected for all k.

To achieve a geometric formation, each follower robot
is given a reference displacement vector that defines its
required position relative to the leader. Such reference

displacement vector is given by δi =
[
δxi , δ

y
i

]>
, for all

i ∈ F , where δxi and δyi are the reference displacements
for the i-th follower with respect to the leader’s x and y
coordinates, respectively. For instance, Fig. 1 shows one
example formation for a set of n = 6 robots and depicts
some reference displacements. In this work, we assume that
the reference displacement vectors of all the follower robots
satisfy the following assumption.

Assumption 2 : The required formation lies within X for
all k.

Fig. 1. Hexagonal formation for a set of n = 6 robots.

It is worth noting that depending on the graph topol-
ogy, not all followers might have communication with the
leader. Thus, the presented formation problem is a dis-
tributed control task under partial information. To solve
such kind of problem, we can break the objective into two
tasks. The first one is to determine, distributedly over G[k],
the set-point coordinates in X that each follower has to
reach so that certain formation is achieved. This task can
be formulated as a set of time-varying optimization prob-
lems that each follower robot has to solve. More precisely,
such optimization problems are given by

min
rd
i
[k]

(
cd` [k] + δdi [k]− rdi [k]

)2
2

, ∀d ∈ D, ∀i ∈ F , ∀k, (2)

where the set D = {x, y} contains the dimensions of the
space where the robots move; the term cd` [k] represents
the value of the d-th dimension of the leader’s location
at time k, i.e., cx` [k] = x`[k] and cy` [k] = y`[k]; the term

δdi [k] is the reference displacement over the d-th dimension
for the i-th follower at time k; and rdi [k] is the d-th
component of the set-point coordinate for the i-th follower
at time k, i.e., at time k the set-point coordinate for
the i-th follower is (rxi [k], ryi [k]). Notice that (2) defines
|D||F| = 2(n − 1) optimization problems. More precisely,
it defines two independent optimization problems for each
follower robot: one for x and one for y. Given that not
all followers might have communication with the leader at
time k, such optimization problems have to be solved with
a distributed algorithm that satisfies the informational
constraints imposed by G[k]. In this work, we focus on the
design of a distributed algorithm that guarantees that as
k goes to infinity, the term rdi [k] converges to cd` [k] + δdi [k]
for all i ∈ F and all d ∈ D, i.e., a convergence in the
asymptotic sense. For such matter, we use distributed
population dynamics. The second task, on the other hand,
is for each robot to actually navigate to its corresponding
set-point coordinates. Such set-point coordinates are given
by the pre-defined trajectory for the leader robot, and
by (rxi [k], ryi [k]) for all i ∈ F . In this work we focus
mainly on the first task, and, in consequence, we use
classical PID controllers for the navigation of each robot
and we do not consider obstacle avoidance. Nevertheless,
under the proposed approach, the local PID controllers
can be replaced by any other navigation strategy without
having to modify the distributed optimization of the first
task. Thus, obstacle avoidance could be added using other
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Fig. 2. Control architecture for the distributed formation
problem.

navigation controllers such as the one proposed by Snape
et al. (2011).

To summarize, Fig. 2 presents the control architecture
described above. Here, uj [k] ∈ R2 is a vector that contains
the voltages to be applied to the motors of the j-th robot
at time k, and t`[k] ∈ X is a vector that contains the
reference x and y coordinates for the leader robot at
time k. Note that in all cases the navigation task is done
using only the local information available to each robot.
Regarding the leader, for instance, the local navigation
controller uses the reference coordinates given by the pre-
defined trajectory, and the current coordinates of the
leader robot. Similarly, each follower robot navigates using
its own location and the reference coordinates computed
distributedly over G[k]. Note that in the case of the leader
the distributed controller over G[k] is not used to provide a
reference for the leader’s navigation. Instead, it is used to
exchange information about the leader’s location with the
follower robots that can communicate with the leader (the
dotted line is used to highlight that in general the leader
does not have communication with all followers).

3. DISTRIBUTED CONTROL OVER THE
NETWORK USING POPULATION DYNAMICS

In this section we present our proposed method to solve
the distributed optimization problems of (2), which is
based on population dynamics (Sandholm (2010)). How-
ever, we propose a novel discrete-time-class of distributed
population dynamics. In the following sections we present
our approach and we develop the corresponding stability
analysis of our proposed method.

3.1 Distributed Optimization Using Population Dynamics

Consider a set of populations D that represent the di-
mensions of R2, i.e., D = {x, y}, and let each population
be composed by a large and finite number of agents that
interact strategically with their population peers. More-
over, let the agents of each population be rational decision
makers that, at any time k, select among n different
strategies representing the set of robots, i.e., at any time
k the set of available strategies is R = {`, 2, · · · , n}. To
solve the optimization problems of (2) using population
dynamics, we interpret the optimization variable rdi [k] as
the portion of agents of population d ∈ D that select the
robot i ∈ R at time k. Hence, at any time k, the vector

rd[k] =
[
rd` [k], rd2 [k], · · · , rdn[k]

]>
describes the state of

population d ∈ D. Thus, rd[k] contains the values of all
the optimization variables of (2), as well as the value of
an additional variable rd` [k]. Such additional variable does
not appear in any of the objective functions of (2) and is
not used for the leader’s navigation. Instead, the variable
rd` [k] plays the role of an auxiliary variable that allows
us to deal with certain invariance properties of the pop-
ulation dynamics (see Remark 1 in Section 3.2). Clearly,
depending on the mechanism that population agents use
to select robots at time k, different trajectories of the
population state rd[·] emerge on the population d ∈ D.
Therefore, to solve the optimization problems of (2) using
this framework, we have to design the strategic interaction
of the population agents so that the dynamic evolution
of rd[·] converges to the minimizer of (2) for all d ∈ D.
The Smith dynamics are one of the fundamental popu-
lation dynamics and Barreiro-Gomez et al. (2017) have
proposed a continuous-time distributed version of such
dynamics. In this work, we build upon such distributed
dynamics, but we formulate them with two fundamental
differences: (i) we use a discrete-time formulation to obtain
stability guarantees for practical implementations where
computations are necessarily discrete; and (ii) we saturate
the dynamics to obtain less conservative bounds in our
theoretical analyses. More precisely, our proposed discrete-
time distributed Smith dynamics are given by

rdi [k + 1] = rdi [k] + εd
∑

j∈Ni[k]

(
fdi − fdj

)
θdijφ

d
ij , (3)

for all i ∈ R and all d ∈ D, where the scalar εd > 0 is the
step size of the update and is assumed equal for all i ∈ R;
and where

fdi = δdi [k]− rdi [k], ∀i ∈ F
fd` = −cd` [k]

θdij =

{ βd, if fdi = fdj
min

(
rdj [k], βd

)
, if fdi > fdj

min
(
rdi [k], βd

)
, if fdi < fdj

φdij =

{
1, if |fdi − fdj | ≤ βd

βd/|fdi − fdj |, if |fdi − fdj | > βd.

(4)

Here, the saturations with βd in θdij and φdij are included
to obtain less conservative conditions for stability (see
Remark 3 in Section 3.2). In addition, note that the term
φdij is always well-defined, and, in fact, 0 ≤ φdij ≤ 1
for all i, j ∈ R. On the other hand, the scalar function
fdi represents the payoff provided by the i-th robot to
the d-th population. Such scalar function is denoted as
a fitness function and, as shown in (4), depends on local
information available to the i-th robot (yet, we omit
its arguments to simplify the notation). In consequence,
notice that (3) defines a set of n equations where the i-th
equation depends only on local information available to
the i-th robot. Thus, to obtain a distributed computation
of (3), it suffices that each robot i ∈ R computes its
corresponding i-th equation. Furthermore, note that a
particular equilibrium of the dynamics of (3) occurs when
fdi = fdj for all i, j ∈ R (by equilibrium we mean that

rdi [k + 1] = rdi [k], for all i ∈ R). Such equilibrium is
independent of rd` [k] and occurs when

rdi [k] = cd` [k] + δdi [k], ∀i ∈ F . (5)
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Therefore, if we guarantee that the dynamics in (3) always
converge to (5), then we can use such dynamics to solve
(2) in a distributed fashion. The study of such convergence
is the topic of the next section.

3.2 Stability Analysis

In this section we provide sufficient conditions to guarantee
the asymptotic stability of our proposed discrete-time
dynamics (3) to the minimizer of (2). However, before
doing so, we need to introduce some additional results.
First of all, note that (3) can be written as

rd[k + 1] = rd[k] + εdLd[k]fd[k], ∀d ∈ D, (6)

where fd[k] = [fdi ] is an n × 1 vector that collects all the
fitness functions of the d-th population; and Ld[k] = [ldij ]

is an n × n matrix whose elements depend on rd[k] and
G[k], and are given by

ldii =
∑

j∈R\{i}

aij [k]θdijφ
d
ij , ∀i ∈ R, ∀d ∈ D

ldij = −aij [k]θdijφ
d
ij , ∀i, j ∈ R, ∀d ∈ D.

(7)

Here, the arguments of ldii and ldij have been omitted to ease

notation. Notice that the matrix Ld[k] is the Laplacian of
a dynamical graph Gd[k] that depends on rd[k] and the
original graph G[k], and whose adjacency matrix has the
elements adii[k] = 0 and adij [k] = −ldij for all i, j ∈ R, with
i 6= j, and for all d ∈ D. Furthermore, observe that the
matrix form given by (6) implies the following assumption.

Assumption 3 : If aij [k] = 1, then the population portions
rdi [k] and rdj [k] are updated at time k, for all d ∈ D.

These observations lead to the following results.

Lemma 1. Consider the discrete-time distributed Smith
dynamics given by (3), and consider the set

Md =

{
rd[k] ∈ Rn :

∑
i∈R

rdi [k] = md

}
, (8)

where the scalar md > 0 is the total population mass. If
Assumption 3 holds, then the setMd is forward invariant
under the dynamics (3). That is, rd[k] ∈ Md implies that
rd[k + 1] ∈Md for all k.

Proof. For all d ∈ D and all k it holds that∑
i∈R

∑
j∈Ni[k]

(fdi − fdj )θdijφ
d
ij =

∑
i∈R

∑
j∈R

aij [k](fdi − fdj )θdijφ
d
ij

= 0.

This follows from the facts that aij [k] = aji[k], θdij = θdji,

and φdij = φdji, for all i, j ∈ R, all d ∈ D, and all k.

Therefore, we have that
∑

i∈R r
d
i [k + 1] =

∑
i∈R r

d
i [k] for

all k, i.e.,
∑

i∈R r
d
i [k] =

∑
i∈R r

d
i [0] = md for all k. �

Lemma 2. Consider the discrete-time distributed Smith
dynamics given by (6), and consider the set

∆d = Rn
+ ∩Md, (9)

where Rn
+ is the strictly positive orthant of Rn. If Assump-

tion 3 holds and rd[k] ∈ ∆d for all k, then the following
properties hold:

(i) The matrix Ld[k] is positive semi-definite for all k.

(ii) The dynamical graph Gd[k] has the same communi-
cation links as the original graph G[k] for all k.

Proof. To prove (i) we observe that Ld[k] is real, sym-
metric, and diagonally dominant (see (7)). In addition, if
rd[k] ∈ ∆d for all k, then the diagonal elements of Ld[k]
are non-negative for all k. In consequence, Ld[k] � 0 for all
k. To prove (ii) we notice that the fitness functions defined
in (4) are finite over all ∆d. In consequence, φdij > 0 for any

rd[k] ∈ ∆d and for all i, j ∈ R. Similarly, if rd[k] ∈ ∆d,
we have that θdij > 0 for all i, j ∈ R. In consequence,

adij [k] > 0 if and only if aij [k] = 1. Thus, G[k] and Gd[k]
have the same set of communication links for all k. �

Remark 1: Lemma 2 requires the forward invariance of the
set ∆d given in (9). Note that such invariance implies that
rdi [k] ∈ R+ and

∑
i∈F r

d
i [k] = md − rd` [k], for all i ∈ R, all

d ∈ D, and all k. Hence,
∑

i∈F r
d
i [k] < md, for all d ∈ D

and all k. Thus, to guarantee that the reference coordinate
(rxi [k], ryi [k]), for all i ∈ F , can achieve any value within X ,
the population masses mx and my have to be big enough.
Given that md =

∑
i∈R r

d
i [0] for all d ∈ D, in order to

guarantee that any formation within X is attainable, it
suffices to satisfy the following condition:∑

i∈R
rdi [0] ≥ nβd, ∀d ∈ D,

rdi [0] > 0, ∀i ∈ R, ∀d ∈ D,
(10)

where βd is the spatial length of the d-th dimension of
the rectangle X defined in (1). Note that if the initial
position of the robots is within X , then condition (10) can
be satisfied under the informational constraints of G[k] by
setting rd` [0] ≥ nβd for all d ∈ D, and rxi [0] = xi[0] and
ryi [0] = yi[0] for all i ∈ F .

With the aid of these preliminary results, we now provide
sufficient conditions that guarantee the asymptotic stabil-
ity of the minimizers of (2) under the proposed method.
The next theorem illustrates our result.

Theorem 1. Consider the discrete-time distributed Smith
dynamics given in (3) and (6). Let ñ denote the maximum
number of robots that any robot can communicate with
(simultaneously) at any time k. Moreover, supose that
Assumptions 1, 2, and 3 hold, and let the following
conditions be satisfied:

(i) The initial population state satisfies condition (10),
i.e., rd[0] ∈ Rn

+ and
∑

i∈R r
d
i [0] ≥ nβd, for all d ∈ D.

(ii) For all d ∈ D, it holds that 0 < εd < 1/(ñβd).

Then the minimizers of (2) are asymptotically stable under
the proposed discrete-time distributed Smith dynamics.

Proof. First, to induce the results of Lemma 2, we prove
that under the given conditions it holds that rd[k] ∈ ∆d

for all k, where ∆d is given by (9) with md ≥ nβd. From
Lemma 1 we can conclude that rd[k] ∈Md for all k. Thus,
we have to prove only the positiveness of rd[k] for all k.
To do so, given that by assumption rd[0] ∈ Rn

+, we have to

prevent any sign changes in rdi [k] for all i ∈ R and all k.
From (3)-(4) we note that the only terms of the summation
in (3) that favor the decrement of rdi [k] are those where
fdi − fdj < 0. Thus, we should consider only the critical

(impossible) case where fdi < fdj for all i, j ∈ R. Under
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such scenario we have that (3) can be written as

rdi [k + 1] = rdi [k]− εd
∑

j∈Ni[k]

∣∣fdi − fdj ∣∣min(rdi [k], βd)φdij ,

for all i ∈ R and all d ∈ D. Moreover, note that
rdi [k] ≥ min(rdi [k], βd) for all k. Hence, to obtain a suffi-
cient condition that prevents sign changes and guarantees
positiveness, without loss of generality we can consider
the case where θdij does not have a min(·) saturator, i.e.,

the case where θdij = rdi [k] for any rd[k] ∈ ∆d where

fdi < fdj . Furthermore, we can also focus only on the worst

(impossible) case where |fi − fj | = βd for all i, j ∈ R
(such saturation is given by the term φdij). Joining all these
critical cases we get that (3) can be written as

rdi [k + 1] = rdi [k]

(
1− εd

∑
j∈Ni[k]

βd

)
, ∀i ∈ R, ∀d ∈ D

= rdi [k]
(
1− εdñβd

)
, ∀i ∈ R, ∀d ∈ D.

Therefore, to prevent sign changes of rdi [k] we require that
0 < εd < 1/(ñβd), which is guaranteed by condition (ii).
Observe that the strict bounds in this condition not only
prevent sign changes, but also prevent that rdi [k] becomes
zero for any k. Thus, by conditions (i) and (ii) it holds
that rd[k] ∈ ∆d for all k, and Lemma 2 applies. From now
on, we consider the original dynamics given by (3) and not
only the worst cases, i.e., we consider the saturator in θdij .

Now that we have proved that Lemma 2 applies, we can
proceed to prove the asymptotic stability of the proposed
dynamics. For that, notice that the dynamics of (3) are
invariant under the addition of a scalar to the fitness
functions. This follows from the fact that (fdi −fdj ) = (fdi +

α − fdj − α) for any α ∈ R. Thus, the dynamics under

the original fitness vector fd[k] are exactly the same as

if the fitness vector f̃d[k] = fd[k] + cd` [k]1n were used
instead (here 1n denotes a column vector with n ones),

i.e., we have that f̃d` = 0 and f̃di = cd` [k] + δdi [k] − rdi [k]
for all i ∈ F . In consequence, without loss of generality,
we analyze the stability of rd[k+ 1] = rd[k] + εdLd[k]̃fd[k]
to obtain convergence results that are also valid for (6).

The advantage of using f̃d[k], instead of fd[k], is that

f̃d[k] can be written as f̃d[k] = −Bed[k], where B is an
n × n diagonal matrix with the (`, `)-th element equal
to zero and the other diagonal elements equal to 1; and
ed[k] = rd[k] − rd∗[k], where rd∗[k] is the population state

for which f̃di = f̃dj = 0 for all i, j ∈ R, i.e., the minimizer
of (2). Moreover, from Assumption 2 we can conclude
that such population state rd∗[k] is always attainable with
a population mass md ≥ nβd (see condition (i)), i.e.,
rd∗[k] is always within ∆d. Under this formulation, we can
use the function V (rd[k]) = (ed[k])>Bed[k] as a valid
Lyapunov function candidate (i.e., V (rd[k]) > 0, for all
rd[k] 6= rd∗[k] and V (rd[k]) = 0 ⇐⇒ rd[k] = rd∗[k]).
It is worth mentioning that although B is a positive
semi-definite matrix, the proposed Lyapunov function is
positive definite over ∆d. To see why, note that B has only
one zero diagonal element and such element is associated
to rd` [k]. Nevertheless, by Lemma 1 we have that rd` [k] =
md −

∑
i∈F r

d
i [k] for all k. Thus, there are only n − 1

independent population portions, and, in consequence, the
line where V (rd[k]) = 0 contracts to a single point in

Rn for every k. Continuing with the proof, for rd∗[k] to
be asymptotically stable we require that V (rd[k + 1]) −
V (rd[k]) < 0 for all k. If we denote Ṽ = V (rd[k + 1]) −
V (rd[k]) we get:

Ṽ =
(
ed + εdLdf̃d

)>
B
(
ed + εdLdf̃d

)
− (ed)>Bed,

where we have removed the time index in ed[k], Ld[k],

and f̃d[k] as all the terms are now at time k. Solving this

expression we get that Ṽ equals:

= εd(ed)>BLdf̃d + εd(Ldf̃d)>Bed + (εd)2(Ldf̃d)>BLdf̃d

= εd(Bed)>Ldf̃d + εd(f̃d)>LdBed + (εd)2(f̃d)>LdBLdf̃d

= −εd(f̃d)>Ldf̃d − εd(f̃d)>Ldf̃d + (εd)2(f̃d)>LdBLdf̃d

= −2εd(f̃d)>Ldf̃d + (εd)2(f̃d)>LdBLdf̃d,

where we have used the facts that B = (B)>, Ld = (Ld)>,

and f̃d = −Bed. Notice that due to the form of B it
holds that (f̃d)>LdBLdf̃d ≤ (f̃d)>LdLdf̃d. Thus, setting
Ld = PΛP−1 (by spectral decomposition) we have that

(f̃d)>LdBLdf̃d ≤ (f̃d)>PΛP−1PΛP−1f̃d

≤ (f̃d)>PΛ1/2ΛΛ1/2P−1f̃d

≤ λΛ
max(f̃d)>PΛ1/2Λ1/2P−1f̃d

≤ λLd

max(f̃d)>Ldf̃d.

Here λΛ
max = λLd

max is the maximum eigenvalue of Ld, and
we have used the fact that a quadratic form x>Zx with
symmetric Z is always upper-bounded by λZ

maxx>x. From
the assumption that G[k] is connected, and due to Lemma
2, we can conclude that Gd[k] is also connected. This means
that Ld has only one eigenvalue equal to zero, and, from
Lemma 2, we have that the remaining eigenvalues are

strictly positive. Thus, λLd

max > 0. Moreover, from Gersh-

gorin Circle Theorem we have that λLd

max ≤ 2 maxi∈R l
d
ii,

and from (7) we can conclude that λLd

max ≤ 2ñβd. Hence,

Ṽ ≤ −2εd(f̃d)>Ldf̃d + 2ñβd(εd)2(f̃d)>Ldf̃d

≤ 2εd(ñβdεd − 1)(f̃d)>Ldf̃d.

Notice that (f̃d)>Ldf̃d is the quadratic form of the Lapla-
cian of Gd[k]. Given that Gd[k] is undirected and connected
(by the symmetry of Ld and Lemma 2), we can conclude

that (f̃d)>Ldf̃d is always positive and is zero only when

f̃d ∈ span(1n), i.e., when fdi = fdj for all i, j ∈ R. Further-

more, if εd satisfies condition (ii), the term (ñβdεd − 1) is

always strictly negative. In consequence, Ṽ is always non-
positive and is zero only when rd[k] = rd∗[k]. Thus, rd∗[k] is
asymptotically stable. �

Remark 2: Observe that Theorem 1 is valid for any
connected and undirected graph topology. Moreover, in
the proof of Theorem 1 the Laplacian of Gd[k] only appears
at time k. By induction, Theorem 1 applies unchanged for
time-varying graphs that remain connected and undirected
for all k.

Remark 3: Note that without the saturations in θdij and

φdij , the term λLd

max ≤ 2 maxi∈R l
d
ii would be upper-

bounded by 2ñnβd and stability would not be guaranteed
by condition (ii) (it can be shown that a similar issue
occurs with the bound required for positiveness). However,
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given that the formations are assumed to lie within X , the
saturations in (4) allow us to consider only the region of
interest and obtain less conservative bounds for εd.

Remark 4: Notice that the conjunction of Assumptions 1
and 3 implies that all robots update their corresponding
variables at all times k. Thus, Theorem 1 assumes that
there is a persistent synchronicity on the robots’ operation,
which might be hard to satisfy for some robotic applica-
tions. Although we leave the formal study of asynchronous
population dynamics for a future work, in Section 4 we
provide some experiments where the graph G[k] is not
connected for all k, and so the synchronicity of all robots
is not required for all k (the synchronicity is required
only for each connected sub-graph at each time k). Such
experiments illustrate the fact that the aforementioned
persistent synchronicity of all robots is only a sufficient
condition for asymptotic stability.

4. EXPERIMENTAL RESULTS

In this section we illustrate the theoretical developements
of this paper on a real multi-robot platform comprised by
a set of six e-puck v2 robots. Due to space limitations,
we only show the results of a particular experiment un-
der a time-invariant path graph (i.e., ñ = 2), which is
the connected graph with the most distributed topology.
However, videos of several other experiments are available
at youtu.be/t-S0Gtblh_A and some of them consider
time-varying graphs that are not connected for all k. The
results of our particular experiment are depicted in Fig.
3 where DT-DSD denotes our discrete-time distributed
Smith dynamics; Consensus refers to the consensus algo-
rithm of Olfati-Saber et al. (2007); and SBPG denotes the
state-based potential games approach proposed by Li and
Marden (2013). As key performance index (KPI) we have
taken the sum of the objectives functions of (2) over all
i ∈ F and all d ∈ D, and we have normalized it up to 1.
In all cases, robots start in the same initial position and
the required formation is an hexagon. The bounds for the
DT-DSD are taken according to Theorem 1 with βx = 125
and βy = 90 (the dimensions of our testbed); the bound
for the Consensus is taken according to Olfati-Saber et al.
(2007); and the bound of SBPG is set at the biggest value
(within 0.001 precision) that converged in this particular
experiment. As shown in Fig. 3, all the methods converge
to the desired solution. In particular, to achieve a KPI
lower than 0.02 our method required 37 iterations, Consen-
sus required 28, and SBPG required 451 (iterations were
taken every 0.1 seconds). Thus, we can conclude that our
method outperforms the SBPG and obtains a performance
comparable to the consensus algorithm. The advantage of
our method in contrast with Consensus, is that it pre-
serves the forward-invariance of ∆d, and, in consequence,
is suitable not only to achieve robotic formations as in
this paper, but also for resource allocation problems that
are relevant for many other distributed optimization and
control applications (see Quijano et al. (2017)).

5. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have proposed the discrete-time dis-
tributed Smith dynamics, and we have provided sufficient
conditions for stability in practical implementations where

0 100 200 300 400 500
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0.0
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I
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Fig. 3. Experimental results on real robots.

computations are necessarily discrete. Moreover, we have
illustrated the application of the proposed method on a
real robotic platform with six e-puck v2 robots under a
leader-follower scheme. Future work should focus on the
application of the of the developed theory to other types of
problems, as well as the extension of the stability analysis
to asynchronous implementations, and the characteriza-
tion of the convergence rate of our proposed method.
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