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Abstract: Using neural networks to capture complex dynamics of highly nonlinear systems is
a promising feature for advanced control applications. Recently it has been shown that ReLU
based neural networks can be exactly recast in a mixed-integer linear programming formulation.
This reformulation enables the incorporation of deep learning models in model predictive control
strategies. To alleviate the computational burden of solving the piecewise linear optimization
problem online, multiparametric programming is utilized to obtain the full, offline, explicit
solution of the optimal control problem. In this work, a strategy is presented for the integration
of deep learning models, specifically neural networks with rectified linear units, and explicit
model predictive control. The proposed strategy is demonstrated on the advanced control of the
ACUREX solar field.
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1. INTRODUCTION

Data-driven techniques in the process engineering commu-
nity are seeing a new wave of excitement (Chiang et al.
(2017)). Specifically, using artificial neural networks to
capture complex relationships are proving to be robust and
effective in chemical engineering processes. Applications
of these data-driven models include surrogate models for
optimization (Himmelblau (2008)), approximate models
for reducing computational costs (Hough et al. (2017)),
and model predictive control (MPC) (Himmelblau (2000)).
In MPC problems, where the control action is dictated by
the solution of an optimization problem, it is challeng-
ing to identify the optimal action in a timely manner.
Neural networks are inherently nonconvex and nonlinear,
and embedding these models in optimization formulations
requires significant computational effort to determine the
optimal solution. Neural networks have been incorporated
in several studies as surrogate models in MPC strategies
(Shokry et al. (2018); Afram et al. (2017)). However,
limited analysis is provided for an efficient strategy to solve
the resulting nonconvex optimal control problem. Because
of the inherent nonconvexity associated with the resulting
MPC formulation, determining the global optimal solution
is on-going work (Schweidtmann et al. (2019)). Recently,
it has been shown that neural networks with rectified
linear units (ReLU) can be represented as a mixed-integer
linear program (MILP) (Fischetti and Jo (2018); Grim-
stad and Andersson (2019)). Therefore, embedding ReLU
based neural networks into model predictive control for-
mulations is practical, because the overall structure of
the MPC remains unchanged (either a quadratic or linear
program). However, the resulting optimization problem
involves mixed-integer decisions and is therefore a mixed-
integer quadratic program (MIQP), or a MILP. By com-

bining the MILP formulation of neural networks with
ReLU activation functions with model predictive control
strategies, the resulting optimal control problem can be
solved using standard mixed-integer linear or quadratic
techniques.

Solving a mixed-integer linear or quadratic program on-
line to determine the optimal control action remains a
computationally demanding problem in the worst case.
Multiparametric programming is a methodology that al-
leviates the burden of solving an optimization problem
online by developing an explicit optimal solution offline.
The multiparametric programming literature has algo-
rithms to determine the full solution for multiparamet-
ric linear (mpLP) (Jones and Morrari (2006)), quadratic
(mpQP) (Gupta et al. (2011); Oberdieck et al. (2017)),
mixed-integer linear (mpMILP) (Wittmann-Hohlbein and
Pistikopoulos (2013)), mixed-integer quadratic (mpMIQP)
(Oberdieck and Pistikopoulos (2015)), and quadratically
constrained quadratic (mpQCQP) programs (Diangelakis
et al. (2018)).

In these multiparametric model formulations, a key detail
is their dependence on linear or piecewise linear con-
straints. Therefore, to incorporate more complex phenom-
ena in parametric formulations surrogate modeling is re-
quired. Developing accurate surrogate models to represent
nonlinear functional relationships is non-trivial, and neural
networks based on ReLU activation functions bridge this
gap. Incorporating neural networks and multiparametric
programming is readily implementable because the result-
ing parametric optimization formulation is a mpMILP.
Algorithmic strategies are available in the state-of-the-art
Parametric Optimization (POP) software and the Mul-
tiparametric Programming Toolbox (MPT) to construct
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Fig. 1. A schematic diagram of the ACUREX process,
adapted from Katz (2020).

the full multiparametric solution (Oberdieck et al. (2016a);
Herceg et al. (2013)).

In this work, the novel contribution is the incorporation of
deep neural networks in explicit MPC (Katz et al. (2020)).
Current literature includes strategies to utilize ReLU neu-
ral networks with model-based control, however there is a
gap in efficiently developing the optimal solution in real-
time. In addition, comparisons between (i) nonlinear MPC
and MPC and (ii) different nonlinear MPC formulations
are available in the literature. Therefore, the intent of
this research effort is to demonstrate that explicit MPC
can include more advanced surrogate models in the form
of deep neural networks with ReLU activation functions
without sacrificing model accuracy or optimality.

To demonstrate the ability of neural networks with ReLU
activation functions to capture nonlinear relationships,
the proposed methodology is validated on the benchmark
ACUREX process. This benchmark problem is a solar
powered energy system defined by complex, nonlinear dy-
namics (Camacho and Berenguel (2012)). The ACUREX
solar field is designed with parabolic mirrors to heat oil in
a pipe to be used downstream, such as a desalination plant.
The advanced control of the plant is paramount because
of the intermittent and variable intensity of solar power.
Fig. 1 is a schematic of the ACUREX solar field.

2. MULTIPARAMETRIC PROGRAMMING

Avoiding the online computational cost of solving an opti-
mal control problem at each sampling time can be accom-
plished via multiparametric programming. The optimal
control problem assumed in this work is defined by (1).

min
u

|y − ysp|∞
s.t. y = f(x0, u)

X ≤ x0 ≤ X̄
Y ≤ y ≤ Ȳ
U ≤ u ≤ Ū

(1)

where ysp is the setpoint, y is the output of interest, u
is the manipulated action, x0 is the initial condition of
the system, and f represents any linear or piecewise linear
function.

By treating the initial conditions of the system as bounded
uncertain parameters, the optimal control problem is ex-
actly recast to its multiparametric counterpart. The devel-
oped multiparametric model predictive controller is then
solved once and offline using state-of-the-art solvers. The
derived explicit solution contains the optimal manipulated
action as a function of the bounded uncertain parameters.
In addition to the online computational savings, the map of
solutions provides information of the feasible space of the
explicit controller. The multiparametric problem solved
in this work is a mpMILP, and the general structure is
presented in (2).

min
u,y

cTω + cTt θ + cc

s.t. [A E]ω ≤ d+ Fθ

ω = [uT yT ]T

u ∈ U, y ∈ {0, 1}q

θ ∈ Θ

(2)

where u and y are the continuous and binary variables
respectively, θ is the vector of bounded, uncertain param-
eters, q is the total number of binary variables, and the
cost matrices and vectors A, E, d, F , c, ct, and cc define
the problem.

The multiparametric solution of (2) returns a list of critical
regions, and each critical region defines affine functions
relating the bounded uncertain parameters to the optimal
continuous decision variables, see (3).

u∗ = Giθ
∗ + hi, θ

∗ ∈ CRi = {CRi
Aθ ≤ CRi

b} (3)

where u∗ is the optimal solution at the parameter realiza-
tion θ∗, CRi define the ith critical region, and Gi and hi
define the affine expression for the ith critical region.

2.1 Solution Strategy

Exploring the full solution of mpMILPs in an efficient and
robust way is a subject of ongoing research. Currently,
approaches for the development of the multiparametric so-
lution fall under three categories, geometrical approaches,
active set approaches, and combinations of the aforemen-
tioned strategies (Oberdieck et al. (2016b)). Geometric
strategies aim to explore the full explicit solution by
traversing the parameter space to identify critical regions
(Bemporad et al. (2002)). Active set strategies develop the
explicit solution by identifying all active set combinations
that yield critical regions (Gupta et al. (2011)).

2.2 Multiparametric Mixed-Integer Linear Programming

A strategy for developing the explicit solution to mpMILPs
is based on an iterative procedure of solving mpLPs and
generating integer cuts. The procedure is computationally
demanding compared to mpLP algorithms because of the
binary variables.

An overview of the solution procedure is as follows. Given
the mpMILP, a deterministic optimization problem is
solved where the uncertain parameters are treated as op-
timization variables to identify the optimal binary combi-
nation. The optimal binary combination is used to fix the
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binary variables and develop an explicit solution to the
reduced mpLP. Because the mpLP solution is based on the
original binary combination, each critical region is verified
to be optimal with respect to the original mpMILP. This
comparison procedure is the backbone of the mpMILP al-
gorithm for developing the multiparametric solution. The
resulting explicit map of solutions provides the optimal
critical regions, the optimization variables as functions of
the uncertain parameters, and the optimal integer vari-
ables. Note that improving mpMILP algorithms is accom-
plished via strengthening the comparison procedure, with
the goal of identifying fewer candidate critical regions.

In this work, we utilize the POP toolbox to obtain the
full mpMILP solution defining the optimal control law.
This MATLAB based toolbox maintains the aforemen-
tioned algorithms and can readily solve mpMILP problem
formulations.

3. INTEGRATING DEEP LEARNING AND
MULTIPARAMETRIC MODEL PREDICTIVE

CONTROL

Directly using a first-principle process model in a model
predictive control formulation requires the solution of
a nonlinear optimization problem at every time step.
Determining the optimal solution to an NLP at every time
step is computationally demanding. Therefore, the aim
is to develop a surrogate model to replace the nonlinear
model in the NLP formulation, at the cost of plant-model
mismatch, such that obtaining the optimal solution in a
real time setting is feasible. Introducing a surrogate model
is not ideal, but feedback control provides a measure of
robustness to mitigate the negative consequences of plant-
model mismatch (Katz et al. (2018)). Typical surrogate
models are linear, but in many cases they are not adequate
to control the process and a nonlinear model is required
(Allgower et al. (2004)).

In this work, it is assumed that the objective function is
linear, the process model is nonlinear, and the states and
manipulated actions of the process are bounded by upper
and lower bounds. Due to the complexities of the nonlinear
process model, it is necessary to develop an approximate
model. The approximate model used is a feedforward
neural network with ReLU activation functions to capture
the nonlinearity of the process model, further details
regarding neural networks can be found in Himmelblau
(2000). The nonlinear model predictive control formulation
is thus reduced to a mixed-integer linear model predictive
control formulation via (5). The simplified control problem
is then exactly recast to its multiparametric programming
counterpart and is solved using existing strategies. The
procedure is graphically represented by Fig. 2. Note that
the arrow from “ReLU Validation” to “Input-Output
Data Collection & Processing” is an optional task worth
considering if the neural network is unable to identify the
dynamics of the process.

3.1 Reformulation to MILP

It has been demonstrated in the literature that a neural
network involving ReLU activation functions can be ex-
actly recast as an MILP (Fischetti and Jo (2018); Grim-
stad and Andersson (2019)). The reformulation maintains

the accuracy of the deep neural network, but results in
an optimization formulation that is mixed-integer linear.
Therefore, if the deep neural network is embedded in
an optimization formulation, the increase in complexity
results from the binary variables only. A review of the
reformulation procedure is presented as follows.

For an arbitrary layer in a feedforward neural network with
n nodes, the output takes the form of (4), where k is the
layer, W k is the matrix of weights for layer k, bk is the
vector of biases for layer k, xk−1 ∈ <n is the output of the
previous layer, and xk ∈ <n is the output of the current
layer. The max operator is performed element-wise.

xk = max{0,W kxk−1 + bk} (4)

The importance of the ReLU activation function is its
piecewise linear nature. Therefore, (4) can be exactly
recast in an optimization formulation via the inclusion of
binary variables. Equation (5) is the reformulation of the
kth hidden layer in an MILP structure.

W kxk−1 + bk = xk − sk (5a)

xk ≤My (5b)

sk ≤M(1− y) (5c)

xk ≥ 0 (5d)

sk ≥ 0 (5e)

y ∈ {0, 1}n (5f)

In (5), the variable y is a binary variable, sk ∈ <n is an
auxiliary variable vector, and M is a large scalar value.
The total number of binary variables is equal to the total
number of nodes that constitute the hidden layers. The
binary variables enable the activation function to output
a value of 0 or x, via the constraints (5b) and (5c). These
constraints are equivalent to the max operator and are
the reason the reformulation is exact. Incorporating the
recasted neural network into an optimization formulation
provides an effective strategy to maintain high accuracy
with a surrogate model, and obtaining the global op-
timum does not require specialized global optimization
techniques.

Following (5), the neural network is transformed to a
system of equality constraints, inequality constraints, bi-
nary variables, and slack variables. To minimize the total
number of variables and constraints, variable aggregation
is employed to eliminate the equality constraints and in-
termediate optimization variables.

x1 = W 1x0 + b1 + s1 (6a)

xk =

1∏
i=k

W ix0 +

k−1∑
i=1

i+1∏
j=k

W j(bi + si) + bk + sk, 1 < k < K

(6b)

xK =

1∏
i=K

W ix0 +

K−1∑
i=1

i+1∏
j=K

W j(bi + si) + bK (6c)

whereW k and bk define the weights of the kth hidden layer,
K is the output layer, sk is the vector of slack variables,
x0 is the input vector to the neural network, and xK is
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Fig. 2. The framework for integrating deep learning models
with ReLU activation functions and explicit model
predictive control.

the vector of outputs of the neural network. Equations (5)
and (6) are combined to provide a set of constraints in the
form of (2). Once the nonlinear equation representing the
process is replaced with the recasted neural network, the
control problem is solved using standard multiparametric
techniques.

4. ACUREX PROCESS

The ACUREX solar field uses parabolic mirrors to focus
the sun’s rays on a pipe carrying an energy conversion
fluid, typically oil. The process makes use of renewable
solar energy to maintain the temperature of the energy
conversion fluid at a predefined setpoint. The fluid, at the
proper temperature, is then utilized further downstream
to either (i) produce steam that is used to generate
power in a turbine, (ii) or as a heat exchange medium
in a desalination process (Camacho et al. (2007); Limon
et al. (2008)). The fluid in the pipeline is assumed to be
Therminol 55 (Eastman Chemical Company) because of
its workable temperatures of −28◦C to 290◦C.

The ACUREX process is modeled by a system of partial
differential equations. Following the assumptions by Ca-
macho et al. (2007) and the additional assumption of a
single loop of parametric mirrors, the system of partial
differential equations is reduced to a single first order
partial differential equation, (7).

ρfCfAf
∂Tf
∂t

= η0GI − hl(Tf − Ta)− ρfCfu(t)
∂Tf
∂x

(7)

where Tf is the fluid temperature, x is the spatial coordi-
nate, t is time, Ta is the ambient temperature, ρf is the
density of the fluid, Cf is the heat capacity of the fluid, u is
the fluid flowrate, η0 is the mirror efficiency,G is the mirror
aperture, I is the solar irradiance, and hl is the coefficient
of global heat losses. The partial differential system is
converted to a system of ordinary differential equations

that depend on time by discretizing the spacial domain
via the method of lines (Sadiku and Obiozor (2000)).

The empirical relationship between the temperature of the
fluid in the pipe and the density and heat capacity is
defined by (8).

ρf = 903− 0.672Tf (8a)

Cf = 1820 + 3.478Tf (8b)

Given the high fidelity model of the process, the control
objective is to maintain the temperature of the oil at
280 ◦C. The objective function is defined by the L1 norm
between the temperature of the oil at the exit of the
pipe and the setpoint. To meet the control objective, the
volumetric flow rate of oil into the system is the manipu-
lated action. There are box constraints on the manipulated
action that define the limits of operation, and there is an
upper bound on the temperature of the fluid in the pipe for
safety and material considerations. For the development
of the explicit MPC, the uncertain parameters are the
temperature at the end of the pipe and the solar irradi-
ance. These terms are the uncertain parameters because
at each sampling period of the controller, these values are
‘measured’ and the corresponding optimal control action
is determined using the explicit map of solutions. Note
that these uncertain parameters are not to be confused
with the neural network parameters that are determined
during training and validation.

4.1 Developing the Neural Network

Given the dynamic model representing the ACUREX solar
field, it is challenging to directly implement the high
fidelity model in a MPC scheme. Therefore, a neural
network with ReLU activation function is utilized as
a surrogate model to capture the nonlinear dynamics,
while minimizing model complexity when embedded in the
explicit MPC.

The ACUREX plant is perturbed in open loop to properly
excite the system over a range of inputs. The perturbed
inputs are the solar irradiance and the fluid flow to the
pipe. The measured output of the system is the temper-
ature at the end of the pipe. Data collection accounts for
10, 000 samples and are used to train the neural network.
The collected samples are split into training, validation,
and testing sets following a 70%, 15%, 15% division. Addi-
tional validation techniques such as k-fold cross validation
were not incorporated in this work, but provide additional
robustness on the fitting of the deep neural network on
unseen datasets. Through trial and error, the size of the
neural net that was found to accurately fit the open loop
data has three hidden layers with sizes 8,7, and 7 respec-
tively. The fit neural network has a mean squared error of
4 ·10−4 for the test set, and the open loop response for the
entire data set is presented in Fig. 3. From the figure, it is
clear the trained neural network fits the data well.

4.2 Explicit Model Predictive Controller

The developed neural network with ReLU activation func-
tion is implemented in an explicit MPC. The explicit con-
troller has an output and control horizon of one. Increasing
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Fig. 3. Open loop response of the ACUREX solar field,
adapted from Katz (2020).

Fig. 4. The multiparametric solution for the explicit model
predictive controller, adapted from Katz (2020).

the horizon length is possible by feeding the output of the
neural network back into itself. For the presented process,
it was found a horizon of one was sufficient for a suitable
closed loop response.

The integrated neural network and explicit controller is
represented by 24 continuous optimization variables, 22
binary variables, 2 uncertain parameters, and 94 con-
straints. The multiparametric solution is constructed using
the POP toolbox with the graph algorithm. The developed
multiparametric solution yields 956 critical regions and
is presented in Fig. 4. Note that the time required to
identify the critical region where the uncertain parameter
realization exists for large explicit solutions is manageable
given advanced searching techniques (Mönnigmann and
Kastsian (2011)).

4.3 Closed Loop Performance

The closed loop response of the ACUREX process with
an explicit model predictive controller based on a neural
network with ReLU activation function is presented in
Fig. 5. It is evident the explicit controller is able to
maintain a set point, and recover the setpoint after a

Fig. 5. The closed loop response of the ACUREX process,
adapted from Katz (2020).

significant disturbance is passed to the system (Maxey
(2007)). Given the ability of the controller to maintain
and manage significant deviations from the setpoint, the
closed loop response is considered acceptable.

5. CONCLUSION

This manuscript presented the integration of artificial neu-
ral networks with ReLU activation functions and explicit
MPC. Multiparametric programming is a method to solve
the advanced control formulation offline, explicitly as a
function of the uncertain parameters. Developing the ex-
plicit solution reduces the online computational cost of
solving the optimal control problem. Incorporating neural
networks into explicit model predictive control formula-
tions provides a suitable methodology for the advanced
control of complex processes.

Integrating accurate surrogate models in optimization for-
mulations is a critical step in many fields. Future work
includes (i) using the presented methodology in various
applications with real data sets to showcase the improved
performance of using neural networks as surrogate mod-
els, (ii) comparisons of different surrogate modeling ap-
proaches, and (iii) reducing the time to develop the full
multiparametric solution.
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