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Abstract: An iterative bias estimation framework is presented that mitigates position-
dependent ranging errors often present in ultra-wideband localization systems. State estimation
and control are integrated, such that the positioning accuracy improves over iterations. The
framework is experimentally evaluated on a quadcopter platform, resulting in improvements in
the tracking performance with respect to ground truth, and also smoothing the overall flight by
significantly reducing unwanted oscillations; see https://youtu.be/J-htfbzf40U for a video.
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1. INTRODUCTION

Ultra-wideband (UWB) localization systems are one of the
enabling technologies for indoor robotics (Alarifi et al.
(2016)). Often, the time-of-flight of transmitted UWB
radio signals is measured to acquire range measurements
for positioning. Under non line-of-sight (NLOS) condi-
tions, these time-of-flight measurements are usually bi-
ased. NLOS conditions frequently occur in indoor robotics
and the resulting systematic errors in the range measure-
ments limit the positioning accuracy of UWB localization
systems, as described in Denis et al. (2003).

Previous works addressed NLOS conditions by building
channel classifiers that include additional information,
such as floor plans of the environment in Meissner et al.
(2010), channel impulse response data of the received
UWB radio signal in Schroeder et al. (2007) and references
therein, or models trained with labeled data in Maranó
et al. (2010). Other works mitigated range errors directly,
by using deep learning on channel impulse response data in
Tiemann et al. (2017), or using tracking algorithms, while
assuming a temporal evolution model for the range error
in Denis et al. (2005) and Jourdan et al. (2005).

The scenario considered in this paper is that of an au-
tonomous robotic agent that is tasked to traverse a given
reference path repeatedly, where every repetition is called
an iteration denoted by index j. The reference path is a
parametrized curve, defined as

σ(·) : [0, λmax]→ R3 with λmax ∈ R+. (1)

The agent moves autonomously, therefore requiring an
estimate of its state x to determine the motion control
input u. The scenario is situated in a densely cluttered
indoor environment, causing GPS localization and con-
ventional UWB localization to be inaccurate. In addition
to a UWB transceiver, the agent carries an inertial mea-
surement unit (IMU) and barometer, that provide angular

rates, accelerations, and altitude measurements. Though
the agent is able to roughly traverse the path, the agent
is unable to track the reference path accurately due to the
aforementioned systematic measurement errors.

Unlike previous works, this paper exploits the repetitive
nature of indoor robotic applications by improving the po-
sitioning accuracy over iterations. An iterative framework
is proposed that combines estimation with control, and can
deal with non-static environments because the systematic
range error is estimated adaptively. Apart from an IMU
and barometer, the proposed framework does not require
any additional information such as labeled data (e.g. from
a motion-capture system) or floor plans.

The paper is organized as follows. In Section 2, we present
experimentally obtained range error data from which a
biased range measurement model is derived. In Section
3, the iterative bias estimator framework is presented.
Subsequently, the framework is experimentally evaluated
on a quadcopter platform in Section 4. We conclude the
paper with an outlook in Section 5.

2. RANGE MEASUREMENT ANALYSIS

The UWB localization system considered consists of multi-
ple UWB transceivers placed at known locations pa, which
are hereafter called anchors. Each anchor a provides the
agent with the time-of-flight of transmitted radio signals,
such that the distance towards the anchor can be inferred.
The set of range measurements is denoted by Zuwb. The
standard measurement model for such a range measure-
ment k ∈ Zuwb is

zk =‖ pak − p(tk) ‖ +νuwb
k , (2)

where zk, tk, and ak denote the measured range, the
timestamp and the anchor of the range measurement k, re-
spectively. Furthermore, p(tk) denotes the agent’s position
in the global frame at the time the range measurement k
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Fig. 1. The range error set of the dashed anchor in Fig. 2, with respect to the path variable η. Two piece-wise linear
parametrizations (see (23), (24)) are fitted on the range error set (see (6)), using a least-squares approach with
N b = 50. The anchor has both LOS (blue) and NLOS (red) with parts of the path.

Fig. 2. The state transformation is illustrated for an
experimental set-up with a closed reference path σ
(magenta). The locations of three visible anchors are
marked with solid circles. One anchor is behind a
metal trolley, and marked with a dashed circle. There
are three other anchors not visible in the photo.

was taken. Often, the measurement noise νuwb
k is assumed

to be zero mean, normally distributed white noise.

2.1 Position Dependent Bias

The model in (2) describes the ideal situation. However, in
practice range measurements are often inaccurate. Main
causes for range errors are propagation delays due to
small manufacturing differences in the UWB modules, and
NLOS conditions. The former results in a mostly constant
error. In contrast, the latter is expected to vary with
respect to the geometry of the environment, the anchor
placement, and the agent’s position. The error in the range
measurement k ∈ Zuwb is defined as

ek = zk− ‖ pak − p(tk) ‖, (3)

and is visualized for an example path and anchor in Fig 1.
Consider the set-up in Fig. 2. A quadcopter is commanded
to traverse the path accurately, for 21 times, using motion-
capture data and using a control approach as described
in Kumar and Gill (2017). The quadcopter gathers a set
of range measurements from the dashed anchor, which
has has both line-of-sight (LOS) and NLOS with parts
of the path. The motion-capture system provides the true

position p(tk) for all range measurements k ∈ Zuwb. The
true position is used to calculate the range error ek in
(3), and a path variable ηk. The path variable ηk denotes
the arc-length along the path, as visualized in Fig. 2. The
path variable is calculated with a state transformation,
explained in more detail in Kumar and Gill (2017). First,
the closest point to the reference path σ(λ∗k) must be
calculated with

λ∗k = arg min
λ∈[0,λmax]

‖ p(tk)− σ(λ) ‖, (4)

such that the path variable can be calculated with

ηk =

∫ λ∗
k

0

∥∥∥∥dσ(r)

dr

∥∥∥∥ dr. (5)

Hence, a set of range error ek and path variable ηk pairs,

B = {(ek, ηk) s.t. k ∈ Zuwb}, (6)

is collected. Fig. 1 shows the subset of B collected with
the dashed anchor in Fig. 2, and illustrates the spatial
range error evolution along the path. It is evident that
the range error is systematic, caused by NLOS conditions,
and dependent on the position along the path. When
comparing the variance of the range error for positions
along the path, the figure further reveals that there is a
position-dependent noise component, in addition to the
white noise νuwb

k .

2.2 Biased Range Measurement Model

The model in (2) is extended with a path-dependent bias
bak(ηk) to capture the position dependency of the range
error,

zk =‖ pak − p(tk) ‖ +bak(ηk) + νuwb
k . (7)

As the bias evolution is assumed to be a correlated process
with respect to the position along the path, the mean
and variance of bak(ηk) are parametrized as functions
of the path variable ηk and a set of bias parameters

θa,b̄,θa,σ
2 ∈ RNb . For ease of notation, the anchor super-

script a is dropped in θa,b̄,θa,σ
2

in the following, but do
note that each anchor has its own bias profile. We denote
the piece-wise linear parametrizations of its mean and
variance by

E[b(ηk)] = b̄(ηk,θ
b̄) Var[b(ηk)] = σ2(ηk,θ

σ2

), (8)

and further specify this parametrization in Section 3.3.
The number of parameters N b per anchor is chosen such
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that a satisfactory fit on the underlying bias profile is
obtained. See Fig. 1 for an example of a fit on experimental
data for N b = 50.

3. ITERATIVE BIAS ESTIMATOR

The iterative bias estimator estimates the bias parameters

θb̄,θσ
2

. An attempt was made to assume constant vari-
ance, augment the agent’s state x with the mean bias
parameters θb̄, and estimate the augmented state in a
Kalman filter framework. Though stable configurations
were found in simulation, the estimator was prone to
diverge in practice. The divergent behavior was attributed
to the augmented state being weakly observable, as observ-
ability is generally a local property for non-linear systems
(Isidori (1995)), and to the model mismatch between the
bias parametrization and the actual bias profile.

Instead, the control and estimation architecture in Fig. 3
is proposed. Every timestep, the motion controller receives
an estimate of the state x from the online state estima-
tor, which it uses to determine a control input u that
forces the agent’s position on the path. The agent’s sensor
measurements are fused in the online state estimator and
logged over one iteration j, after which they are sent to the
iterative bias estimator, with its components encircled by
the dashed line in Fig. 3. The iterative bias estimator relies
on a classifier to distinguish reliable (i.e. unbiased) from
unreliable range measurements. The iterative framework
enables the reliable measurements to be fused in a non-
causal state estimator whose state trajectory estimate is
used to infer the range error in both the reliable, and unre-
liable range measurements. The range errors are combined
over iterations in a recursive least squares (RLS) filter,
allowing the estimation of the bias’ variance, in addition
to its mean. A forgetting factor in the RLS filter allows the
framework to deal with non-static environments. The up-

dated bias parameters θb̄(j),θ
σ2

(j) are subsequently used by

the online state estimator to evaluate the bias of an anchor
for a given position p. The set of logged measurements in
iteration j is defined as the union

Z(j) = Zuwb
(j) ∪ Z

acc
(j) ∪ Z

gyr
(j) ∪ Z

bar
(j) , (9)

of the range, acceleration, angular rate, and altitude mea-
surement sets, respectively. The components of the itera-
tive bias estimator are specified in the following subsec-
tions.

3.1 Classifier

The logged measurements are sent to a classifier. The
classifier must partition range measurements Zuwb

(j) into

a reliable partition Zuwb,rel
(j) and an unreliable partition

Zuwb,unrel
(j) . The classification algorithm is an adapted ver-

sion of the Residual Weighting algorithm presented in
Chen (1999), which is based on a least squares (LS) al-
gorithm. The algorithm herein differs in that its task is to
classify reliable measurements, instead of estimating the
position. Furthermore, the LS algorithm uses the altitude
measurements in addition to the range measurements.

When the measurements Z(j) are received, the range mea-

surements are first partitioned into N sub subsequences, i.e.

Fig. 3. The iterative bias estimation framework, integrated
into a common architecture for controlling the motion
of a dynamical system.

Zuwb
(j) = {Zuwb

(j),1,Z
uwb
(j),2, . . . ,Z

uwb
(j),Nsub}. (10)

Each subsequence Zuwb
(j),n ∈ Z

uwb
(j) contains consecutive

range measurements obtained with different anchors.
Hence, if Na is the number of anchors from which sequen-
tial range measurements are obtained, such a subsequence
is of size |Zuwb

(j),n| = Na. The classifier labels N rel range

measurements per subsequence Zuwb
(j),n as reliable, where

N rel is set to the expected number of anchors with LOS
at any given time. Reliable range measurements are con-
sistent with each other, which is reflected in a low residual
of a LS position estimate given reliable range measure-
ments. Therefore, a LS position estimate is calculated for
different range measurement combinations Ci(j),n ⊂ Z

uwb
(j),n,

|Ci(j),n| = N rel. These combination are obtained by taking

all |Zuwb
(j),n| choose N rel different combinations, resulting in

N c combinations per subsequence. The combination Ci(j),n
that results in the lowest LS position estimate residual
ri(j),n is classified as reliable, i.e.

Zuwb,rel
(j),n = Ci(j),n s.t. i = arg min

i∈1,2,...,Nc
ri(j),n. (11)

The altitude measurements l ∈ Zbar
(j),n, measured within

the time spanned by the range measurement timestamps
of Zuwb

(j),n, are additionally fused into the LS estimate. The

residual of such a LS estimate is given by

ri(j),n = min
p∈R3

(
ri,uwb
(j),n (p) + rbar

(j),n(pz)
)
, (12)

where pz is the z-coordinate of the position p, and

ri,uwb
(j),n (p) =

1

Σuwb

∑
k∈Ci

(j),n

(zk− ‖ pak − p ‖)2, (13)

rbar
(j),n(pz) =

1

Σbar

∑
l∈Zbar

(j),n

(zl − pz)2. (14)

where Σuwb and Σbar are the corresponding measurement
noise variances. Then, the set of reliable range measure-
ments over a complete iteration is given as the union of
the combinations with the lowest residuals, i.e.

Zuwb,rel
(j) = {Zuwb,rel

(j),1 ,Zuwb,rel
(j),2 , . . . ,Zuwb,rel

(j),Nsub}, (15)
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and the unreliable set as the complement to Zuwb,rel
(j) , i.e.

Zuwb,unrel
(j) = Zuwb

(j) \ Z
uwb,rel
(j) . (16)

3.2 Non-causal Estimator

For each iteration j, the non-causal estimator estimates
the range error set B(j) defined in (6). For this, it requires

estimates of the position at every time tk, k ∈ Zuwb
(j) . An

adapted version of the continuous-time batch optimization
framework presented in Furgale et al. (2015) is used, as
follows.

The measurement set Zrel
(j) = {Zuwb,rel

(j) ,Zacc
(j) ,Z

gyr
(j) ,Z

bar
(j) }

is used to find the maximum a-posteriori estimate of the
state trajectory x(t, c), expressed as the weighted sum of
a finite set of temporal basis functions with parameters
c. It is assumed that the position trajectory p(t) can be
inferred from the state trajectory x(t, c). Using Bayes’ law,
the posterior estimate can be written as

p(x(t, c)|Zrel
(j)) =

p(x(t, c))

p(Zrel
(j))

p(Zrel
(j)|x(t, c)). (17)

Assuming that the sensor measurements are conditionally
independent given x(t, c), the posterior is rewritten as

p(x(t, c)|Zrel
(j)) =

p(x(t, c))

p(Zrel
(j))

∏
m∈Zrel

(j)

p(zm|x(tm, c)). (18)

The measurement likelihood for an arbitrary sensor mea-
surement m with a Gaussian distribution is given by

p(zm|x(tm, c)) = N (hm(x(tm, c)),Σm), (19)

where the measurement model hm(x(tm, c)) denotes the
mean of zm, and Σm denotes the noise covariance matrix.
Only reliable range measurements are used in the non-
causal estimator. Nevertheless, small differences in the
antennas cause a constant offset ouwb

a , slightly different
for each anchor. To compensate for ouwb

a , the model

hk(x(tk, c), o
uwb
ak

) =‖ pak − p(x(tk, c)) ‖ +ouwb
ak

(20)

is used for the reliable range measurements k ∈ Zuwb,rel
(j) .

Similarly, slow drifting behavior in the barometer can
occur, and causes an offset obar in the altitude measure-
ments that is approximately constant over one iteration.
Therefore, a constant offset obar is estimated each iteration
by assuming the barometer measurement model

hl(x(tl, c), o
bar) = pz(x(tl, c)) + obar (21)

for the altitude measurements l ∈ Zbar
(j) . See Ledergerber

and D’Andrea (2018) for the measurement models of a
biased IMU, with the state modeled as a rigid body. In
case the IMU is unbiased, the bias terms in the models
can be omitted. Then, the maximum a-posteriori estimates
(∗c, ∗ouwb

a , ∗obar) are found by minimizing the negative
logarithm of the posterior (18),

min
c,ouwb

a ,obar

∑
m∈Zrel

(j)

− log(p(zm|x(tm, c), o
uwb
a , obar)), (22)

where the term p(Zrel
(j)) is omitted, as it does not influence

the optimized solution, and the prior p(x(t, c)) is omitted
because the ratio of measurements to optimization vari-
ables is large. This reduces (22) to a maximum-likelihood
problem (Furgale et al. (2015)). A local optimization is

performed, where the estimates of the online state esti-
mator serve as the initial guess for the optimization. With
the resulting position trajectory p(t, ∗c), an estimate of the
range error set B(j) is calculated with (4), (5), and (6). It is
important to note here, that the range error is calculated
for all range measurements, i.e. for measurements classified
as reliable and for measurements classified as unreliable.
The barometer offset ∗obar is provided to the classifier and
online state estimator, such that the drift is compensated
for in the altitude measurements zl, l ∈ Zbar before being
incorporated in (14) and before being fused in the online
state estimator.

3.3 Recursive Least Squares Filter

The bias parameters θb̄(j),θ
σ2

(j) are estimated recursively by

combining the range error estimates B(j) with the sets
of range error estimates from all previous iterations, i.e.
B(1..j) = ∪ji=1B(i), yielding the two piece-wise linear bias
parametrizations introduced in (8) and defined as

b̄(ηk,θ
b̄
(j)) = uT(ηk)θb̄(j) (23)

σ2(ηk,θ
σ2

(j)) = uT(ηk)θσ
2

(j). (24)

The elements of vector

uT(ηk) = [u1(ηk), u2(ηk), . . . , uNb(ηk)] (25)

are zero, except for

ui(ηk) = 1− ηk − τi
τi+1 − τi

ui+1(ηk) =
ηk − τi
τi+1 − τi

, (26)

where i is s.t. τi ≤ ηk < τi+1, and where the knots τi of
the piece-wise linear parameterization are given as

τi =
ηmax

N b − 1
(i− 1) for i = {1, . . . , N b}, (27)

where ηmax is the arc-length of the reference path. To
solve for the mean bias parameters θb̄(j), a regressor matrix

U ∈ RNb×|B(1..j)| and range error vector e ∈ R|B(1..j)| are
constructed with the set B(1..j) of all range error, path
variable pairs up to iteration j, i.e.,

U(B(1..j)) = [u(η1),u(η2), ...,u(η|B(1..j)|)] (28)

e(B(1..j)) = [e1, e2, ..., e|B(1..j)|]
T. (29)

Subsequently, the problem of finding the mean bias param-
eters θb̄(j) can be formulated as a least squares problem,

min
θb̄

(j)

[
(θb̄(j)− θ̄

b̄)TΠ−1
0 (θb̄(j)− θ̄

b̄)+ ‖ e−UTθb̄(j) ‖
2
]
, (30)

where the initial guess θ̄b̄ and the weighting matrix Π−1
0

represent the prior knowledge. Each iteration, θb̄(j) is

estimated by solving (30) recursively with the regularized
RLS algorithm described in Section 21.4 of Sayed and
Kailath (2000). A forgetting factor λ̄ is included in the
algorithm, so that the framework is adaptive to non-static

environments. Similarly, the variance bias parameters θσ
2

(j)

are estimated, by recursively solving

min
θσ

2

(j)

[
(θσ

2

(j) − θ̄
σ2

)TΠ−1
0 (θσ

2

(j) − θ̄
σ2

)+ ‖ r − UTθσ
2

(j) ‖
2
]
,

(31)

where θ̄σ
2

is the initial guess for the variance. In practice,

θ̄σ
2

is set to a large value, while θ̄b̄ is initialized to zero, as
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the shape of the bias profile is unknown. Vector r denotes
the squared residual between the range error data and
mean bias fit. The squared residual is a common metric
for estimating variances, as described in Buckley et al.
(1988), and is defined as

r = (e− UTθb̄(j))� (e− UTθb̄(j)), (32)

where � is the element-wise multiplication operator. The

estimated parameters θb̄(j),θ
σ2

(j) are provided to the bias

parametrization block in Fig. 3, such that the online
state estimator can evaluate the mean and variance bias
parametrizations in (23), and (24) for a given position p,
using (4), and (5).

4. EXPERIMENTAL EVALUATION ON A
QUADCOPTER PLATFORM

The proposed iterative bias estimation framework was
experimentally evaluated on a quadcopter platform. The
quadcopter is the autonomous robotic agent, tasked to fly
a closed reference path repeatedly. First, the implementa-
tion details are provided, showing how the framework was
able to run in real-time. Subsequently, the experimental
results are presented.

4.1 Implementation

The motion controller and online state estimator are run
on a Snapdragon flight board, located onboard a quad-
copter. The iterative bias estimator is run in a separate
process, offboard on a laptop with an i7-Intel proces-
sor. The onboard and offboard processes communicate
with a TCP client/server set-up. Both the anchors and
quadcopter are equipped with DWM 1000 modules and
communicate using the two-way ranging algorithm with
repeated reply described in Mueller et al. (2015). The
quadcopter communicates with every anchor in sequen-
tial order at a frequency of 200 Hz. The MPU9250 IMU
and BMP280 barometer modules are integrated on the
Snapdragon flight board, and provide measurements with
a frequency of 1 kHz and 50 Hz, respectively.

The online state estimator estimates the position, velocity,
orientation representation, and angular velocity of the
quadcopter in a Kalman filter framework, specified in Led-
ergerber and D’Andrea (2018). The range measurements
are fused using model (7) via an unscented Kalman filter.
For every position sigma point p(i), the resulting (b̄, σ2)(i)

can be incorporated into the range measurement update.

A path following controller is implemented as the motion
controller of the quadcopter. The controller minimizes the
agent’s distance towards the path and makes the agent
traverse along the path with a constant reference speed of
1.5 m/s. See Kumar and Gill (2017) for more details.

It is assumed that the quadcopter has LOS with 5 out of 7
anchors at any given time. Therefore, N rel is set to 5, and
N c = 21 for |Zuwb

(j),n| = 7. For an iteration j with a duration

of 10 seconds, roughly |Zuwb
(j) | ≈ 2000 range measurements

are logged, resulting in N sub ≈ |Zuwb
(j) |/N

a ≈ 286 parti-

tions, as defined in (10). For every partition, (12) must
be evaluated for all N c = 21 combinations, resulting in
a total of 286 ∗ 21 = 6006 computations of (12). All

computations are independent from one another, so that
the computations can be parallelized.

The non-causal state estimator is implemented similarly
to Ledergerber and D’Andrea (2018). The state trajec-
tory x(t) is assumed to consist of a position trajectory
p(t) and quaternion trajectory q(t). Both trajectories are
parametrized by a set of uniform cubic B-splines. A small
uniform knot spacing of the splines increases the approx-
imation power of the parametrization. However, we find
that a larger spacing of 500 ms performs better, because
it has a regularizing effect on the optimization in (22).
The IMU is assumed to be unbiased, because it showed no
drifting behavior after calibrating prior to flying.

The RLS filter has a forgetting factor λ̄ = 0.9, which means

that the estimated parameters θb̄(j),θ
σ2

(j) depend on roughly

the last 10 iterations. A large uncertainty in the bias is

encoded by setting each element in the initial variance θ̄σ
2

to a large value of 0.152. The weight matrix is set to be
Π−1

0 = UUT, where U is constructed with (28) using N sub

uniformly sampled path variables η along the path. The
reference path is a closed path, so the parametrization in
(25), (26), and (27) is adjusted accordingly.

4.2 Experimental Results

The experiments were performed in the Flying Machine
Arena of ETH Zurich (Lupashin et al. (2014)). See Fig. 2
for the anchor placement and reference path the quad-
copter is tasked to fly. Objects (e.g. metal trolleys) placed
in the room cause some anchors to have NLOS with parts
of the path, inducing a position-dependent bias in the
range measurements. See Fig. 1 for an example.

Minimizing the distance towards the path is considered to
be the most important control objective, because it ensures
a safe flight. This distance is referred to as the tracking
error, and is defined as

ξ =‖ p− σ(λ∗) ‖ . (33)

The first time-derivative of the tracking error is denoted
by ξ̇. A large ξ̇ means the distance error varies rapidly,
which expresses itself in an oscillatory flight around the
reference path. The mean absolute error (MAE) in ξ and

ξ̇ is shown in Fig. 4 for four runs. The performance of
the proposed framework is compared with that of two
different experiments. In a base-case (base) experiment,
no bias estimation is performed. In a motion-capture (mc)
experiment, the true range error set B is obtained with
a motion-capture system, and subsequently fed to the
RLS filter such that the best-possible bias fit is obtained.
The performance of the motion-capture experiment is
interpreted as the best case. Each experiment is executed
multiple times. Only the mean performance µ with one
standard deviation σ is plotted for the base-case and
motion-capture experiments.

Fig. 4 shows that the proposed framework consistently
improves performance over iterations in both ξ, and ξ̇,
with respect to the base-case experiments. Concerning ξ̇,
a similar performance level with respect to the motion-
capture experiment is obtained. The improvements in ξ̇
are ascribed to the inclusion of a position-dependent noise
component in addition to the mean bias, and results in
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Fig. 4. The path tracking performance of the proposed framework is plotted for four runs (solid-dotted), alongside the
mean performance µ with one standard deviation σ of the base-case (red) and motion-capture (blue) experiments.

reduced oscillations during flight. See https://youtu.
be/J-htfbzf40U for a video, showcasing the improved
flight performance. The performance of the iterative bias
estimation framework largely depends on the ability of the
classifier to correctly distinguish reliable from unreliable
measurements. Therefore, the difference in path tracking
performance improvement between the framework (26%),
and best case (56%), is primarily attributed to the sub-
optimal performance of the classifier.

5. OUTLOOK

Improvements in the classifier are expected to be most
effective in improving the overall performance of the
framework. For example, the additional inclusion of IMU
measurements into the presented classification scheme is
worth investigating. Also, completely different classifica-
tion schemes based on channel impulse response data
should be tested and could lead to a reduction of the
classifier’s computational complexity. Finally, it would be
interesting to apply iterative learning control on top of the
presented framework for high-performance maneuvering
under UWB.
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