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Abstract: Programmable Logic Controller (PLC) has been playing an important role in
industrial automation. Users want to improve programming efficiency by implementing code
reuse and more intelligent code retrieval. Due to the heterogeneity of different PLC development
environments, it is then necessary to design a computable knowledge model to semantically
represent, organize, and utilize these diversified resources. Using the ontology technique is
a common way to achieve the interoperability of heterogeneous systems. Aiming at this, we
propose an ontology matching approach in this paper. Knowledge extraction and alignment are
difficult for most of the knowledge graphs construction tasks, however, we are able to build the
PLC domain knowledge graph with high accuracy and completeness by considering PLC domain
characteristics, designing layered ontology, and implementing the matching process primarily
on schema level instead of instance level.
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1. INTRODUCTION

PLC has been widely used in industrial automation to
improve system reliability, stability, and performance. It
is used for logic control in all kinds of industrial, such
as transportation and manufacturing, which requires com-
plicated automatic processes. In addition, according to
Wu et al. (2018), PLC has motion control abilities which
could be used to simplify the control system. Currently,
there are several PLC development platforms independent
from hardware and manufacture widely used, such as
CODESYS, Beremiz, and MULTIPROG. Since the release
of IEC 61131-3 Programming languages standard, users
want to be able to exchange their PLC programs and
libraries between heterogeneous environments. Despite all
software vendors claim that their products conform to the
IEC 61131-3 standard, they still have their own knowl-
edge structure and are not compatible with each other.
It is usually required to rewrite the PLC projects when
transferring from one software platform to another. Not to
mention share and exchange information on the semantic
layer. According to TC 65/SC 65B (2019), now the IEC
committee publishes the IEC 61131-10 PLC open XML
exchange format based on the work of PLCopen TC6 -
XML. If an IEC 61131-3 project is saved in this XML
format, it could be reused by any other development
environment who supports this standard XML format.
But this standard only provides a common XML format
for representing the IEC 61131-3 software models and

languages, without providing a mechanism to support se-
mantic information between different PLC programming
environments. The help for code reuse is limited since all
software platforms are heterogeneous and have their own
implementation of PLC controllers, along with different
terminologies. Not to mention vendor-specific data-types
and controller libraries.

To support PLC code reuse and retrieval on the semantic
level, a unified semantic description of heterogeneous PLC
projects is needed. Ji et al. (2015) show that with the help
of knowledge representation technology, particularly the
knowledge graph, it is then possible to achieve code re-
trieval on semantic and further knowledge-driven software
design. As is introduced in Ehrlinger and Wöß (2016),
a knowledge graph acquires and integrates information
into an ontology and applies a reasoner to derive new
knowledge. Knowledge graph has been widely used in
many areas. For instance, Alibaba knowledge graph in E-
commerce area mentioned in Wang et al. (2018), Links
Life Data in the medical domain discussed in Momtchev
et al. (2009), and Kensho in financial scope by Kensho
Technologies LLC (2013). And this technology is now
increasingly used in the automation domain. Terkaj et al.
(2017) provide a modular ontology of the building control
and automation domain for reusing building data (e.g.,
design data, product data, and sensor data) across various
formats. Ryabinin et al. (2019) put forward an ontology-
driven approach to automate the firmware and middleware
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generation for IoT devices. Yang et al. (2016) propose a
method for the automatic generation of smart-grid au-
tomation system software based on ontology transforma-
tion. Dai et al. (2013) propose a system design approach
using ontology as knowledge base. This approach is based
on IEC 61499 function blocks. However, the succeeded ap-
plication of knowledge graph in industry control, especially
in the PLC domain, is still limited.

Though using knowledge graph raises heterogeneity prob-
lems to a higher level, conflicting ontologies in the same do-
main usually cannot interoperate with each other. Shvaiko
and Euzenat (2008) propose that ontology matching is a
solution to the semantic heterogeneity problem. Ontology
matching detects correspondences between semantically
related entities of ontologies, which further can be used
for ontology merging, query answering, data translation,
etc. Euzenat et al. (2007) show that matching ontologies
enables the knowledge and data expressed in the matched
ontologies interoperate with each other. In this paper, we
provide an ontology matching based domain knowledge
graph automatic construction approach, aiming to transfer
and uniformly represent the PLC projects without much
additional effort. The specific contributions of this paper
are as follows.

• We build a PLC domain knowledge graph to describe
semantic information. Based on knowledge represen-
tation and ontology techniques, we could use the
reasoning mechanism and inference tool to exchange
data from heterogeneous information silos.
• The construction of the knowledge graph uses a lay-

ered approach. The core schema represents the most
common concepts in the PLC domain while the outer
layers’ schemas integrate semantics in manufacture
area, application area, etc.
• A multi-facets ontology matching approach is applied

to align heterogeneous terms. This approach imple-
ments on the schema level based on the common core
ontology.
• Use of semantic knowledge to enable code reuse

between heterogeneous PLC platforms.

2. PLC DOMAIN KNOWLEDGE GRAPH
CONSTRUCTION

The construction of the PLC domain knowledge graphs
mainly involves knowledge modeling, knowledge extrac-
tion, ontology matching, and other technologies, as is
shown in Fig. 1. A usual way of building domain knowledge
graph is to build a unified schema. But this leads to the
difficulty of entity recognition and linking. Also, the accu-
racy and preciseness of natural language do not meet the
requirements of the industry. Thus, we propose a layered
method, which builds a core ontology first, then create a
separate ontology for each software platform. This has two
main advantages. First, the difficulty of entity recognition
is reduced since the semantic structure and composition
of PLC projects are relatively consistent with its develop-
ment platform. The second is that such construction has
better versatility and extensibility. We construct a Com-
mon Core Ontology (CCO) to represent common concepts
in PLC projects. And for heterogeneous PLC development
environment, code comments, test logs, and bug reports,
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Fig. 1. PLC domain knowledge graph architecture. The
knowledge graph repository is in a layer hierarchy,
which consists a Common Core Ontology (CCO)
layer, an Application Specific Ontology (ASO) layer
and a instance layer.

we use Application Specific Ontology (ASO) to express
layered concepts and data. The definitions of CCO and
ASO are introduced as follows.

Definition 1. (Common Core Ontology). A CCO is a tu-
ple < C,R,D,A >, where

• C is a set of concepts which represent types of object,
specifically the definitions of PLC program elements
concepts in the XML format and program hierarchy
between these concepts.

• R is a set of semantic relations between concepts or
instances (e.g., subClassOf, partOf).

• D is a set of datatypes.
• A is a set of axioms that constrain the possible

interpretation for the defined terms.

Definition 2. (Application Specific Ontology). An ASO is
a tuple < C,R,D,A, I >, where

• I is a set of instances of corresponding concepts which
indicate specific instance in the real world.

C, R, D and A are the same as those in CCO.

Leveraging the constructed PLC domain knowledge graph,
we propose a method in the following section for code reuse
and retrieval by ontology matching. The matching oper-
ation determines the alignment A of the source ontology
O and the target ontology O′. Alignment expresses the
correspondences between concepts of different ontologies.
Correspondence is the relation hold between two concepts
of different ontologies. The definitions of correspondence
and alignment are presented as follows.
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Fig. 2. Common Core Ontology (CCO) of the PLC domain
knowledge graphs (partly).

Definition 3. (Correspondence). Given two ontologies O
and O′, a correspondence between two ontologies O and
O′ is a tuple < id,C,C ′,M,R >, where

• id is a unique identifier of the correspondence.
• C and C ′ are concepts of the first and the second

ontology respectively.
• M is a confidence measure in range [0, 1] holding for

the correspondence between the concepts C and C ′.
The higher the confidence, the higher the likelihood
of a relationship.

• R is a relation holding between the concepts C and C ′

(e.g., equivalence(=), subset of(⊆), superset of(⊇)).

Definition 4. (Alignment). Given two ontologies O and
O′, an alignment between two ontologies O and O′ is
Align, where

• Align is a set of correspondences between concepts
belongs to O and O′.

• The correspondence might be one to one, one to more,
or more to one.

We construct and apply the PLC domain knowledge
graphs according to the following steps. According to our
observation, PLC programs usually have a certain pattern,
which makes entity extraction simpler than unstructured
plain-text.

(1) Build CCO for the PLC domain.
(2) Build ASO for each development platform respec-

tively.
(3) Knowledge extraction of PLC programs from multiple

heterogeneous software platforms.
(4) Knowledge alignment based on ontology matching.

As a result, a snippet of CCO is shown in Fig. 2. Here
we use Beremiz as an example, and present part of the
ASO of Beremiz in Fig. 3. Beremiz is an open-source IEC
61131-3 integrated development environment developed by
Tisserant et al. (2007). Compared to other development
environments, Beremiz has several features of its own.
First, Beremiz supports high-level programming languages

C and Python as POU (Program Organisation Unit) types.
Second, Beremiz has its own controllers library with a
variety of platform-specific Functions and FunctionBlocks.
These Functions and FunctionBlocks cannot be export
and import to other development platforms. One reason
is that other platforms may not have the same Function
or FunctionBlock. The other reason is terminological het-
erogeneity, which means other platforms may use other
names for the same Function or FunctionBlock.

3. ONTOLOGY MATCHING IMPLEMENTATION

A computable knowledge model is constructed leveraging
ontology matching which can be used to reduce seman-
tic heterogeneity. In PLC domain, semantic heterogene-
ity mainly refers to terminological heterogeneity in con-
trollers libraries in different PLC development environ-
ments. Terminological heterogeneity occurs due to vari-
ations in names when indicating the same concepts in
different development environments. This is usually caused
by the use of abbreviation, capitalization, and affix. To
remedy this kind of heterogeneity, name-based ontology
alignment methods proposed in Cohen et al. (2003) and
Euzenat et al. (2004) could be considered. However, the
alignment result by using name-based techniques alone is
not good enough. If the confidence measure is set high to
ensure higher precision, the recall will be significantly low.
This is because many concept names in PLC domain are
abbreviated, and concepts with different affixes in source
ontology usually should be mapped to the same concept
in target ontology. For example, Beremiz has JumpStep
and Step, which equals to Jump and Step in CODESYS
respectively. Name-based techniques are not able to match
JumpStep to Jump effectively since the confidence measure
between JumpStep and Jump is roughly equal to the con-
fidence measure between JumpStep and Step. Moreover,
simply adding the relation factor into consideration is
not helpful enough. In the given example, JumpStep in
Beremiz ontology is the subclass of SFC, while Jump in
CODESYS ontology is the subclass of concept General.

To solve this, we propose an ontology matching approach
which builds correspondence on schema level instead of
instance level, according to the characteristics of PLC
domain. The CCO acts as an intermediate ontology, which
could be used as a reference to determine the relevance
of the concepts in source and target ontologies. Through
multi-facets ontology matching which considers names,
data properties, object properties, paths, etc., the corre-
spondence between different PLC development platforms
(e.g. Beremiz, CODESYS) and projects are established.
After that, the instances under corresponding concepts are
recognized and aligned automatically.

3.1 Similarity Measure

The similarity measure is used to calculate the similarity
between the concepts of different ontologies. The difficulty
of similarity measure is that different PLC vendors may
not only use different terms to represent PLC controllers
but also use different structures to organize them. There-
fore, it is necessary to compute the similarity from multiple
perspectives to implement accurate measurement.
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Fig. 3. Application Specific Ontology (ASO) of Beremiz (partly). Beremiz supports high-level programming language
C and Python as Pou types, and has its own controllers library with some platform-specific Functions and
FunctionBlocks.

Concept names are compared to compute string similarity.
Internal structure, which is the definition of concepts with-
out references to other concepts (Euzenat et al. (2007)),
specifically the properties and cardinality of the concepts
are used to calculate the internal structure similarity. The
relational structure is ignored since the position and the
relationship of a concept in the knowledge architecture
do not affect its role. Similarity should be normalized
if it ranges over the unit interval of real numbers [0, 1].
A normalized similarity σ is a function from a pair of
concepts to a real number ranging in [0, 1] expressing the
similarity between two concepts, as in:

(1)
σ(ci, cj) = sim string(ci, cj)

u sim internal structure(ci, cj)

u sim datatype(ci, cj)

According to Guerrini et al. (2007), having two ontologies
C and C ′ containing k1 and k2 concepts respectively, the
similarity between them can be expressed as the average
similarity of their elements. It is represented in (2), where

σ(ci, cj) is the similarity between concepts ci ∈ C and
cj ∈ C ′ computed by (1).

(2)Sim(C,C ′) =
Σk1

i=1Σk2
j=1σ(ci, cj)

k1 + k2

3.2 Multi-facets Ontology Matching Method

The ontology matching algorithm between CCO and ASO
utilizes both name-based techniques and structure-based
techniques. Considering that similar names are used to
represent the same semantic concept, name comparison is
firstly applied to determine the similarity of two concepts.
Besides, the internal structure of concepts is compared to
ensure the correctness of similarity measure and to find
more correspondence. The flowchart of ontology matching
is shown in Fig. 4, and the specific steps are as follows.

Preprocessing Remove vendor prefixes, blank characters,
and connecting characters like “ ”. Then convert each
alphabetic character in the concept names into their lower
case counterpart.
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Fig. 4. Flowchart of ontology matching algorithm.

Name comparison Edit distance representing the mini-
mal cost of transfer a string to the other one is designed
to measure the similarity between two strings. The Lev-
enshtein distance, an edit distance algorithm provided in
Levenshtein (1966), which calculates the minimum num-
ber of insertions, deletion, and substitution of characters
required to transfer one string to another, is applied for
name comparison. The string similarity is calculated as
in 3, where lev(ci, cj) represents the Levenshtein distance
between the names of two concepts ci and cj respectively.

(3)sim string(ci, cj) = 1− lev(ci, cj)

|ci|+|cj |

Property comparison Properties represent relationship.
For a FunctionBlock, it would typically be the instance
name, for a Function it can be its input variableand
output variable. Such information could be used to identify
a concept. If different concepts provide highly similar
properties, it is plausible to determine that they are
equivalent. The quantification of property similarity is
in 4, cip and cjp represents the properties of ci and cj
respectively.

sim internal structure(ci, cj) =
|cip ∨ cjp |−|cip ∧ cjp |

|cip ∨ cjp |
(4)

Datatype comparison Datatype can be part of the re-
lation applied to the property of the concept in onology,
which is corresponding to PLC’s data types. Data types
are not disjoint in PLC domain. Intuitively, the similarity
between datatypes should be highest when they are of
the same type, relatively higher similarity when they are
compatible, relatively lower when they are not compatible.

Part of the data type categories compatibility table in PLC
domain is listed in table 1. Similarity between specific data
types within its category, for example, SINT, DINT, and
ULINT in INTEGER, is determined as 0.9.

Table 1. PLC data type compatibility (partly)

Bit Strings INTEGER REAL Character

Bit Strings 1.0 0.3 0.4 0.8
INTEGER 0.3 1.0 0.6 0.3

REAL 0.4 0.6 1.0 0.3
Duration 0.1 0.2 0.2 0.1
Date 0.1 0.2 0.2 0.1

Time of day 0.1 0.2 0.2 0.1
Character 0.8 0.3 0.3 1.0

3.3 Reasoning

After ontology matching, it is possible to process ontology
merging based on the matching results by reasoning.
Reasoning involves applying the alignment as reasoning
rules of the two ontologies O and O′, which is represented
as follows.

(5)Reason(O,O′, T ransformToRules(Align)) = O′′

The transformed rules can be written in ontology language
rules such as OWL (Web Ontology Language) or SWRL
(Semantic Web Rule Language). A reasoner Pellet is used
to perform consistency checking on the merged ontology
in this paper.

4. CASE STUDY ON MAPPING BEREMIZ AND
CODESYS

In this section, we implement the proposed multi-facets
ontology matching approach integrated with COMA++,
which is developed by Aumueller et al. (2005). COMA++
provides an extensible library of matching algorithms
that could be used for composite matching strategies.
To demonstrate our approach, ontology matching be-
tween Beremiz and CODESYS is provided as an example.
Protégé, an ontology editor developed by Musen (2015), is
used to create Beremiz ontology, CODESYS ontology, and
the core ontology.

Part of the mapping results of Beremiz ontology and
CODESYS ontology is given based on the strategy illus-
trated in the previous section in Fig. 5.
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B_Transition

Pou
Body

CommonObject
Action

FbdObject
Jump

SftObject
Step
Transition

C_Pou
C_Body

C_SFC
C_Action
C_Step
C_Transition

C_General
C_Jump

Beremiz CCO CODESYS

Fig. 5. Ontology matching results on Beremiz ontology and
CODESYS ontology (partly).

In this case, Beremiz ontology contains 276 items and
CODESYS ontology contains 196 items. As a result, 67 out
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of 69 equivalent items are mapped. In practice, the ASOs
containing PLC data in different levels and scenarios are
distinct. Two most common ASO types are PLC software
ontology and bug report ontology. The matching system
adapts well to all these situations and it produces merged
results with high accuracy in about a second.

5. CONCLUSION

This paper proposes a novel multi-facets ontology match-
ing approach for generating PLC domain knowledge
graphs. Specifically, the layered knowledge graphs are con-
structed with CCO and ASO to represent heterogeneous
PLC development environments. Semantic information in
PLC programs is extracted as entities of corresponding
development platforms. We rely on schema-level input
information for performing ontology matching. The simi-
larity between concepts of different ontologies is quantified
according to their names, relations, and datatypes etc.
Ontology merging is processed based on the matching
results. We demonstrate our approach by applying it to
mapping Beremiz ontology and CODESYS ontology.

In the future, we will continue with semantic reasoning,
retrieval, and analysis by using techniques and tools such
as SWRL and SPARQL. Furthermore, we will implement
semantic retrieval and recommendation of PLC code and
function blocks and analyze the code structure to evaluate
code quality.
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